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A secretary problem with uncertain employment
and restricted offering chances

Katsunori Ano * and Mitsushi Tamaki \dagger

June 9, 1991

Abstract
A version of the secretary problem with no recall, in which an offer of acceptance is refused by the

applicant with a fixed known probability $1-p,$ $(0\leq p\leq 1)$ and the offering chances, until the decision
maker gets one applicant, are at most $M$ times is treated. This problem is an extension of Smith
(1975). The optimal strategy of this problem is obtained in Section 2. In Section 3, as example,the
optimal offering strategies and the maximum probabilities of selecting the best applicant are given
for the problems with $M=1,2,3$ respectively.

DYNAMIC PROGRAMMING;OPTIMAL STOPPING;SECRETARY PROBLEM;UNCERTAIN EMPLOYMENT

1. Introduction

We consider avariation of the sequential obServation and selection problem, often referred to as the
seCretary problem and studied extensively by Gilbert and Mosteller (1966). The baeic framework of the
classical Secretary problem can be described as follows. $N$ applicants appear one by one in random order
with all $N!$ orderings being equally $1;kely$. We are able, at any time, to rank the applicants that have so
far appeared aCCording to some order of preference. As each appliCant appears, we must decide whether
or not to make an offer to that applicant with the objective of maXimizing the probability of $ch\infty sing$

the best appliCant. It is assumed that each appliCant accepts an offer of employment with certainty and
that an applicant to whom an offer is not made cannot be recalled later.

There are many $int_{er}^{\sim}esting$ modifiCations of this problem, for an eXcellent review of the published
work to date, see Freeman(1983) or Ferguson(1989). Smith(1975) is the first to consider the problem
with uncertain employment where each applicant has the right to decline an offer of employment with a
known fixed probability, $1-p(=q_{)}0\leq p\leq 1))$ independent of $his/her$ rank and the arrangement of the
other applicants. In Smith’s problem, we can make as many offers as we wish. The problem we consider
here puts restriction on the number of offers and allows us to make offer at most $M$ times, where $M(\leq N)$

is the predetermined number. We call our problem $m$-problem if we are $4lowed$ to give $m$ more offers in
the future. As easily seen, to solve the $M$-problem completely, we must ako solve the $(M-1)-,(M-2)-$
$)$

$1-$ problems. The event that we can employ the overall best is called success and our objective is to
find astrategy of maximizing the probability of success. Another modification of Smith’s problem wae
considered in Tamaki(1991). We derive the optimal strategy of the problem in Section 2and investigate
in detail,the 1, 2, $3$ –problem in Section 3.

2. The optimal strategy of the problem

Let $X_{j}$ denote the relative rank of the $jth$ applicant among the first $j$ applicants (rank 1 being relative
best). Then,since the applicants appear in random order, it is easy to see that

(i) the $X_{j}$ are independent random variables, and
(ii) $P(X_{j}=i)=1/j$ for $i=1,2,$ $\cdots$ , $j$ , for $j=1,2,$ $\cdots,$

$N$ .
The n-th applicant is sometimes called a candidate if $he/she$ is relative best, that is, $X_{n}=1$ .

Define the state of the process as $(n, m)$ , I $\leq n\leq N,$ $0\leq m\leq M$ , when we confront the m-problem
and observe that the $nth$ applicant is a candidate. In state $(n, m)$ , we must decide either to give an offer
or not to the current candidate. Let $w_{n}^{(m)}$ be the probability of success starting from state $(n, m).$. Also
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let $u_{n}^{(m)}(v_{n}^{(m)})$ be the corresponding probability when we make an offer (when we decline to make an
offer) to the current candidate in state $(n, m)$ and proceed optimally thereafter. Then from the principle
of optimality
(1) $w_{n}^{(m)}= \max\{u_{n}^{(m)}, v_{n}^{(m)}\}$ , $m\geq 1,1\leq n\leq N$ ,

where
(2) $u_{n}^{(m)}=p \frac{n}{N}+qv_{n}^{(m-1)}$ ,

(3) $v_{n}^{(m)}= \frac{1}{n+1}w_{n+1}^{(m)}+(1-\frac{1}{n+1})v_{n+}^{(m)_{1}}$ .

The boundary conditions are $v_{n}^{(0)}\equiv 0,$ $v_{N}^{(m)}\equiv 0,$ $w_{N}^{(m)}=u_{N}^{(m)}\equiv p$ for $m\geq 1$ . $Eq.(2)$ follows since
the availability of the applicant can be ascertained by giving an offer and the m-problem enters into
the $(m-1)$-problem once an offer is declined. Eq.(1),(2) and (3) can be solved recursively to yield the
optimal strategy and the probability of success $v^{(m)}\equiv w_{1}^{(m)}$ . The following lemma gives the monotonicity
property of $v_{n}^{(m)}$ .

Lemma 1. (i) $v_{n}^{(m)}$ is non-increasing in $n$ .
(i1) $v_{n}^{(m)}$ is non-decreasing in $m$ .

Proof. (i) is evident from (3). (ii) shall be shown by backward induction on $n$ . The assertion holds
for $n=N$ and all $m$ because $v_{N}^{(m+1)}-v_{N}^{(m)}=0$ by definition. Assume now that the assertion holds for
$n=k(\leq N)$ and for all $m$ . We have from (3)

$v_{k-1}^{(m+1)}-v_{k-1}^{(m)}$ $=$ $\frac{1}{k}[\max\{p\frac{k}{N}+qv_{k}^{(m)}, v_{k}^{(m+1)}\}$

$- \max\{p\frac{k}{N}+qv_{k}^{(m-1)}, v_{k}^{(m)}\}]$

$+(1- \frac{1}{k})(v_{k}^{(m+1)}-v_{k}^{(m)})$ .

Applying the fact that $\max(a_{1}, b_{1})-\max(a_{2}, b_{2})\geq\min(a_{1}-a_{2}, b_{1}-b_{2})$ to the right-hand side, we obtain

$v_{k-1}^{(m+1)}-v_{k-1}^{(m)}$ $\geq$ $\frac{1}{k}\min\{q(v_{k}^{(m)}-v_{k}^{(m-1)}), v_{k}^{(m+1)}-v_{k}^{(m)}\}$

$+(1- \frac{1}{k})(v_{k}^{(m+1)}-v_{k}^{(m)})$ .

The right-hand side in the above inequality is nonnegative from the induction hypothesis and the proof
is complete.

Repeated use of (3) yields

(4) $v_{n}^{(m)}= \sum_{j=n+1}^{N}\frac{n}{j(j-1)}w_{j}^{(m)}$ .

Throughout this paper, the vacuous sum is assumed to be zero. Now let

(5) $\tilde{v}_{n}^{(m)}=\sum_{j=n+1}^{N}\frac{n}{j(j-1)}u_{j}^{(m)}$ .

Then $\tilde{v}_{n}^{(m)}$ represents the probability of success attainable by giving an offer to the first candidate that
appears after leaving state $(n, m)$ and preceding optimally thereafter. Let $B_{m}$ be the one-stage look-
ahead (OLA) stopping region for the m-problem, that is, $B_{m}$ is the set of state $(n, m)$ for which giving
an offer immediately is at least as good as waiting for the first candidate to appear to whom an offer is
given. Thus

$B_{m}=\{(n, m) : u_{n}^{(m)}\geq\tilde{v}_{n}^{(m)}\}$ .
From (2) and (5) we have

$u_{n}^{(m)}-\tilde{v}_{n}^{(m)}$ $=$ $p \frac{n}{N}(1-\psi_{n})+q\{v_{n}^{(m-1)}-\sum_{j=n+1}^{N}\frac{n}{j(j-1)}v_{j}^{(m-1)}\}$ ,
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where $\psi_{n}\equiv\sum_{j=n+1^{\frac{1}{J-1}}}^{N}$ . Define $A_{n}^{(m)}$ as $(u_{n}^{(m)}-\tilde{v}_{n}^{(m)})/n$ , that is,

(6) $A_{n}^{(m)}= \frac{p}{N}(1-\psi_{n})+\frac{q}{n}\{v_{n}^{(m-1)}-\sum_{j=n+1}^{N}\frac{n}{j(j-1)}v_{j}^{(m-1)}\}$ , $m\geq 1,1\leq n\leq N$ .

Applying (4) to $v_{n}^{(m-1)}$ of the above equation, we have

(7) $A_{n}^{(m)}= \frac{p}{N}(1-\psi_{n})+q\sum_{j=n+1}^{N}\frac{1}{j(j-1)}\{w_{j}^{(m-1)}-v_{j}^{(m-1)}\}$ .

Then $B_{m}$ can be written as

$B_{m}=\{(n, m) : A_{n}^{(m)}\geq 0\}$ .
It is well known that if $B_{m}$ is closed, i.e., $B_{m}=\{(n, m) : n\geq s_{m}\}$ for some specified value $s_{m}^{*}$ , then the
optimal strategy in state $(n, m)$ is to give an offer as soon as state enters $B_{m}(see,e.g.$ , Ross or Chow et
al). The following theorem is the main result of this paper.

Theorem 1. Let $s_{m}^{*}$ be specified as $s_{m}^{*}= \min\{n : A_{n}^{(m)}\geq 0\}$ . Then $B_{m}$ is closed and gives an $op$ timal
offering region for the m-problem. Moreover $s_{m}^{*}$ is non-increasing in $m$ .

Proof. It suffices to show that for $k\geq 1$ , (H-1) $A_{n}^{(k)}$ is non-decreasing in $n$ and (H-2) $A_{n}^{(k+1)}\geq A_{n}^{(k)}$

for $n=1,$ $\cdots,$
$N$ . We show these by induction on $k$ . The assertion for $k=1$ is immediate since we have

from (7)

$A_{n}^{(1)}$ $=$ $\frac{p}{N}(1-\psi_{n})$ ,

and

$1$

$A_{n}^{(2)}-A_{n}^{(1)}$ $=$ $\frac{q}{n}\sum_{j=n+1}^{N}\frac{n}{j(j-1)}\{w_{j}^{(1)}-v_{j}^{(1)}\}$ $\geq 0$ .

Assume both (H-1) and (H-2) hold for $k=m-1$ , that is, assume $A_{n}^{(m-1)}$ is non-decreasing in $n$ ,
$A_{n}^{(m)}\geq A_{n}^{(m-1)}$ and define $s_{m-1}^{*}= \min\{n:A_{n}^{(m-1)}\geq 0\}$ . Then, from the induction hypothesis and (2),

$w_{j}^{(m-1)}-v_{j}^{(m-1)}=\{\begin{array}{l}0j\leq s_{m-l}^{*}-1u_{j}^{(m-l)}-v_{j}^{(m-l)}j\geq s_{m-l}^{*}\end{array}$

(8) $=\{\begin{array}{l}0j\leq s_{m-l}^{*}-1p_{N}^{\perp}-\{v_{j}^{(m-l)}-qv_{j}^{(m-2)}\}j\geq s_{m-l}^{*}\end{array}$

Substituting (8) into (7), we obtain

(9) $A_{n}^{(m)}= \{f^{(1-\psi_{\psi_{n}^{)+q\sum.\frac{1}{\frac{j(j-1)1}{j(j-1)}}\{w_{(m-1)}^{(m-1)}-v_{j}^{(m-1)}\}_{\}}}}}LN(1-p^{n})-q\sum_{j=n+1}^{N_{-s_{m-1}}}N\{v_{j^{j}}-qv_{j}^{(m-2)}j-$ $nn\ddagger_{1\geq s_{m-1}^{m-1}-1}^{1\leq S^{*}}*$

.

When $n+1\leq s_{m-1}^{*},$ $A_{n}^{(m)}$ is clearly non-decreasing in $n$ . When $n+1\geq s_{m-1}^{*}-1,$ $A_{n}^{(m)}$ is also
non-decreasing in $n$ from Lemma 1 (ii). Thus (H-1) for $k=m$ is established.

From (7) we have

(10) $A_{n}^{(m+1)}-A_{n}^{(m)}=q \sum_{j=n+1}^{N}\frac{1}{j(j-1)}(\{w_{j}^{(m)}-v_{j}^{(m)}\}-\{w_{j}^{(m-1)}-v_{j}^{(m-1)}\})$.

As $A_{n}^{(m)}$ is non-decreasing in $n$ , we can define $s_{m}^{*}$ as $s_{m}^{*}= \min\{n:A_{n}^{(m)}\geq 0\}$ such that

$w_{j}^{\langle m)}-v_{j}^{(m)}=\{\begin{array}{l}0j\leq s_{m}^{*}-lu_{j}^{(m)}-v_{j}^{(m)}j\geq s_{m}^{*}\end{array}$
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Considering that $v_{j}^{(m)}=\tilde{v}_{j}^{(m)}$ for $j\geq s_{m}^{*}$ , we have for $j\geq s_{m}^{*}$

$u_{j}^{(m)}-v_{j}^{(m)}$ $=$ $u_{j}^{(m)}- \sum_{i=j+1}^{N}\frac{j}{i(i-1)}u^{(m)}|$

$=$ $\frac{jp}{N}(1-\psi_{j})+q(v_{j}^{(m-1)}-\sum_{i=j+1}^{N}\frac{j}{i(i-1)}v_{1}^{(m-1)})$

$=$ $jA_{j}^{(m)}$ .

Hence

(11) $w_{j}^{(m)}-v_{j}^{(m)}=\{\begin{array}{l}0j\leq s_{m}^{*}-1jA_{j}^{(m)}j\geq s_{m)}^{*}\end{array}$

and similarly we have

(12) $w_{J^{(m-1)}}-v_{\grave{J}}^{(m-1)}=\{\begin{array}{l}0j\leq s_{m-l}^{*}-1jA_{j}^{(m-l)}j\geq s_{m-l}\end{array}$

Since $s_{m}^{*}\leq s_{m-1}^{*},$ (11) and (12) yield

(13) $\{w_{i}^{(m)}-v_{j}^{(m)}\}-\{w_{j}^{(m-1)}-v_{i}^{(m-1)}\}$ $=$ $\{\begin{array}{l}0j\leq s_{m}^{*}-1jA_{j}j(A_{j}^{(m)}-A_{j})j^{m}\geq s_{m-l)}s^{*}\leq_{*}j\leq s_{m-l}^{*}-1\end{array}$

$\geq$ $0$ ,

where the last inequality follows from the definition of $s_{m}^{*}$ and the induction hypothesis. Applying (13)
to (10) immediately yields

$A_{n}^{(m+1)}-A_{n}^{(m)}\geq 0$ , $1\leq n\leq N$ ,

which proves (H-2) for $k=m$ .

From Theorem 1, the optimal strategy of the $M$ -problem can be summarized as follows: We pass
over the first $s_{M}^{*}-1$ applicants and give an offer to the first candidate that appears thereafter. If the
$M-m$ offers are all declined, the next offer is only given the candidate that appears on or after $s_{m}^{*}$ ,
$m=1,2,$ $\cdots,$ $M-1$ .

Tables 1,2,3 and 4 give the values of $s_{1}^{*},$ $s_{2}^{*},$ $s_{3}^{*}$ and the maximum probabilities of success for various
values of $p$ and $N$ , the values for $p=1.0$ being taken from Table 2 in Gilbert and Mosteller (1966).
Moreover Tables 5 and 6 give the values of $s_{4}^{*},$ $s_{5}^{*},$ $s_{6}^{*},$ $s_{7}^{*}$ and the probabilities of success.

Let $\tilde{s}_{m}^{*}$ be the unique root between $0$ and 1 of the equation $\lim_{N,narrow\infty}A_{\#}^{(m)}=0$ for $m\geq 1$ and writing
$v_{n}^{(m)}$ as $v^{(m)}( \frac{n}{N})$ when $N,$ $narrow\infty$ , with $\frac{n}{N}arrow x$ , then substituting (4) into (9) we have from $s_{m}^{*}\leq s_{m-1}^{*}$

$\lim_{N,narrow\infty}A_{\#}^{(m)}=p(1+logx)+q(\frac{v^{(m-1)}(s_{m-1}^{*}\sim)}{\tilde{s}_{m-1}^{*}}-\int_{s_{m-1}^{l}}^{1}\sim\frac{v^{(m-1)}(y)}{y^{2}}dy)$ .

Thus $\tilde{s}_{m}^{*}$ and $v^{(m)}(x)$ are easily found to be the forms in the following corollary.

Corollary 1. For $m\geq 1$ ,

$\tilde{s}_{m}^{*}=exp\{-(1+\frac{q}{p}\{\frac{v^{(m-1)}(\tilde{s}_{m-1}^{*})}{\tilde{s}_{m-1}^{*}}-\int_{\tilde{s}_{n-1}}^{1}\frac{v^{(m-1)}(y)}{y^{2}}dy\})\}$,

$v^{(m)}(x)=\{\begin{array}{l}v^{(m)}(\tilde{s}_{m}^{*})-pxlogx+q\int_{x^{l}}\frac{x}{y}\tau^{v^{(m-l)}}(y)dy\end{array}$ $0_{*}<x\leq\tilde{s}_{m}^{*}\tilde{s}_{m}\leq x<1$

.

and the limiting value of the maximum probability of success is given by $v^{(m)}(0+)=v^{(m)}(\tilde{s}_{m}^{*})$ .
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The asymptotic examples for $m=1,2,3$ are as follows:

$\tilde{s}_{1}^{*}=e^{-},$ $s=e,$$s_{3}=e^{-(1+\}1\sim_{2}-(1+;)\wedge q+ q^{2}+*q^{3})$ .

$v^{(1)}(0+)=p\tilde{s}_{1)}^{*}v^{(2)}(0+)=p\tilde{s}_{2}^{*}+pq_{S}^{\sim_{1}},$ $v^{(3)}(0+)=p\tilde{s}_{3}^{l}+pq_{S}^{\sim_{2}}+pq^{2}\tilde{s}_{1}^{*}$ .

$v^{(1)}(x)=\{\begin{array}{l}p\overline{s_{l}}0<x\leq s\sim_{l}-pxlogx\tilde{s}_{l}^{*}\leq x<1\end{array}$

$v^{(2)}(x)=\{\begin{array}{l}p_{S_{2}^{*}}^{\sim}+pq_{S_{1}^{*}}^{\sim}-pxlogx-\frac{l}{}pqx+p_{2}q\tilde{s}_{l}^{*}-pxlogx+\frac{\int}{2}pqxlogx\end{array}$ $0_{*}<\leq\tilde{s}_{2}^{*}\tilde{s}_{2}\leq x\leq\tilde{s}_{1}^{*}\tilde{s}_{1}^{*}\leq^{x_{x<1}}$

.

$v^{(3)}(x)=\{p\tilde{s}+pq\tilde{s}_{-\frac{1}{2}}^{*}2pq\tilde{s}_{o^{3}g^{2}x-\frac{l}{6}pqxlogx^{*}}-p^{*}xlogx-p^{3}xlogx+\frac p_{qx}^{+^{2}\frac{l}{l^{3}l}q+\frac{l}{q^{8}}q)pq_{2}x+p\tilde{s}_{2}+pq^{2}\tilde{s}^{*}}-pxlogx+\frac{+_{l}(?}{2}p^{qxo^{*}gx(+^{2}logx)-\frac{ql}{\S}pq^{2}x+pq^{l_{2}}\tilde{s}_{1}^{*}}$ $\tilde{s}_{2,*}^{*}\leq^{x_{x\leq\tilde{s}_{1}}}\tilde{s}_{*}\leq x\leq\tilde{s}_{2}^{*}0_{3}<\leq\tilde{s}_{3_{*}}^{*}\tilde{s}_{1}\leq x<1$

.

From the above asymptotic values we conjecture $v^{(m)}(0)=p\tilde{s}_{m}^{*}+pq\tilde{s}_{m-1}^{*}+pq^{2}\tilde{s}_{m-2}^{*}+\cdots+pq^{m-1}\tilde{s}_{1}^{*}$

and $\tilde{s}_{m}^{*}arrow p^{l}q=exp\{-(\frac{-log(1-q)}{2})\}=exp\{-(1+\S+*^{2}+\cdots)\},asmarrow\infty$.

3. Concluding remarks

1. The proof of Theorem 1 is made by induction but it is complicated. If it is shown that $v_{n}^{(m)}-v_{n}^{(m-1)}$

is nonincreasing in $n$ , we can more easily show, from the optimality equation (3), that the cutoff points
$s_{m}^{*}$ are unique for each $m$ and $B_{m}$ is closed.

2. It would be reasonable to allow the probability of refusing, $1-p$ , to be a decreasing function of the
absolute rank of the applicant and to depend on the number of offer, and also reasonable to allow the
additional offering cost. Uncertainty of employment and restricted offering chances could be extended to
the class of problems considered by Gusein-Zade (1966).

3. we can consider the problem in which there is not uncertainty of employment and we can select at
most $m$ applicants, i,e,. multiple choice is allowed to be made. If we define the state of process as $(n, m)$ ,
when we observe that the $nth$ applicant is a candidate and we can select more $m$ applicants in future.
Let $w_{n}^{(m)},$ $u_{n}^{(m)}$ and $vn^{(m)}$ be the same definition of $m$ -problem, although the definitions of the state
are different. Then the dynamic programming equation of this multiple choice problem can be derived
by putting conveniently $p=q=1$ in the dynamic programming equations (1)$-(3)$ of the $m$ -problem.
Thus we can apply the same analysis of the $m$-problem to the multiple choice problem, noting that the
relation $p+q=1$ can not be apply. Hence we can easily derive the optimal strategy of the multiple
choice problem.
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