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On the zeroes of Artin L-series of
irreducible characters of the

symmetric group $S_{n}$

Gerhard O. Michler

1 Introduction
Let $E/F$ be a finite normal extension of algebraic number fields with Galois
group $Gal(E/F)=G$. E. Artin [1] constructed to each virtual complex
character $\eta$ of $G$ an L-series $L(s, \eta, E/F)$ which is meromorphic in the whole
complex plane $C$ as was proved by R. Brauer [3] by means of his famous
induction theorem and fundamental classical results of E. Artin and E. Hecke.
So far, no counterexample has been found to E. Artin’s conjecture [1] which
asserts that for each complex character $\chi$ of $G$ its L-series $L(s, \chi, E/F)$ is
holomorphic in $C-\{1\}$ . He showed that the Dedekind zeta function $\zeta_{F}(s)=$

$L(s, 1_{G}, E/F)$ of the field $F$ has a pole of order 1 at $s=1$ , where $1_{G}$ denotes
the trivial character of $G$ .
According to E. Hasse [6], p.163, it is also conjectured that in the vertical
strip $0<Re(s)<1$ of the complex plane $C$ the L-series $L(s, \chi, E/F)$ of all
characters $\chi$ of $G$ have all their zeroes on the line $Re(s)= \frac{1}{2}$ Riemann’s
conjecture for the classical zeta function ( $(s)= \sum_{n=1}^{\infty}n^{-s}$ is a special case of
this conjecture, because ( $(s)$ is the Dedekind zeta function for $E=F=Q$ ,
the field of rational numbers.
In this note we consider finite normal extensions $E/F$ of algebraic number
fields with Galois group $Gal(E/F)=S_{n}$ , the symmetric group of degree $n$ .
Let $k=[ \frac{n}{2}]$ . In Theorem 5.3 it is shown that the truth of Artin’s conjecture
would imply that all the zeroes of the L-series $L(s, \chi, E/F)$ of all irreducible
characters $\chi$ of $S_{n}$ are contained in the union of the set of zeroes of the
Dedekind zeta function $\zeta_{\Omega}(s)$ of the proper intermediate field $\Omega=E^{V_{k}}$ corre-
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sponding to the wreath product $V_{k}=C_{2}1S_{k}$ of the cyclic group $C_{2}$ of order 2
with the symmetric group $S_{k}$ , and the union of sets of zeroes of the L-series
of the sign characters $\sigma_{n-2t}$ of the symmetric groups $S_{n-2t}$ for $0\leq t\leq k-1$ .
Furthermore, if also Riemann’s conjecture holds for these $k+1$ L-series $\zeta_{\Omega}(s)$

and $L(s, \sigma_{n-2t})$ , then the zeroes of the L-series $L(s, \chi, E/F)$ of all irreducible
characters $\chi$ of the symmetric group $S_{n}$ with $0<Re(s)<11ie$ on the vertical
line $Re(s)= \frac{1}{2}$ , see Corollary 5.4. This shows that the Dedekind zeta function
$\zeta_{\Omega}(s)$ of finite normal extensions $E/\Omega$ of algebraic number fields with Galois
group $Gal(E/\Omega)=C_{2}lS_{k},$ $k=1,2,$ $\ldots$ , and the L-series $L(s, \sigma_{n}, E/F)$ of
the sign characters $\sigma_{n}$ of $Gal(E/F)=S_{n},$ $n=1,2,$ $\ldots$ , are the critical cases
for the so called Riemann’s conjecture on the zeroes of the Artin L-series of
the irreducible characters $\chi$ of $S_{n}$ .
In Theorem 5.2 the truth of Artin’s conjecture is not assumed. It asserts that
for each point $s_{0}$ of $C-\{1\}$ there are at least $k+1$ irreducible characters
$\chi_{\nu}$ of $S_{n}$ whose L-series $L(s, \chi, E/F)$ are holomorphic at $s_{0}$ . The partitions
$v\vdash n$ parametrizing these $k+1$ irreducible characters have different numbers
of odd parts.
As in Foote-Murty [4] and Foote-Wales [5] Heilbronn’s virtual character $e_{G}$

of $G=Gal(E/F)[7]$ is used essentially in the proofs of these results. Its
main properties are described in section 3. Another important tool is the
explicit model for the complex characters of the symmetric group $S_{n}$ given
by Inglis, Richardson and Saxl [8]. This is a set $\{\pi_{t,n-2t}|0\leq t\leq k\}$

of monomial representations $\pi_{t,n-2t}$ of $S_{n}$ which together contain each irre-
ducible representation $\chi\in Irr_{C}(S_{n})$ of $S_{n}$ exactly once. The main result of
[8] is explained in section 4. The basic definitions and properties of the Artin
L-series $L(s, \eta, E/F)$ are stated in section 2.
Concerning notation and terminology of the representation theory of finite
groups we refer to the books by Nagao and Tsushima [11], and James and
Kerber [9]. The standard reference for the results in algebraic number theory
is S. Lang’s book [10].
Finally, the author gratefully acknowledges financial support from the Mathe-
matical Society of Japan, Chiba University and Kyoto University enabling
him to participate in the conference at the Mathematics Research Institute
at Kyoto University. I owe special thanks to Professor S. Koshitani for his
excellent organisation of the conference and his kind assistance during my
visit to Japan from 21 September until 8 October 1991.
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2 Artin L-functions
In this section the basic definitions and notations from representation theory
and number theory are given.
Let $G$ be a finite group, then $k(G)$ denotes the number of conjugacy classes
of $G$ . The set of all inequivalent irreducible characters of $G$ is denoted by
$IrrG$ . In particular, we write $IrrG=\{\chi_{i}|1\leq i\leq k(G)\}$ . The set
char $(G)= \{\sum_{i=1}^{k(G)}n;\chi_{i}|n_{i}\geq 0, n_{i}\in Z\}$ is the set of all ordinary characters.
vchar $(G)= \{\sum_{i=1}^{k(G)}n_{i}\chi_{i}|n_{i}\in Z\}$ is the ring of all virtual characters.

Definition. Let $p$ be a prime number. A subgroup $H$ is called
p-elementarv, if $H=P\cross C$ , where $P$ is a p-subgroup and $C$ is a cyclic
p’-subgroup of G. $\mathcal{E}_{p}=$ {$H|Hp$-elementary subgroup of $G$} . $\mathcal{E}=\bigcup_{p}\mathcal{E}_{p}$ is
the set of all elementarv subgroups of $G$ .

Brauer’s Induction Theorem. For each $\eta\in vchar(G)$ there are ele-
mentary subgroups $H_{i}\in C$ and linear characters $\lambda_{ij}\in IrrH_{i},$ $1\leq j\leq h_{i}$

such that

$\eta=\sum_{i=1}^{s}\sum_{j=1}^{h_{1}}a_{ij}\lambda_{ij}^{G}$

for some integers $a_{ij}\in Z$ .

A short proof of this fundamental result in the representation theory of finite
groups is given in [11], p.207.

Let $E/F$ be a finite normal extension of number fields $E,$ $F$ with Galois
group $Gal(E/F)=G$. Let $\mathcal{O}_{F}$ and $\mathcal{O}_{E}$ be the ring of algebraic integers in $F$

and $E$ , respectively.

Definition. Let $\eta\in char(G)$ . Let $\mathcal{P}$ be the set of prime ideals $p$ of $\mathcal{O}_{F}$ .
Then each $p\in \mathcal{P}$ splits into a product

$p=(P_{1}\ldots P_{r})^{e}$

of prime ideals $P\in\{P_{i}|1\leq i\leq\}$ of $\mathcal{O}_{E}$ . If $f$ is the degree of the residue
class field extension then $|E:F|=efr$ by [10], p.26.
For any $P$ the norm $NP=(Np)^{f}$ , where $N_{p}=|\mathcal{O}_{F}/p|$ . Let $G_{P}$ be the inertial
group of $P$ in $G$ . Let $T_{P}=\{\tau\in G_{P}|\tau$ induces the identity automorphism
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of the residue class field extension}. Then the Frobenius automorphism
$\sigma=\sigma(P, E/F)=\sigma(P, E/F)\in G_{P}$ is defined by

$\sigma\alpha=\alpha^{Np}modP,$ $\alpha\in \mathcal{O}_{E}$ .

$\sigma$ is determined only up to multiplication with some $\tau\in T_{P}$ . For each $m\geq 1$

and $\sigma=(P, E/F)$ let $\eta(\sigma^{m}T_{P})=\sum_{t\in T_{P}}\eta(\sigma^{m}\tau)$ , and

$\eta(p^{m})=\frac{1}{e}\eta(\sigma^{m}T_{P}),$ $p\in \mathcal{P}$ .

Then the $\underline{L}$-series $L(s, \eta, E/F)$ is defined by

$logL(s, \eta, E/F)=\sum_{p\in P}\sum_{m\geq 1}\frac{\eta(p^{m})}{m(Np)^{sm}}$

$L(s, \eta, E/F)$ is holomorphic in the half plane $Re(s)>1$ . It has a continuation
to the entire plane C.
In [1] and [2] E. Artin proved or stated the following fundamental results.
For precise references for its complete proof see also Foote-Wales [5], p.227.

Lemma 2.1. The L-series have the following properties:

1. $L(s, \eta_{1}\oplus\eta_{2}, E/F)=\Pi_{i=1}^{2}Ls,$ $\eta_{i},$ $E/F$), for all $\eta;\in charG$ .
2. If $H\leq G,$ $\sigma\in char(H)$ , then $L(s, \sigma^{G}, E/F)=L(s, \sigma, E/E^{H})$ , where

$\sigma^{G}$ denotes the induced character of $G$ .

3. For $\psi\in charG$ let $H=ker\psi$ , and $\psi’$ the character of $G/H$ induced by
$\psi$ , then $L(s, \psi, E/F)=L(s, \psi’, E^{H}/F)$ .

4. (Hecke) If $\chi$ is a non-principal linear character of $G$ , then $L(s, \chi, E/F)$

is holomorphic in the entire complex plane C.

5. The Dedekind zeta function $\zeta_{F}(s)=L(s, 1_{G}, E/F)$ has a simple pole
at $s=1,$ $\zeta_{F}(1)\neq 0$ , and $\zeta_{F}(s)$ is holomorphic everywhere except for
$s=1$ .
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6. Let $\chi\in IrrG$ and $\overline{\chi}$ be its complex conjugate. Artin multiplies
$L(s, \chi, E/F)$ and $L(s,\overline{\chi}, E/F)$ with appropriate powers of the $\Gamma-$

function $\Gamma(s)$ and obtains meromorphic functions $\xi(s, \chi, E/F)$ and
$\xi(s,\overline{\chi}, E/F)$ satisfying a functional equation

$\xi(1-s, \chi, E/F)=W(\chi)\xi(s,\overline{\chi}, E/F)$ ,

where $\xi(s, \chi, E/F)$ and $L(s, \chi, E/F)$ have the same zeroes in

$0<Re(s)<1$ .

Remark 2.2. If the Galois group $Gal(E/F)=S_{n}$ , the symmetric group of.
degree $n$ , then assertion 6 of Lemma 2.1 implies that in the vertical strip $0<$

$Re(s)<1$ the zeroes of all L-series $L(s, \chi, E/F)$ of all irreducible characters
$\chi$ of $S_{n}$ lie symmetric with respect to the vertical line $Re(s)=$ } $,$ because
by Theorem 2.1.12 of James and Kerber [9], p.37 the rational field $Q$ is a
splitting field for $S_{n}$ , which implies $\chi(g)=\overline{\chi}(g)$ for all $g\in S_{n}$ .

In [3] R. Brauer proved the following fundamental results on the Artin L-
functions $L(s, \chi, E/F)$ by means of Lemma 2.1 and his induction theorem.

Theorem 2.3. The Artin L-series $L(s, \chi, E/F),$ $\chi\in char(G)$ , are all
meromorphic in the complex plane C.

Artin’s coniecture: Let $\eta\in char(G)$ . If the inner product $<1_{G},$ $\eta>=0$ ,
then $L(s, \eta, E/F)$ has an analytic continuation for all $s\in C$ .
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3 Heibronn’s virtual character
In [4] Foote and Murty showed that the set of zeroes and poles of the Artin
L-functions $L(s, \chi, E/F),$ $\chi\in char(G)$ , are contained in the set of zeroes of
the Dedekind zeta function $\zeta_{E}(s)$ of the extension field $E$ . In the proof of
this result they apply some subsidiary results on a virtual chracter, originally
introduced by H. Heilbronn [7]. Its definition and properties are restated in
this section.
Let $s_{0}\in C-\{1\}$ be fixed. For each $\psi\in IrrG$ let $n_{\psi}(s_{0})=n_{\psi}=$

$ord_{s=s_{0}}L(s, \eta, E/F)$ be the order of zero or pole of the meromorphic function
$L(s, \psi, E/F)$ at the point $s_{0}$ . Heilbronn’s virtual characteris- defined in [7],
p.871, by

$e_{G}=\sum_{\psi\in Irr(G)}n\psi\psi$
,

The following subsidiary results are due to Heilbronn [7], Foote-Murty [4]
and Foote-Wales [5].

Lemma 3.1. a) $\ominus c$ is a virtual character of $G$ .
b) For each $\psi\in char(G)$

$ord_{s=s_{0}}L(s, \psi, E/F)=<e_{G},$ $\psi>$ .

Assertion a) is proved in [4], p.116, and b) is shown in [5], p.228.

Lemma 1 of Foote-Wales [5], p.230, is restated as

Lemma 3.2. For each subgroup $H$ of $G$ the restriction $e_{G|H}=e_{H}$ .

Lemma 3.3. If $\zeta_{E}(s)$ is the Dedekind zeta function of $E$ , then

$\ominus c(1)=ord_{s=s_{0}}\zeta_{E}(s)\geq 0$ .

This result is proved in [5], p.228.
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4 The model of the symmetric group
In [8] Inglis, Richardson and Saxl constructed an explicit model for the irre-
ducible representations of the symmetric group $S_{n}$ . It consists of a finite set
of monomial representations defined over the integers Z.
It is well known that the field $Q$ of rational numbers is a splitting field for
any symmetric group $S_{n}$ .
Throughout this section the integer $n$ is fixed. Let $A_{n}$ be the alternating
subgroup of $S_{n}$ . The irreducible representations of $S_{n}$ are parametrized by
the partitions $\lambda\vdash n$ of $n$ . The set of all partitions $\lambda$ of $n$ is denoted by $\mathcal{P}(n)$ ,
and its cardinality $|P(n)|$ by $p(n)$ . If $\chi_{\lambda}$ is the character corresponding to
$\lambda\vdash n$ , then $d_{\lambda}=\chi_{\lambda}(1)$ is the degree of $\chi_{\lambda}$ .
The construction of the monomial representations of $S_{n}$ given in [8] requires
the following subgroups of $S_{n}$ and linear (one dimensional) representations.
Let $t$ be any integer with $0 \leq t\leq[\frac{n}{2}]$ . Let $V_{t}=C_{2}lS_{t}$ be the wreath product
of the cyclic group $C_{2}$ of order 2 with the symmetric group $S_{t}$ of degree $t$ .
Let $U_{t}=V_{t}\cross S_{n-2t}$ , and $W_{t}=V_{t}\cross A_{n-2t}$ . Let $\sigma_{n-2t}$ be the sign character
of $S_{n-2t}$ , and $1_{t}$ the trivial representation of $V_{t}$ . Then $\mu_{t}=1_{t}\otimes\sigma_{n-2t}$ is a
linear representation of $U_{t}$ . Therefore, the induced representation $\pi_{t,n-2t}=$

$(\mu_{t})^{S_{n}}$ is a monomial representation of $S_{n}$ . Furthermore, $\pi_{t,n-2t}$ has degree
$m_{t}=dim_{F} \pi_{t,n-2t}=\frac{n!}{2^{t}t!(n-2t)!}$ . This notation is kept throughout this section.
The Corollary of Inglis, Richardson and Saxl [8] is restated as

Proposition 4.1. a) The representation $\sum_{0\leq t\leq[\frac{n}{2}]}\pi_{t,n-2t}$ of $S_{n}$ is the
direct sum of all irreducible representations of $S_{n}$ , each appearing with mul-
tiplicity one.
b) The irreducible character $\chi_{\lambda}$ of $S_{n}$ corresponding to the partition $\lambda$ of
$n$ is a constituent of $\pi_{t,n-2t}$ if and only if A $=(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s})$ has precisely
$n-2t$ odd parts.

Remark. In the special cases $n=2t$ and $n=2t+1$ , the monomial
representations $\pi_{t,0}$ and $\pi_{t,1}$ are in fact transitive permutation representations
of $S_{n}$ .
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5 Artin’s conjecture and the zeroes of the
L-series of the irreducible characters of $S_{n}$

Throughout this section $E/F$ denotes a finite normal extension of algebraic
number fields $E$ and $F$ with Galois group $Gal(E/F)=S_{n}$ , the symmetric
group of degree $n$ .
The L-series $L(s, \pi_{t,n-2t}, E/F)$ of the monomial model characters $\pi_{t,n-2t}$ of
$S_{n}$ are described by

Lemma 5.1. Let $t$ be any integer with $0 \leq t\leq[\frac{n}{2}]$ . Let $V_{t}=C_{2}lS_{t}$ ,
$U_{t}=V_{t}\cross S_{n-2t}$ , and $W_{t}=V_{t}\cross A_{n-2t}$ . Let $\sigma_{n-2t}$ be the sign character
of $S_{n-2t},$ $1_{t}$ be the trivial character of $V_{t}$ , and $\mu_{t}=1_{t}\otimes\sigma_{n-2t}$ . Then the
following assertions hold:
a) If $0\leq n-2t\leq 1$ , then $L(s, \pi_{t},. 2t, E/F)=L(s, (1_{t})^{S_{n}},$ $E/F$) $=$

$L(s, 1_{t}, E/E^{U_{t}})=\zeta_{\Omega}(s)$ , where $\zeta_{\Omega}(s)$ denotes the Dedekind zeta function
of the intermediate field $\Omega=E^{U_{t}}$ corresponding to the subgroup $U_{t}=V_{t}=$

$C_{2}lS_{t}$ of $S_{n}$ .
b) If $n-2t$ $>$ 1, then $L(s, \pi_{t,n-2t}, E/F)$ $=$ $L(s, (\mu_{t})^{S_{\hslash}},$ $E/F$) $=$

$L(s, \mu_{t}, E/E^{U_{t}})$ $=$ $L(s, \sigma_{n-2t}, E^{V_{t}}/E^{U_{t}})$ $=$ $L(s, \sigma_{n-2t}’, E^{W_{t}}/E^{U_{t}})$ , where
$Gal(E^{V_{t}}/E^{U_{t}})\cong S_{n-2t}$ and $|Gal(E^{W_{t}}/E^{U_{t}})|=2$ .
Proof. a) follows immediately from assertions (2) and (5) of Lemma 2.1.
b) Certainly $L(s, (\mu_{t})^{S_{n}},$ $E/F$) $=L(s, \mu_{t}, E/E^{U_{t}})$ by (2) of Lemma 2.1. The
linear character $\mu_{t}=1_{t}\cross\sigma_{n-2t}$ of $U_{t}=V_{t}\cross S_{n-2t}$ has $V_{t}$ in its kernel,
and it induces the sign character $\sigma_{n-2t}$ in the factor group $U_{t}/V_{t}\cong S_{n-2t}$ .
Therefore, assertion (3) of Lemma 2.1 implies that

$L(s, \mu_{t}, E/E^{U_{t}})=L(s, \sigma_{n-2t}, E^{V_{l}}/E^{U_{t}})$ .
Furthermore, $Gal(E^{V_{t}}/E^{U})\cong S_{n-2t}$ by the main theorem of Galois theory.
As $A_{n-2t}=ker(\sigma_{n-2t})\triangleleft S_{n-2t}$ , another application of Lemma 2.1 (3) yields
that $L(s, \sigma_{n-2t}, E^{V_{t}}/E^{U_{C}})=L(s, \sigma_{n-2t}’, E^{W_{t}}/E^{U_{t}})$ , where $\sigma_{n-2t}$ denotes the
non-trivial character of the cyclic group $U_{t}/W_{t}\cong S_{n-2t}/A_{n-2}$ of order 2.
This completes the proof.

Theorem 5.2. Let $t$ be any integer with $0 \leq t\leq[\frac{n}{2}]$ , and $s_{0}$ any point of
the Gaussian plane $C-\{1\}$ . Then for at least one irreducible character $\chi_{\nu}$
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such that $\nu\vdash n$ has $n-2t$ odd parts, the L-series $L(s, \chi, E/F)$ is holomorphic
at $s_{0}$ .
Proof. Let $k(t)$ be the number of irreducible characters $\chi_{\nu;}$ of $S_{n}$ cor-
responding to the partitions $\nu_{i}\vdash n$ of $n$ with precisely $n-2t$ odd parts.
Then

$\pi_{t,n-2t}=(\mu_{t})^{s_{n}}=\sum_{i=1}^{k(t)}\chi_{\nu;}$

by Proposition 4.1, where $\mu_{t}=1_{t}\otimes\sigma_{n-2t}$ denotes the linear character of
$U_{t}=V_{t}\cross S_{n-2t}$ described in the previous section. By Brauer’s theorem
2.3, all L-series $L(s, \chi_{\nu;}, E/F)$ are meromorphic at $s_{0}$ . Let $n_{i}$ be the order
of a pole or a zero of $L(s, \chi_{\nu:}, E/F)$ at $s_{0}$ , and let $\ominus=\sum_{\psi\in Irr(S_{n})}n_{\psi}\psi$ be
Heilbronn’s virtual character of $S_{n}$ with respect to $s_{0}$ . As $L(s, \pi_{t,n-2t}, E/F)$

is holomorphic at $s_{0}$ by assertions (2) and (4) or (5) of Lemma 2.1, it follows
from Lemma 3.1 b) that

$0\leq ord_{s=s_{0}}L(s, \pi_{t,n-2t}, E/F)=<\ominus,$ $\pi_{t,n-2t}>=\sum_{i=1}^{k(t)}n_{i}$ .

Therefore, at least one $n_{i}\geq 0$ for some $1\leq i\leq k(t)$ . Thus $L(s, \chi_{\nu_{j}}, E/F)$ is
holomorphic at $s_{0}$ .

Theorem 5.3. Let $E/F$ be a finite normal extension of algebraic number
fields with Galois group $Gal(E/F)=S_{n}$ . For each $0 \leq t\leq[\frac{n}{2}]=k$ let
$V_{t}=C_{2}lS_{t},$ $U_{t}=V_{t}\cross S_{n-2t}$ and $\sigma_{n-2t}$ be the sign character of the symmetric
group $S_{n-2t}$ . Let $\zeta_{\Omega}(s)$ be the Dedekind zeta function of the intermediate
field $\Omega=E^{V_{k}}$ .
If the L-series $L(s, \chi, E/F)$ of all the irreducible characters $\chi$ of $S_{n}$ are holo-
morphic in $C-\{1\}$ then the zeroes of all L-series $L(s, \chi, E/F)$ are contained
in the set of zeroes of the Dedekind zeta function $\zeta_{\Omega}(s)$ and of the $k$ Artin
L-series $L(s, \sigma_{n-2t}, E^{V_{t}}/E^{U_{t}})$ of the sign characters $\sigma_{n-2t}$ of the Galois groups
$Gal(E^{V_{t}}/E^{U_{t}})\cong S_{n-2t},$ $0\leq t\leq k-1$ .
Proof. Let $s_{0}$ be a point in $C-\{1\}$ such that $\zeta_{\Omega}(s_{0})$ $\neq 0$ and
$L(s_{0}, \sigma_{n-2t}, E^{V_{t}}/E^{U_{t}})\neq 0$ for all $0\leq t\leq k-1$ . Let $\chi$ be any irreducible
character of $S_{n}$ . Then there is a uniquely determined partition $\nu\vdash n$ cor-
responding to $\chi=\chi_{\nu}$ . Suppose that $\nu$ has $n-2t$ odd parts. Then by
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Proposition 4.1 $\chi_{\nu}$ occurs in the monomial model character $\pi_{t,n-2t}$ of $S_{n}$ with
multiplicity 1, and $<\chi_{\nu},$ $\pi_{s,n-2s}>=0$ for all $0\leq s\leq k$ and $s\neq t$ .
Let $k(t)$ be the number of irreducible characters $\chi_{\nu_{i}}$ of $S_{n}$ corresponding to the
partitions $\nu_{i}\vdash n$ of $n$ with precisely $n-2t$ parts. We may assume that $v=\nu_{1}$ .
Let $n_{i}$ be the order of a zero of the holomorphic function $L(s, \chi_{\nu}., E/F)$ at
$s_{0}$ , and $let\ominus=\sum_{\psi\in Irr(S_{n})}n\psi\psi$ be Heilbronn’s virtual character of $S_{n}$ with
respect to $s_{0}$ . Then $n_{i}\geq 0$ for $i=1,2,$ $\ldots,$

$k(t)$ , and by Lemma 3.1 b)

$ord_{s=s_{0}}L(s, \pi_{t,n-2t}, E/F)=<\ominus,$ $\pi_{t,n-2t}>=\sum_{i=1}^{k(t)}n_{i}$ .

Now Lemma 5.1 asserts that

$ord_{s=s_{0}}L(s, \pi_{t,n-2t}, E/F)=ord_{s=s_{0}}\zeta_{\Omega}(s)=0$ for $t=k$ , and

$ord_{s=s_{0}}L(s, \pi_{t,n-2t}, E/F)=ord_{s=s_{0}}L(s, \sigma_{n-2t}, E^{V_{l}}/E^{U_{t}})=0$,

because $\zeta_{\Omega}(s_{0})\neq 0,$ $L(s_{0}, \sigma_{n-2t}, E^{V_{t}}/E^{U_{t}})\neq 0$ and both functions are holo-
morphic at $s_{0}$ . Hence, all $n_{i}=0$ for 1 $\leq i\leq k(t)$ . In particular,
$L(s_{0}, \chi, E/F)\neq 0$ , completing the proof.

Corollarv 5.4. Let $E/F$ be a finite normal extension with Galois group
$Gal(E/F)=S_{n}$ such that the L-series $L(s\chi, E/F)$ of all irreducible charac-
ters $\chi$ of the symmetric group $S_{n}$ are holomorphic in $C-\{1\}$ . Let $k=[ \frac{n}{2}]$ .
If Riemann’s conjecture holds for
a) all L-series $L(s, \sigma_{n-2t}, E_{t}/F_{t})$ of the sign characters $\sigma_{n-2t}$ of the symmetric
groups $S_{n-2t}$ and all finite extensions $E_{t}/F_{t}$ with Galois groups $Gal(E_{t}/F_{t})=$

$S_{n-2t}$ for $0\leq t\leq k-1$ , and
b) the Dedekind zeta function $\zeta_{\Omega}(s)$ of all finite normal extensions $E_{k}/F_{k}$

with Galois group $Gal(E_{k}/F_{k})=C_{2}lS_{k}$ ,
then the zeroes of the L-series $L(s, \chi, E/F)$ of all irreducible characters $\chi$ of
$S_{n}$ with $0<Re(s)<1$ lie on the vertical line $Re(s)= \frac{1}{2}$ .
Proof follows immediately from Theorem 5.3
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