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Representation theory for finite groups

in computer system ”CAYLEY”

千葉大学 自然科学研究科 脇 克志 (Katsushi WAKI)

Recently, computational methods are useful for the representation theory, and have been

executed by the CAYLEY system by Cannon[l]. In this paper, we will show a usage and

some applications of the CAYLEY in the representation theory.

1. Representation in CAYLEY

Let $G$ be a finite group with a set of generators $\{g_{1}, \ldots, g_{l}\}$ and $F$ a splitting field for $G$

such that the characteristic of $F$ divides the group order $|G|$ .

In this paper we treat the action of an element $g$ of $G$ on the F-vector space $V$ as the

product of a vector by a matrix $V(g)$ on the right. So we can consider the vector space $V$

as a right FG-module for the group algebra. $FG$ . In the CAYLEY system, we treat a set

$\{i\backslash /I(g_{1}), \ldots, M(g_{l})\}$ as a representation of $F$C-module $V$ . A series of submodules of $V$

$0=V_{0}<V_{1}<\cdots<V_{n}=V$ where $V_{i}/V_{i-1}$ is simple

is called a composition series for an FG-module $V$ .

2. The socle

Let Soc(V) denote the socle of $V$ , namely the sum of all simple FG-submodules of $V$ .

LEMMA 1. Let $V$ be an FG-module an$dU$ an FG-submod$nle$ of $V$ su$chtl_{1}$ at $V/U$ is

isomorphic to a simple FG-module W. Then the following statements are equivalen $t$ .

(i) There is an FG-submodule $Tw^{\gamma}l_{1}$ ich is isomorphic to $lW$ and Soc(V) $=Soc(U)\oplus T$ .

(ii) $V$ is isomorpli $ic$ to $U\oplus W$ .

PROOF: $(i)\Rightarrow(ii)$ . Since $U\cap T=Soc(U)\cap T=0,$ $U\oplus T$ is an FG-submodule of V“. But

the dimension of $V$ is equal to this submodule. So $T^{f}=U\oplus T$ .
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$(ii)\Rightarrow(i)$ . Immediate from the definition of the socle.

There is the standard function composition factor which is written $I_{)}y$ Schneider[3] in

the CAYLEY system. From Lemma 1, we can get the socle of the FG-module $V$ by the

following algorithm.

ALGORITHM SOC:

(1) Let get a composition series $\{V_{i}\}_{(=1,\ldots,n)}j$ of $V$ and socsq be empty.

(2) For each $i$ , see whether $V_{i}$ is isomorphic to $V_{i-1}\oplus V_{i}/V_{i-1}$ or not. If $V_{i}$ can split then

append $V_{i}/V_{i-1}$ to socsq.

(3) Print socsq as the socle of the FG-module $V$ .

The main part of this algorithm is investigating that $V_{i}$ can split or not. Let $V$ be an

FG-module and $U$ an FG-submodule of $V$ such that $V/U$ is isomorphic to a simple FG-

module $W$ . The dimension of the module $U$ and the module $\iota V$ are $c\iota$ and $w$ , respectively.

In a good basis of $V,$ $V(g)$ is a following matrix

$(\begin{array}{ll}U(g) 0D(g) W(g)\end{array})$ for each element $g$ of $G$

where $D(g)$ is a $w\cross v$-matrix. Since $V$ is an FG-module, $D$ is satisfies a following equation.

$(*)$ $D(gg’)=D(g)U(g’)+W(g)D(g’)$ for any $g,$ $g’$ in $G$

The module $V$ is isomorphic to $U\oplus W$ if and only if there are some regular matrices $P$

and

(1) $PV(g)P^{-1}=(\begin{array}{ll}U(g) 00 W(g)\end{array})$

for all elements $g$ of $G$ . What made it difficult is the number of unknowns which have to

be processed to find the matrix $P$ . Thus we prove the next lemma to reduce the number

of unknowns.
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LEMMA 2. Using the above $con$ dition$s_{i}$ the following statemen $ts$ a $reequ$ ivalen $t$ .

(i) $Tl_{1}ere$ is su$cll$ a matrix $P$ .

(ii) There is a $u$) $\cross u$ matrix $Q$ sucl] that $D(g)=lT^{r}(g)Q-QU(g)$ for a$l1J^{\gamma}g$ in $G$ .

By Lemma 2, it suffices to find the matrix $Q$ instead of the matrix $P$ . So we can reduce

the number of unknowns from $(m+n)^{2}$ to $nm$ and see it as the problem of basic linear

algebra.

PROOF: $(i)\Rightarrow(ii)$

Let $P=(\begin{array}{ll}p_{1} p_{2}p_{3} p_{4}\end{array})$ where $\{\begin{array}{l}p_{1}u\cross umatrixp_{\sim}u\cross wmatrixp_{3}w\cross umatrixp_{4}w\cross\iota\iota matrix\end{array}$

Then from (1), we get the following equations for all elements $g$ of $G$ .

(2) $p_{1}U(g)+p_{2}D(g)=U(g)p_{1}$

(3) $p_{2}W(g)=U(g)p_{2}$

(4) $p_{3}U(g)+p_{4}D(g)=TV(g)p_{3}$

(5) $p_{4}W(g)=W(g)p_{4}$

If matrix $p_{4}$ is regular then let $Q$ be $p_{4}^{-1}p_{3}$ . The matrix $Q$ satisfies the condition (ii)

from (4) and (5).

Since $W$ is the simple module and we can see that $p_{4}$ is an endomorphism of FG-module

$W$ from (5).

So if the matrix $p_{4}$ is not regular then $p_{4}$ must be a zero-matrix by Schur’s lemma. From

the equations (3) and (4), $p_{3}p_{2}W(g)=W(g)p_{3}p_{2}$ . If $p_{3}p_{2}$ is not a zero-matrix then $p_{3}p_{2}$

is $\alpha I$ by Schur’s lemma where $\alpha$ is a non-zero element of $F$ and I is the unit matrix. The

product of (2) and $\alpha^{-1}p_{3}$ on the left gives

$\alpha^{-1}p_{3}p_{1}U(g)+D(g)=TV(g)\alpha^{-1}p_{3}p_{1}$

by the equation (4). So $Q$ is $\alpha^{-1}p_{3}p_{1}$ .

If $p_{3}p_{2}$ is a zero-matrix then there is a positive integer $k$ su ch that $p_{3}p_{1}^{n}p_{2}=0(0\leq n\leq k)$

and $p_{3}p_{1}^{k+1}p_{2}\neq 0$ and

(2‘) $p_{1}^{n+1}U(g)=U(g)p_{1}^{n+1}- \sum_{i=0}^{n}p_{1}^{i}p_{2}D(g)p_{1}^{n-i}$ for the nat $n$ ral number $n$
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by the easy calculation. When $n=k$ , the product of (2‘) and $p_{3}$ on the left gives
$p_{3}p_{1}^{k+1}U(g)=TV(g)p_{3}p_{1}^{k+1}$ by the equation (4) and $p_{3}p_{1}^{k+1}p_{2}IV(g)=W(g)p_{3}p_{1}^{k+1}p_{2}$ by

the equation (3). We can see that $p_{3}p_{1}^{k+1}p_{2}$ is $\alpha I$ by Schur’s lemma where $\alpha$ is a non-zero

element of $F$ and I is the unit matrix. When $n=k+1$ , the product of (2’) and $\alpha^{-1}p_{3}$ on

the left gives
$\alpha^{-1}p_{3}p_{1}^{k+2}U(g)=W(g)\alpha^{-1}p_{3}p_{1}^{k+2}-D(g)$

by the equation (4). So $Q$ is $\alpha^{-1}p_{3}p_{1}^{k+2}$ .

$(ii)\Rightarrow(i)$

Let $P=(\begin{array}{ll}I_{m} 0Q I_{n}\end{array})$ where $I_{m}$ and $I_{n}$ are the $m$ and n-dimensional unit matrix.

Then the matrix $P$ satisfies the equation (1).

By the way, let think about a $w\cross u$-matrix $D(g)$ . Let $F^{wxu}$ be a set of $w\cross n$-matrices

over $F,$ $E(W, U)$ a set of map $D$ from $G$ to $F^{vf\cross u}$ which is satisfies $(*)$ and $e(W, U)$ a set of

map $D_{Q}$ such that $D_{Q}(g)=W(g)Q-QU(g)$ where $Q$ is a zv $\cross u$-matrix. Then $E(W, U)$ is

an F-space and $e(W, U)$ an F-subspace of $E(W, U)$ . And $E(l\prime V, U)/e(W, U)$ is isomorphic

to $Ext_{FG}^{1}(W, U)$ as F-space. So we can compute the dimension of $Ext_{FG}^{1}(W, U)$ from this

equation. In particular, $E(W, U)$ and $e(W, U)$ are $Z^{1}(G, U)$ and $B^{1}(G, U)$ respectively if

$W$ is the trivial module.

3. $\Omega^{-1}$ (A1)

Suppose $G$ is p-group. Using $E(W, U)$ , we can construct the Heller module $\Omega^{-1}(M)$ of

anFG-module $M$ . Let $\overline{E}(\Lambda I)$ denote $E(F, ilf)/e(F, ilf)$ where $F$ is the trivial FG-module

and $\{\overline{d}_{i}^{1}\}(1\leq i\leq m_{1})$ an F-basis of $\overline{E}(M)$ . Then we can make a following representation

$M_{1}(g)=(\begin{array}{llll}\Lambda I(g)d_{1}^{1}(g)\ddots 1 0 \vdots \ddots \vdots \ddots d_{m_{1}}^{1}(g) 1\end{array})$

where the FG-module $M_{1}$ has $M$ as a submodule of $M_{1}$ and $1tI_{1}/1tI$ is isomorphic to $m_{1}$

copies of the trivial module F. Moreover Soc$(M)\simeq Soc(ilI_{1})$ . By the same process, we

can make FG-module $M_{2}$ such that $\lrcorner l\prime I_{2}$ has $\Lambda l_{1}$ as a submodule and $M_{2}/AI_{1}$ is isomorpic
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to $m_{2}(=dim_{F}\overline{E}(i1/I_{1}))$ copies of the trivial module $F$ and soc $(AI_{1})\simeq Soc(11/I_{2})$ . So if we

continue this process, then we get

$A/I_{k}(g)=(d_{m_{1}}(g)M_{1}(g)d_{1}^{1}(g)$

$0_{d_{k^{1}}^{2}(g)}1d_{m_{k}}(g)$

$01$

1 ... $1]$

as the injective hull of $M$ . And it’s easy to calculate $\Omega^{-1}(Jf)=i1f_{k}/M$ .

4. Example

Let $G=<x,$ $y,$ $z|x^{3}=y^{3}=z^{3}=(x, z)=(y, \approx)=1,$ $(x, y)=z>$ and $F=GF(3)$ then

$G$ is the extra-special 3-group, $|G|=27$ and
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