goooboooogn
0 8000 19920 157-169

157

Application of the Effective Hamiltonian Method to

Relative Diffusion

BIPEEBE AT JLPEE  (Hideaki Kitauchi)
BIERA® 48 # (Tsutomu Imamura)

The interesting phenomenon that a pair of fluid particles, which
are subject to convection in steady, incompressible, statistically
isotropic turbulent flow, relatively diffuse toward the perpendicular
direction to the initial relative position vector between them
faster than toward the parallel direction at the start is found by
means of the effective Hamiltonian method. In addition, thé fact
that the mean square value of the relative distance between them
increases exponentially just before Richardson's four-thirds law is

satisfied is reported.

§1. Introduction

One of the most interesting features of turbulence is the
enhancement of transport processes. Relative diffusion of a pair of
fluid particles has been discussed by many authors from various
points of view. These points of view are, for instance, the
similarity théory,lﬁ’ the direct interaction approximation,4 the
vortex stretching model, 5 the scaling law® and the effective
Haxhiltonian method.?-2) |

The effective Hamiltonian method, a kind of calculus of variations,
is mathematically clear about the applicable limit of its approximation
and we can easily develop the degree of its approximation. In

addition, this method has the reasonable contents: including the
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mechanism to suppress the contribution from the energy containing
range’) and the appearance of Richardson's four-thirds law.19 By
using this method, the fact that the mean square value of the

relative distance between two fluid particles increases in proportion
to the square of the diffusion time, 72, at the start,”) faster than

1? at the next,? 73 during the intermediate time,® and r at last? has
been reported. In those works,?9 the trial function, the effective
Hamiltonian, has two parameters, and it is implicitly assumed that
all of three components of the relative position vector grows
equally. However, they will grow differently at the start, so we
consider the growth of the perpendicular component and the parallel
component to the initial relative position vector with four parameters.

We formulate that in §2 and obtain the set of nonlinear equations
to determine the parameters. In §3, we calculate those equations for
the concrete cases by Newton method. Finally, we summarize the

results in §4.

§2. Formulation

We -consider a pair of fluid particles which are subject to
convection in steady, incompressible, statistically isotropic turbulent
flow. If they are at the position x{ and x§ respeétively at the
initial time =0, the probability that we can find them at the
positions x! and x2 at the time #(>0) is determined by the probability

density function
Mx1,x2,0=((x1,x2,0),, 2.1

where .
x(x1,x2,0=]] d [x-X x§,0]. 22
i=1
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Here { ), denotes the statistical average with respect to the

Eulerian velocity field u(x,/), ® is the Dirac delta function in three
dimensions, and X(x{,/) denotes the position of the i-th particle at

the time 7, which is at the position x§ at the initial time #=0. The

equations of motion are _
Xxgn=ulXxj0.0  (=1,2). 2.3)

By using this relation, the time evolution of the probability

density function is determined by
0 & i
=z i ! 2 A=
5 +Y, ueetn v xe 1 x2.0=0, @4)

where V' is the nabla operator with respect to xi. Eq.(2.4) can be
solved formally as

2 [ ;
xGetx2,0=T ek [ a7 Tetx20), @.5)

0

where T is the time ordered operator and {') denotes the temporal

position of the operator. For example, if #<#h<i;,
T [Viju(x t)yu(x,6)l=u(x,5)Va(x, ). (2.6)

If we assume that the distribution for the Eulerian velocity field
is statistically stationary, statistically isotropic, and joint

Gaussian whose mean and variance are given by
{u(x,00=0, . (V)
Ska(x i D-x3G "Dt -t Y= (et Yug(xd,t "y

. _ 2.8)
=j dl S(t'-t YA (Deil @K DxKe "),

where
Akz<l>=tsu-’;—2” (j=12; k,=1,2,3), 2.9)

then eq. (2.1) becomes
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This is the formal expression of the probability density function
which gives the probability that a pair of fluid particles are at
the position x! and x2? respectively at the time 1(>0).

In order to calculate furthermore, we employ the effective
Hamiltonian method, in which the probability density function is

approximated to

2 .\
Gegr(x1,x2,0)= j Q%Z;)Lﬁz el kAngt X K @ hxd) (2.11)

where I(k',k%?) is determined such that the error

E(A)=(A)<ADepr 2.12)
becomes minimum. Here {4) and (A),y are the statistical average of a
certain physical quantity A(x1,x2,) with respect to Mxl,x2,H) and

Pefr (x1,x2,1) respectively:

A=} dx'dx? A(x1x2,0h(x1,x2,9, | (2.13)
<A>eff=] dxldx? A(x!,x2,00.4(x 1, x2,0). : (2.14)
The effective probability density function ¢p(x1,x2,7) satisfies
[Z+HCv! % Jog x50, @.15)
2
g (x 1,x2,00=]] 8 [xi-x{l, (2.16)
i=1

where H(—Nl,-ivz,t) is the effective Hamiltonian, a trial function,

which is associated with I(k',k2%,0) by
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I(kl,kz,r)=] dr' Hk k2" (.17

According to the normalization condition of the effective probability
density function

dxldx? dr(x1,x2,0=1, (2.18)

Ik!,k%,0 must satisfy
10,0,0=0. | (2.19)

Substituting equations (2.13) and (2.14) into eqg.(2.12), using

equations (2.10) and (2,11), and neglecting the terms of order O§?),

we can minimize the E(A) at the first approximation,
EA)= ] dg%ﬁﬁdx 1dx2 AGe!,x2,0
, 7 4

ij=1 k=1

2 3 [ o
X[I(k‘,kz,t)%z Z Idt'dt”.]dlS(l,t’~t")Au(l)e"1'(x"-x")V}(V’,] (2.20)

2
xe Tk EA04Y K (x xh_g

=1

where eq.(2.8) and the incompressibility are used. It should be
mentioned that this is not a simple.perturbation expansion with
respect to § but rather is a kind of Bethe-Salpeter treatmentll in
the sense that repeated part of higher order terms are included.
There is no obstacle to calculate the statistical averages of any
physical quantities that are associated with the relative diffusion.

We are interested in the rel’ative'distance betwéen two f£fluid

particles, so we exchange the variables x!, x2, k!, k? into
r=x1-x2, ro=x4-x¢, .21
1442
O (2.22)



162

K=k lék 2 | (2.23)
K=k'+kZ2. : (2.24)

Considering the perpendicular component of r to #, r;, and the
para.llel one, ry, we assume the form of the Kk,K,) as

1k K D=L, OK T+1ai 0K 710k LBk, (225)
where K| is the projection of K toward the perpendiculaf direction

to ry, K; the projection of K toward the parallel direction, and so

on. These o, (), oyfr), B, B are the unknown functions which are

determined by solving the equations, .
E(R%)=0, E(R})=0, (2.26)
E(r})=0, E(r})=0. 2.27)

Substituting eq. (2.25) into eq.(2.11) and integrating it with respect

to k and K, we obtain the effective probability density function,
by (7, R )= 1

Cuya OB LOV o (DB 2.28)

xe-(R 1-Ra) 20 (O)-(Ri-Ron) 200/ )-r U 281 (O)~(ri-ro)1 2B/t ),

Therefore, we obtain

DD =2B100), (2.29)
GP R eg=rg+Bi(), (2.30)
RDRDp=R; 20, (1), 2.31)
REYHKRE or=RE +0u/() (2.32)

by means of eq.(2.14). We make use of eqg.(2.20) and eqg. (2.25) so as

to calculate eq.(2.27). Then the first of eq.(2.27) becomes

Er?)= ] %%%mm r? [I(k,K,t)— ] dr (r-r)] d S,

-’ & DNy a
o LCELSUBE (L W (RCED

xg-Hk K, Oy+ik- (r-ro)+iK- (R-Ro)=(),

By integrating with respect to R, K, and r, eq.(2.33) becomes
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E(r)= f dk [—(%ﬁ Lki+%ﬁ,/k,2,)Akl6(k)- ] dr (¢-7) [ dI S(,7)
° (2.34)

*k 1)’
x { _ %k 2AkL5(k)+2(k2' 7 )Akj_ﬁ(k-.-l)} ] e-ﬁik_%/z-ﬁ//klzfl2-ik//7b=0’

where Ay, denotes the Laplacian with respect to k;. Finally, integrating

with respect to k, we obtain

! 2
Bi= [ dr (#7) ] di 5¢,1) [% -(4- %)e-ﬁdiﬂ-ﬁulﬁ/z+il~m] : (2.35)

Similarly, the second of eq.(2.27) becomes

: 2
B F] dr (;.T)[ dl s(l,f)[% -(4- %léi)e-ﬁllf&—ﬁ//l/2//2+ilum]. (2.36)

Equations (2.35) and (2.36) are the set of nonlinear eguations with

respect to PB; and Py. Same procedure can be used for calculating

eqg.(2.26), but we are only linterested in the relative distance

between two fluid particles.

§3. Numerical Calculation

In order to calculate P; and By concretely, we assume the form of

the two-time correlation function as

Stk,n=Ak)e*"""12, 3.1
where c
. <
iy TN (0<k<ky)
Ak)= _ 3.2)
0 (ka<k)

or
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c (0k<k,)
(ké 1/3+k 1 1/3)(kd14+k4)
Alk)= ' 33
b= 0 (ka<k) G-

Here C is determined such that @?),=1 from eq.(2.8) and ko is the

inverse of the typical length of turbulence. Both equations (3.2)

and (3.3) satisfy Kolmogorov's five-thirds law because of the energy
spectrum Ek)=4nk2Ak).

Substituting eq. (3.1l) into equations (2.35) and (2.36), and

integrating them with respect to 7, we obtain
k

k3
‘ 2
B _L=81!] dk kA(k)T(k,t)[%k- I dkyy (1 + i—’zl)e-ﬁi(k Z_kﬁ)IZ-ﬁukﬁizcos(k, /'b)] , (3.4)

0

kd k
2
6/F16'I{j dk KA(RYT(k, D) [%k-] dk;; (1 - %l—zl-)e‘ﬁi(k 2Jcﬁ)/2—5/1k/2//2cos(k”ro)] , (3.5)
) 0

where -
=k [Wzerfiayre=1], (3.6)
z=k4123’ 2 a7

We calculate the set of nonlinear equations (3.4) and (3.5) by the

Newton method for the cases;

(1) ko=10%, ks=102, r=0.1, <u?)=1, where A(k) is given by eq. (3.2),

(i1) ko=101, k4=102, ksF=10°, r=0.1, <@2),=1, where A() is given by

eq. (3.3),

(111) ko=10"!, k#=10%2, n=0.1, @2,=1, where A(k) is given by eq.(3.2).
Cases (j) are shown in Fig.1l, (ij) in Fig.2, (iij) in Fig.3. In

Fig.n. (d), where ri=1,2,3, we can see that B; increases faster than By

does at the start. This means that the relative distance between two
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fluid particles grows toward the perpendicular direction to the

initial relative position wvector faster than toward the parallel
direction at the start. We can also see that ¢2) is proportional to

2 at first in Fig.n.(b), increases exponentially at the second place
in Fig.n.{c), grows up to almost kf, the square of the typical

length of turbulence, in proportion to # at the third place in

Fig.n.{a), and is proportional to ¢ at last.

§4. Summary

We consider the time evolution of the mean square value of the
relative position vector between two fluid particles, in which the
relative position vector is decomposed into the perpendicular component
and the parallel component to the initial relative position vector.
As a result, we understand that the relative distance between two
fluid particles grows toward the perpendicular direction to the
initial relative position vector faster than toward the parallel
direction at the start. Moreover, we find that the mean square value
of the relative distance increases exponentially just before

Richardson's four-thirds law is satisfied, which is consistent with

Y.Inaba and M.Suzuki (1985).6)

References

1) A. S. Monin and A. M. Yaglom: Tokei Ryutai Rikigaku (Statistical

Fluid Mechanics) (Bun'ichi Sogo Shuppan, Tokyo, 1979) Vol.4 [in
Japanese] .
2) G. K. Batchelor: Austr. J. Sci. Res., A2 (1950) 437.

3) G. K. Batchelor: Proc. Cambr. Phil. Soc. 47 (1952) 359.



166

4)
5)
6)
7)
1995.
8)
9)
10)
11)

H, Roberts: J, Fluid Mech. 11 (1961) 257.
Takayoshi and H. Mori: Prog. Theor. Phys. 68 (1982) 439.
Inaba and M. Suzuki: Prog. Theor. Phys. 74 (1985) 997.

Sakurai, M. Doi and T. Imamura: J. Phys. Soc. Jpn. 53 (1984)

Nakao and T. Imamura: J. Phys. Soc. Jpn. 58 (1989) 4253.
Nakao: J. Phys. Soc. Jpn. 60 (1991) 2942.
F. Richardson:; Proc. Roy. Soc,, All0 (1926) 709, 756.

E. Salpeter and H. A. Bethe: Phys. Rev. 84 (1951) 1232.



167

Loxoh 1.0x10'2
1ox10" | toxtott
i Lox10"
i 1.0x10°
- 1.0x10%
Lox1g? 1.0x 107
L Oxteh 1.0x 108
- 1.0x10°
-~ 1.0x10%
Lox10? Loa 10}
Lox1G? 1.0x10?
1.0x10" Lowt!
Lo 1.0x10%
- 1.ox10
Loxi0? Lowe?
L oxig? 1.0x10°3
10x10* Lowte?
10010 Loxto?
1 0x10% 1L0x10¢
1ox10? outo?
1.0ox10" Loste!
1ox10? 1oxt0?
101107 ¥ Lo
Loau Lot 1
225222222 ELD EERERER RN
5556832882823 §6888344854434
' '
rsq.x-.m The time evolution of %), €3), U3) for the case Lesi0?, Fig.1,(d) .The time evolution of By, Bu for the case k=107, ks=10°,
LpIB, r=0.1, (),=l, where Alk) is given by eq.(3.2). r=0.1, (4,1, where Alk) is given by eq.(3.2).
0.010002 0
0.0100018 |-
0.0100016 |-
0.0100044 }-
0.0100012 |-
) oo - tnte)
0.0100008 }-
0.0100006 |
0.0100004 |-
00100002 |
00t Mt e B I e e T ——
°gss858g2 °% 982885288
s © & ° g ° & ° '
,)

Fig.1.(c) Exponential dependence of {r*) for the case k¢=10*,

‘Fig.1.(b) 1 dependance of () for the case ky=10°%, teI10", f=01,
kp- 10, 101, @¥y-l, where AW) is given by eq. (3.2),

w?),al, where Al) is given by eq.3.2).



168

1oxto? Loato®

1ox10" |- Lowott i

1.0x10* Lox10" |

Lox10® |- roxieY |-

Lon1od Lox10*

1.0010" | 1oxi0? |

Los10b b 10s10% |

1.0x108 1.0x10% |

1.0810° 10x10t

1.0x10° ' ‘ 10x10?

1.0x10? 1.0x10?

1.0x10" . Lox10'

Loxi® i Lo

100107 toxte?!

Lo K 1.0s10°

1ox10” 1.0x10°

10x104 1.ox107

10163 1.0510°%

10x10* 10x10®

L0107 1.0x107

1os10% F 1.0x10°*

10x1v? roxo? |

1021070 [ 1oxi01? 1

LoxtoM b Loxiot

Loa0!? e L — T i .:

(AESERERRREE EEEEEERER RS
£ 888888388488 8 §&88g2222222z2-=2
1 ]

i i ) 2 > i "
Fig.2.(a) The time evolution of ¢?), &), () tor the case ke=10", Fig.2.(d) The time evolution ot Bi, Bn for the case ky=10"t, /=107,

g " .
Li=10, kp10%, 7m0, )=), where Aw) is given by eq.(3.)). kp10Y, 7=0.), W?,=1, where Alk) is given by eq.{3.3).

00102
0.01018 |-
001016 }-
001004 |-
voion? J-
oo | Intr=)
0.01008 |-
0.01006 |-

[}

Q01004 |-
0.01002 -
(]

]

00005
0.001
00015
0.002
0.002:
0.003
0.0035
0.004

» Fig.2.(c) Exponential dependence of (*) for the case k=101,
Fig.2.(b) 1* dependence of {?) for the case ko=10", k/=107, 4s10%,
ki=10°, 1F10%, re0.1, W?),=1, where AW) is given by eq. (3.3},

=01, W,=1, where Alk) is given by eq.(3.3).



1.0x10"
Lost0M |
1.0x30" |
1oxt0” |
1.0x10% |
1.0x107 |
1ox10¢
1.0x10%
10x 10
10010
1.0x107
1.0x10"
Loxie?
10x10°!
1ox10?
1.0x10?
1.0x107
1.0x10°%
Lux 108
1.0x107
1ox10% |
1.0x10? |
Loxo'0
Lox1o

Y

Al

-

oo

1o I
1.0230%
1.0030° |
1.0x10% |
1.00107

10007
1.0010° [

10210}

10103
102102
108107

Fig.3.(a) The time evolution of &%), (), (r}) for the case ko=tU',

k10, ro=0.4, W)=l, where AWl) is given by eg.(3.2)

100108

0.01025
0.0
0.01015 |-
@«
o001 |-
0.01008 }-
0.0} . 3, 1 1 1 L .-

© v = N o4 v o n. g

E 28 €% 32 g3

< c T o =

2

Fig.1.(b} 1° dependence of () for the case to=10', ke10%, n=0.1,

w?),=1, where Alt) is given by eq.{}.1).

Fig.3.(d)

Le10°,

Fig.3. (c)

L0,

169

1.os10"?

T

Lox oM
1.0x10"
1.0x10°

-

T

1.0x10% |
1.0x10? |
1.0x108 |
1.0x10° |
Lox10?
1.0x10?
Lox10?
1.0x10!
Lux10°
1.oxt0!
1.ox1072
1.0x10”?
108107
1.0x107
1.0x10°¢
1ox10?

Loxiv®
Lox10Y
Loxio
Losio!!

Y

1.0xt0"?

1.0x107
105107
1051077
1.000° [
i.0x10!
100107 [
100108
roxio* |
1.0010° [
1.0x308 |
100307 |
1.0n10¢

The time evolution of Bi, By for the case ke=10',

=01, 3,=1, where Ak) is given by eq.(3.2).

In{r?)

Exponential dependence of {?) for the case k¢=10',

=01, &)=, where Awk) is given by eq.(3.2).



