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Non-Cohen-Macaulay symbolic blow-ups for space monomial

curves and counterexamplies to Cowsik’'s question

BAAK - BT {XEPUEE  (Shiro Goto)

Let p be a prime ideal in a commutative Noetherian ring

A and put
R(p) = O p™i® C Al

where t denotes an indeterminate over A . Let me call it the
symbolic Rees algebra of p.In my lecture, I'm interested in
their ring-theoretic properties and especially, in the following

two questions:

Questions (1) When is Rs(p) a Noetherian ring, that is,
when is R (p) a finitely generated A-algebra?

(2) When is Rg(p) a Cohen-Macaulay or Gorenstein ring,

provided that it is Noetherian?

Today I will answer these questions in the following special

situation, that is,
Let k be afield, and let ng, no, and ns be positive integers

with GCD(nl, n,, n3) = 1. Let A=A = kllX, Y, Z]] be a formal

power series ring over k and let ¢ : A — Kk[[t]] be the k-

algebra map defined by



Let me denote by p:= py(ny, n,, n3) the kernel of ¢ .

Then A is a regular local ring of dimension 3 and p isa
prime ideal in A of height 2 .So0 in some sense, this is the
simplest non-trivial case for the above questions. And my

answer is

Theorem 1 (with Nishida and Watanabe). Let m and n be
positive integers suchthat n =2 4 and 2m >n+ 1. Let n=

7m - 3, n, = Smn - m - n, and ng = 8n - 3. Assume that
GCD(nl, n,, n3) =1 and let p= py(ng, ny, n3) . Then the
symbolic Rees algebra Rs(p) of p is a Noetherian ring if and

only if the characteristic of the ground field k is positive. When
this is the case, Rs(p) is not a Cohen-Macaulay ring.

The simplest example obtained by this theorem is the ideal

p= p,(18, 53 29) (here m=3, n=4)

x4 y2 7>

- 28 -xv?, xoyzd, v3 - xizda,
Therefore, if we consider the same prime ideal P = (28 - X7Y2,
X1 o yz3, v3 - x%3)B  inside of the polynomial ring B = k[X,
Y, Z], the symbolic Rees algebra R (P) is a finitely generated
k-algebra but not a Cohen-Macaulay ring if ch k is positive,

and if chk =0,say k= Q, then it is not a finitely generated
Q-algebra.



Let me add one question:

Question What about the prime ideal

p-p (11, 25 21)

X3 y2 73
-y 2 s
(that is, choose m =2 and n =3 )? Of course, this ideal doesn't
satisfy my condition. But by a theorem of Cutkosky you can
easily check that Rs(p) is a Noetherian ring, if ch k > 0.
However I couldn't know whether it is a Noetherian ring or not
in the case where ch k = 0, though I believe that the answer is

negative.

Now let me give a sketch of proof of the theorem. To do this |
need a theorem due to Craig (Huneke). For a moment, let me
assume that (A, m) is a regular local ring of dimension 3 and

p isaprimeidealin A of dim A/p=1.

Theorem 2 (C. Huneke). If there exist two elements f € p(k)

and g € p(s) with positive integers k,! such that the equality

I\ (A/(x, £,8)) = ki 1, (A/p + XA)

holds for some (and hence for any) element x Em \ p, then
the symbolic Rees algebra Rs(p) is a Noetherian ring. If the field

A/m is infinite, the converse is also true.
By this theorem, Huneke showed that R (p) is a Noetherian

ring for p = pk(nl, ny, n3), if min {n, ny, n3} < 4.



If R= Rs(p) is a Noetherian ring, then you can easily get an

isomorphism KR = R(- 1). Therefore R is a Gorenstein ring,

once it is Cohen-Macaulay. To check the Cohen-Macaulay

property of R, you have the following

Theorem 3 (___, Nishida and Shimoda). Let f and g be the
elements in the above theorem. Then the following two

conditions are equivalent.
(1) The symbolic Rees algebra R (p) is a Gorenstein ring.

(2) For any integer | =sn sk +2-2, thering A/(f, g)+ p(n) is a
Cohen-Macaulay ring.

When this is the case, the rings A/(f) + p(n), A/(g) + p(n) ,
and A/(f, g) + p(n) are Cohen-Macaulay for all n =1, and we
have the equality

Ry(p) - Al ___ ., 5. fiKgdl

Using this criterion, you can show that Rs(p) i1s a
Gorenstein ring for p = pk(nl, n,, n3), if min {ng, n,, n3} < 4.
But in general, the Cohen-Macaulay property of Rs(p) depends
on the characteristic of the ground field. Let me give one

example:

Example Let p=p (7, 11, 13) . Then R (p) is always a

Noetherian ring , but it is a Gorenstein ring if and only if ch k =
2, 3.
Now let's start the proof of the theorem. In what follows, let

m and n be positive integers suchthat n =2 4 and Z2m > n



+ 1. Letn1=7m—3, n, =5Smn - m - n, and nz = 8n - 3. We
assume that GCD(nI, n,, n3) = 1. Then

p= pi(ng, n,, n3)

X YZ ZZm—l
- I2 v 7m XZn—l .

Let a = zdm-1 _y2n-1y2  _ y3n-1 _yy2m-1 = ,,4 ¢

y3 - XUZM Then p = (a, b, c) and we have two equations
X2+ Yéb + z2m-lc_g
Ya + 2Mp + xé01lc - o

[ claim that

Lemma There exist elements d, € p(Z) , and d3, d3'

Ep(3) such that dZ = ZSm~2’ d3 = Z7m_2, d3'
y872m-2

mod (X), and
Xdz + Ybc? + Zd4 = 0
3 3 '
Proof. First of all, consider two expressions of - Yzab ;

-Y2ab - Yb(-Ya) = Yb(ZMp + X2D1g)

- a(- Y%b) - a(XMa+ 22M1¢)
And you get

X0(a2 - X0 lybe) = zM(yp2 - z2m-Lae).

hence there exists an element d2 of A such that

Xndz = Yb2 - Zm_lac, and



Zmdz - al - Xn_lec.
Of course, d2 is in p(Z). To get Yd2 , consider

'Yadz = dz(" Ya)
- dyZT + X207 lo)
- b-2™d, + X"l xg,
- b(a? - X0 lype) + X0 lg(yp?2 -z 1gc)
- _—a(-ap + xlzm-1.2y

Thus Yd, = -ab+ x0-1zm-1. and we have two equations:
Ydy - -ab+ xPlz@-1e2
7™d, = a% - X" lybe
We compare two expressions of azb :

a%b - bZ™d, + X" lybe)
- a(- Yd, + xt-lzm-le2)

Then we have

221 7bd, + X0 lac?) = Y(ady+ X2 lbc?),
and so we get an element d3 e p(3) such that
Ydz = -2bdy+ XM lact.

As Yd, =- ab mod (X), we know

Yd, = -z3@1(yz2m-ly,



hence d, = ZSm-Z mod (X). As Yd3 = - Zbdz mod (X),
we get ’

hence d3 = 7/M2  od (X). Notice that Yd3 = X0 1,02
= X0 1 x20-1y2yv3)2 mod () and we have

dy = - X30-2y7  mod (2)
so that

Xdz « Ybe? = X (- x30°2Y7) . y.x30-1.(y3)2 2 o
mod (Z) . Thus there is an element dz' of p(3) such that

Xdg + YbcZ + Zd3' = 0 .

Clearly d3' = Y872m-2  pnq4 (X) . This proves the lemma.
Proposition p(Z) = p2 + (dy), p(3) = pp(Z) + (d3,
d3) ' and p(4) > pp(3)+(p(2))2

For example, let I = p2 + (d2) .Thenas (X)+1=(X)+

(Zsm—l, Yzzm‘l, Y3)2 + (Zsm"Z)’ you have

EA(A/(X) +1)=3.(7m - 3)
On the other hand, because EA(A/(X) + p(z)) = eXA(A/p(Z)) =

Iz (A/(X) + p) - sAp(Ap/pZAp) =3 1,(A/(X) +p), you get that



A/ + 1) = 2, (A/(X) + p{3)) ;hence (X)+ 1 - (X)+ p(?),

because 1 C p(Z). Consequently p(Z) = [+X)nN p(z) = I+
X p(Z) . Thus we have p(Z) = | by Nakayama's lemma.
Similarly you can show that p(3) = pp(z) + (d3, d3'). As

1 (A7) + pl ) - ey, (a7pl )
= 1, (A/(X)+ p)- zAp(Ap/p4Ap)
= 10 -1, (A/(X) +p)
< 1,(A/(X) pp') + (p'2)2),

we have

< (pl2)2

Corollary The ring A/(c) + p(3) is not Cohen-Macaulay.

In fact, notice that
LaA/(X, )+ p3) = 3. (7m - 3) + 1

> exA(A/(C) + D(3))
= 3-(7m - 3);
hence A/(c)+ p(3) cannot be a Cohen-Macaulay ring.

Now let me assume that ch k = p >0. First of all, assume that
p=3 and write p=2q+ 1 (hence q= 1). Then by the
equations

Xdz + Ybc? + Zdz' = 0,
we get
0 = XPd;P+ YPbPc?P  mod (zP)
= XPd;P+ (Y20)dypd+1e2P,



As XPa+ Y%b + 22Mm-1¢_ 0 we furthermore have

g
0 Xpd3p + (- 1)4 E q) Xn q- 1)YZ(2m 1)i i,9-i,q+ 1 2p+i

= Xpd3p +

(- 14 2 (?) Xn(q—i)Yz(Zm-l )iaq-ibq+lc2p+i
(2m-1)i < p

mod (ZP).

Now recall that Zm > n+ 1 and n=4. Then we have
n(q-i) 2 p or 2m-1)i =2 p foreach 0 <si = q.
(In fact, if n(q -1) < p and (2m - 1)i < p, then we get
n(q-i) s 2q and (Zm-1)i s 2q sothat ng+(2m - n
-1)i = 4q . Hence we must have n=4 and i=0 and so

n(q - 1) = 49 =2q, which is impossible.) Thus

0= xP{d;P -

(- 1)d 3 (9 xn(g-i)-pyz(2m-1)i q-ipq+1.2p+i }
(2m-1)i<p
mod (ZP) and thus we have an element h € p(3p) such that

ZPn = d3p N
(- 14 E (‘i]) Xn(q-i)“pyz(Zm-I)iaq-ibQ+102p+i }
(2m-1)i<p
As 2Ph = d3p = 27m2)P ;mod (X, ¢), we get h = z(7m-3)p

mod (X, ¢). Thus we have the following
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Lemma There exists anelement h € p(3p) such that h =
77m-3)p  16d (X, c).

(You can prove this lemma also in the case p =2 .)

Now recall Huneke's theorem. First we take f =c and g=h.
Then

I (A/(X, ¢, ) = 3y (A/(X, ¢ 207 m=3)p))
- 1, (A/(x, Y3, 2{7m=3)p))

= 3p - (7m-3)
=1-3p -, (A/(X)+p).

Hence Rs(p) is a Noetherian ring by Theorem 2. Because
A/(c) + p(?’) is not a Cohen-Macaulay ring, Rs(p) cannot be

Cohen-Macaulay by Theorem 3.

To study the case of ch k = 0, we need further information in
the case where ch k = p >0. Let F-= { 0<?eZ| Hngm

such that I, (A/(X, c, g)) = ¢ 1, (A/(X) + p) } Then 3p € F.

Let I = min F and choose g, € 9(30) so that 2, (A/(X, ¢,
g8g)) = i iz(A/(X) + p). Then we have

Lemma (1) ¢, |{ forall { €F.
(2) Rs(p) = A[{p(n)tn]l snsib -1 ct, 80130]

(3) gotso is not contained in A[{p(n)tn]l snsly - {1

Let me use this lemma without proof. First, we have by (1)
that 14|3p; hence ¢ =1, 3, p,or 3p. Butif !y =p. 3p, then



we have by (2) that R.(p) = Alpt, p(2)t2, p(3)t3] , which is
impossible because p(4) = pp(3) + (p(Z))Z. Thus iy = p and by
(3) we get gotio is not contained in A[{p(n)tn}l <n sl - 1]
This means, to generate the A-algebra R (p), you need at least

one new element of degree = p, depending on the characteristic
p = ch k. On the other hand, if Rs(p) were a Noetherian ring in

the case where ch k =0, say k =Q, then because everything is

defined over Z , you can find a system of generators for the
algebra RS(pQ) so that passing to the field k = Z/pZ for p >> 0,

the system still generates the algebra Rs(pk) (see the theorem

below). This is impossible, because you need at least one new
element of degree = p. Thus RS(pQ) cannot be a Noetherian ring

for our example p .

Let me state the required theorem more explicitly.
Theorem Let C=ZX Y, Z] and let [ =Ker (¢ : C — Zt])
where o(X) = t"1, ¢(Y) = t"2, and ¢(2) = t"3. Then if Ri(p)

is a Noetherian ring for the prime ideal p = pQ(nl, n,, n3) in

QI[X, Y, Zll, there exist positive integers ¢ and N and elements
f and g of I(I) such that for all prime numbers p = N, we

have

(1) 14, -p, @ and
(2) 2y (A /(X1 g)AY) - 2 Iy, (A0 < By

where k =Z/pZ.

Here Ay =k[[X,Y,Z]] and py = py(ny, n,, n3) .

Before closing my talk, let me give a few open problems.

11
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Problems Let p = pk(nl, n,, n3) and n = min {nl, n,, n3}.
(1) chk=p>0 = R,(p) is a Noetherian ring?
(2) chk =0 and R(p) is Noetherian = R (p) is a Gorenstein
ring?
(3) n =<8 n =7 = RJp) isa Gorenstein ring? (For p =
pk(9, 10 13) you can show that Rs(p) is a Noetherian ring but
not Cohen-Macaulay, if chk =2, 3,7.)
(4) n=5 = Ry (p) isa Noetherian ring?
(5) n=6 = R(p) is a Gorenstein ring? (The Noetherian

property of this case was guaranteed by Cutkosky.)
(6) p=p(ll, 16,13) = 7?7777
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