Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question

明大·理工 後藤四郎 (Shiro Goto)

Let \mathbf{p} be a prime ideal in a commutative Noetherian ring A and put

$$R_{s}(\mathbf{p}) := \sum_{n \geq 0} \mathbf{p}^{(n)} t^{n} \subseteq A[t],$$

where t denotes an indeterminate over A. Let me call it the symbolic Rees algebra of \boldsymbol{p} . In my lecture, I'm interested in their ring-theoretic properties and especially, in the following two questions:

Questions (1) When is $R_s(\mathbf{p})$ a Noetherian ring, that is, when is $R_s(\mathbf{p})$ a finitely generated A-algebra?

(2) When is $R_s(\mathbf{p})$ a Cohen-Macaulay or Gorenstein ring, provided that it is Noetherian?

Today I will answer these questions in the following special situation, that is,

Let k be a field, and let n_1 , n_2 , and n_3 be positive integers with $GCD(n_1, n_2, n_3) = 1$. Let $A = A_k := k[[X, Y, Z]]$ be a formal power series ring over k and let $\varphi : A \rightarrow k[[t]]$ be the kalgebra map defined by

$$\varphi(X) = t^{n}1, \quad \varphi(Y) = t^{n}2, \quad \text{and} \quad \varphi(Z) = t^{n}3.$$

Let me denote by $\mathbf{p} := \mathbf{p}_k(n_1, n_2, n_3)$ the kernel of ϕ .

Then A is a regular local ring of dimension 3 and **p** is a prime ideal in A of height 2. So in some sense, this is the simplest non-trivial case for the above questions. And my answer is

Theorem 1 (with Nishida and Watanabe). Let m and n be positive integers such that $n \ge 4$ and 2m > n+1. Let $n_1 = 7m - 3$, $n_2 = 5mn - m - n$, and $n_3 = 8n - 3$. Assume that $GCD(n_1, n_2, n_3) = 1$ and let $\mathbf{p} = \mathbf{p}_k(n_1, n_2, n_3)$. Then the symbolic Rees algebra $R_s(\mathbf{p})$ of \mathbf{p} is a Noetherian ring if and only if the characteristic of the ground field k is positive. When this is the case, $R_s(\mathbf{p})$ is not a Cohen-Macaulay ring.

The simplest example obtained by this theorem is the ideal

$$\mathbf{p} = \mathbf{p}_{k}(18, 53, 29)$$
 (here $m = 3, n = 4$)
$$= I_{2} \begin{bmatrix} x^{4} & y^{2} & z^{5} \\ y & z^{3} & x^{7} \end{bmatrix}$$

=
$$(Z^8 - X^7Y^2, X^{11} - YZ^5, Y^3 - X^4Z^3)A_k$$
.

Therefore, if we consider the same prime ideal $P = (Z^8 - X^7Y^2, X^{11} - YZ^5, Y^3 - X^4Z^3)B$ inside of the polynomial ring B = k[X, Y, Z], the symbolic Rees algebra $R_s(P)$ is a finitely generated k-algebra but not a Cohen-Macaulay ring if ch k is positive, and if ch k = 0, say $k = \mathbf{Q}$, then it is not a finitely generated \mathbf{Q} -algebra.

Let me add one question:

Question What about the prime ideal

$$\mathbf{p} = \mathbf{p}_{k}(11, 25, 21)$$

$$= I_2 \begin{bmatrix} x^3 & y^2 & z^3 \\ y & z^2 & x^5 \end{bmatrix}$$

(that is, choose m=2 and n=3)? Of course, this ideal doesn't satisfy my condition. But by a theorem of Cutkosky you can easily check that $R_{\mathbf{S}}(\mathbf{p})$ is a Noetherian ring, if $\mathbf{ch} \ k > 0$. However I couldn't know whether it is a Noetherian ring or not in the case where $\mathbf{ch} \ k = 0$, though I believe that the answer is negative.

Now let me give a sketch of proof of the theorem. To do this I need a theorem due to Craig (Huneke). For a moment, let me assume that (A, m) is a regular local ring of dimension 3 and \mathbf{p} is a prime ideal in A of dim $A/\mathbf{p} = 1$.

Theorem 2 (C. Huneke). If there exist two elements $f \in \mathbf{p}^{(k)}$ and $g \in \mathbf{p}^{(l)}$ with positive integers k, l such that the equality

$$l_{A}(A/(x, f, g)) = kl \cdot l_{A}(A/\mathbf{p} + xA)$$

holds for some (and hence for any) element $x \in m \setminus p$, then the symbolic Rees algebra $R_S(p)$ is a Noetherian ring. If the field A/m is infinite, the converse is also true.

By this theorem, Huneke showed that $R_s(\mathbf{p})$ is a Noetherian ring for $\mathbf{p} = \mathbf{p}_k(n_1, n_2, n_3)$, if $\min\{n_1, n_2, n_3\} \le 4$.

If $R = R_s(\mathbf{p})$ is a Noetherian ring, then you can easily get an isomorphism $K_R \cong R(-1)$. Therefore R is a Gorenstein ring, once it is Cohen-Macaulay. To check the Cohen-Macaulay property of R, you have the following

Theorem 3 (____, Nishida and Shimoda). Let f and g be the elements in the above theorem. Then the following two conditions are equivalent.

- (1) The symbolic Rees algebra $R_s(\mathbf{p})$ is a Gorenstein ring.
- (2) For any integer $1 \le n \le k + l 2$, the ring $A/(f, g) + p^{(n)}$ is a Cohen-Macaulay ring.

When this is the case, the rings $A/(f)+\mathbf{p}^{(n)}$, $A/(g)+\mathbf{p}^{(n)}$, and $A/(f,g)+\mathbf{p}^{(n)}$ are Cohen-Macaulay for all $n\geq 1$, and we have the equality

$$R_{s}(\mathbf{p}) = A[\{\mathbf{p}^{(n)}t^{n}\}_{1 \le n \le k+l-2}, ft^{k}, gt^{l}].$$

Using this criterion, you can show that $R_s(\mathbf{p})$ is a Gorenstein ring for $\mathbf{p} = \mathbf{p}_k(n_1, n_2, n_3)$, if $\min\{n_1, n_2, n_3\} \le 4$. But in general, the Cohen-Macaulay property of $R_s(\mathbf{p})$ depends on the characteristic of the ground field. Let me give one example:

Example Let $\mathbf{p} = \mathbf{p}_k(7, 11, 13)$. Then $R_s(\mathbf{p})$ is always a Noetherian ring, but it is a Gorenstein ring if and only if $ch k \neq 2, 3$.

Now let's start the proof of the theorem. In what follows, let m and n be positive integers such that $n \ge 4$ and 2m > n

+ 1. Let $n_1 = 7m - 3$, $n_2 = 5mn - m - n$, and $n_3 = 8n - 3$. We assume that $GCD(n_1, n_2, n_3) = 1$. Then

$$\mathbf{p} = \mathbf{p}_{k}(n_{1}, n_{2}, n_{3})$$

$$= I_{2} \begin{bmatrix} X^{n} & Y^{2} & Z^{2m-1} \\ Y & Z^{m} & X^{2n-1} \end{bmatrix}.$$

Let
$$a=Z^{3\,m-1}-X^{2\,n-1}Y^2$$
, $b=X^{3\,n-1}-YZ^{2\,m-1}$, and $c=Y^3-X^nZ^m$. Then ${\bf p}=(a,b,c)$ and we have two equations
$$X^na+Y^2b+Z^{2\,m-1}c=0 \ ,$$

$$Ya+Z^mb+X^{2\,n-1}c=0 \ .$$

I claim that

Lemma There exist elements $d_2 \in \mathbf{p}^{(2)}$, and d_3 , d_3 , $d_3 \in \mathbf{p}^{(3)}$ such that $d_2 = Z^{5m-2}$, $d_3 = Z^{7m-2}$, $d_3 = Y^8Z^{2m-2} \mod (X)$, and

$$Xd_3 + Ybc^2 + Zd_3' = 0$$
.

Proof. First of all, consider two expressions of $-Y^2ab$:

$$-Y^{2}ab = Yb(-Ya) = Yb(Z^{m}b + X^{2n-1}c)$$

= $a(-Y^{2}b) = a(X^{n}a + Z^{2m-1}c)$.

And you get

$$X^{n}(a^{2} - X^{n-1}Ybc) = Z^{m}(Yb^{2} - Z^{m-1}ac);$$

hence there exists an element \mbox{d}_2 of A such that $\mbox{X}^n \mbox{d}_2 = \mbox{Yb}^2 - \mbox{Z}^{m-1} \mbox{ac} \; , \; \mbox{and} \;$

$$Z^m d_2 = a^2 - X^{n-1} Y bc.$$

Of course, d_2 is in $\mathbf{p}^{(2)}$. To get Yd_2 , consider

$$- Yad_2 = d_2(- Ya)$$

$$= d_2(Z^mb + X^{2n-1}c)$$

$$= b \cdot Z^md_2 + X^{n-1}c \cdot X^nd_2$$

$$= b(a^2 - X^{n-1}Ybc) + X^{n-1}c(Yb^2 - Z^{m-1}ac)$$

$$= -a(-ab + X^{n-1}Z^{m-1}c^2).$$

Thus $Yd_2 = -ab + X^{n-1}Z^{m-1}c$ and we have two equations:

$$Yd_2 = -ab + X^{n-1}Z^{m-1}c^2$$
,
 $Z^md_2 = a^2 - X^{n-1}Ybc$.

We compare two expressions of a^2b :

$$a^{2}b = b(Z^{m}d_{2} + X^{n-1}Ybc)$$

= $a(-Yd_{2} + X^{n-1}Z^{m-1}c^{2}).$

Then we have

$$\begin{split} \mathbf{Z}^{m-1}(-\mathbf{Z}\mathbf{b}\mathbf{d}_2+\mathbf{X}^{n-1}\mathbf{a}\mathbf{c}^2) &= \mathbf{Y}(\mathbf{a}\mathbf{d}_2+\mathbf{X}^{n-1}\mathbf{b}\mathbf{c}^2). \\ \text{and so we get an element } \mathbf{d}_3 &\in \mathbf{p}^{(3)} \text{ such that} \\ \mathbf{Y}\mathbf{d}_3 &= -\mathbf{Z}\mathbf{b}\mathbf{d}_2+\mathbf{X}^{n-1}\mathbf{a}\mathbf{c}^2 \ . \end{split}$$

As $Yd_2 = -ab \mod (X)$, we know

$$Yd_2 = -Z^{3m-1}(-YZ^{2m-1});$$

hence $d_2 = Z^{5m-2} \mod (X)$. As $Yd_3 = -Zbd_2 \mod (X)$, we get

$$Yd_3 = -Z(-YZ^{2m-1})Z^{5m-2} \mod (X);$$

hence $d_3 = Z^{7m-2} \mod (X)$. Notice that $Yd_3 = X^{n-1}ac^2$ = $X^{n-1}(-X^{2n-1}Y^2)(Y^3)^2 \mod (Z)$ and we have

$$d_3 = -X^{3n-2}Y^7 \mod (Z),$$

so that

 $Xd_3 + Ybc^2 \equiv X \cdot (-X^{3n-2}Y^7) + Y \cdot X^{3n-1} \cdot (Y^3)^2 \equiv 0$ mod (Z). Thus there is an element d_3 of $\mathbf{p}^{(3)}$ such that

$$Xd_3 + Ybc^2 + Zd_3' = 0.$$

Clearly $d_3' \equiv Y^8 Z^{2m-2} \mod (X)$. This proves the lemma.

Proposition $\mathbf{p}^{(2)} = \mathbf{p}^2 + (d_2), \quad \mathbf{p}^{(3)} = \mathbf{p}\mathbf{p}^{(2)} + (d_3, d_3), \quad \text{and} \quad \mathbf{p}^{(4)} \neq \mathbf{p}\mathbf{p}^{(3)} + (\mathbf{p}^{(2)})^2.$

For example, let $I = \mathbf{p}^2 + (d_2)$. Then as $(X) + I = (X) + (Z^{3m-1}, YZ^{2m-1}, Y^3)^2 + (Z^{5m-2})$, you have

$$l_{A}(A/(X) + I) = 3 \cdot (7m - 3)$$

= $3 \cdot l_{A}(A/(X) + \mathbf{p})$.

On the other hand, because $l_A(A/(X) + \mathbf{p}^{(2)}) = e_{XA}(A/\mathbf{p}^{(2)}) = l_A(A/(X) + \mathbf{p}) \cdot l_{A_{\mathbf{p}}}(A_{\mathbf{p}}/\mathbf{p}^2A_{\mathbf{p}}) = 3 \cdot l_A(A/(X) + \mathbf{p})$, you get that

 $l_{A}(A/(X) + I) = l_{A}(A/(X) + \mathbf{p}^{(2)})$; hence $(X) + I = (X) + \mathbf{p}^{(2)}$, because $I \subseteq \mathbf{p}^{(2)}$. Consequently $\mathbf{p}^{(2)} = I + (X) \cap \mathbf{p}^{(2)} = I + X$ $\mathbf{p}^{(2)}$. Thus we have $\mathbf{p}^{(2)} = I$ by Nakayama's lemma. Similarly you can show that $\mathbf{p}^{(3)} = \mathbf{p}\mathbf{p}^{(2)} + (d_3, d_3)$. As

$$\begin{split} l_{\mathrm{A}}(\mathrm{A}/(\mathrm{X}) + \mathbf{p}^{(4)}) &= \mathrm{e}_{\mathrm{X}\mathrm{A}}(\mathrm{A}/\mathbf{p}^{(4)}) \\ &= l_{\mathrm{A}}(\mathrm{A}/(\mathrm{X}) + \mathbf{p}) \cdot l_{\mathrm{A}}\mathbf{p}^{(\mathrm{A}}\mathbf{p}/\mathbf{p}^{4}\mathrm{A}\mathbf{p}) \\ &= 10 \cdot l_{\mathrm{A}}(\mathrm{A}/(\mathrm{X}) + \mathbf{p}) \\ &< l_{\mathrm{A}}(\mathrm{A}/(\mathrm{X}) + \mathbf{p}\mathbf{p}^{(3)} + (\mathbf{p}^{(2)})^{2}), \end{split}$$

we have

$$p^{(4)} \neq pp^{(3)} + (p^{(2)})^2$$

Corollary The ring $A/(c) + p^{(3)}$ is not Cohen-Macaulay.

In fact, notice that

$$l_{A}(A/(X, c) + \mathbf{p}^{(3)}) = 3 \cdot (7m - 3) + 1$$

> $e_{XA}(A/(c) + \mathbf{p}^{(3)})$
= $3 \cdot (7m - 3)$:

hence $A/(c) + \mathbf{p}^{(3)}$ cannot be a Cohen-Macaulay ring.

Now let me assume that ch k = p > 0. First of all, assume that $p \ge 3$ and write p = 2q + 1 (hence $q \ge 1$). Then by the equations

$$Xd_3 + Ybc^2 + Zd_3' = 0,$$

we get

$$0 = X^{p}d_{3}^{p} + Y^{p}b^{p}c^{2p} \mod (Z^{p})$$
$$= X^{p}d_{3}^{p} + (Y^{2}b)^{q}Yb^{q+1}c^{2p}.$$

As $X^n a + Y^2 b + Z^{2m-1} c = 0$, we further more have

$$0 = X^{p}d_{3}^{p} + (-1)^{q} \sum_{i=0}^{q} {q \choose i} X^{n(q-i)}YZ^{(2m-1)i}a^{q-i}b^{q+1}c^{2p+i}$$

$$= X^{p}d_{3}^{p} + (-1)^{q} \sum_{\substack{(2m-1)i < p}} {q \choose i} X^{n(q-i)}YZ^{(2m-1)i}a^{q-i}b^{q+1}c^{2p+i}$$

 $mod(Z^p).$

Now recall that 2m > n+1 and $n \ge 4$. Then we have $n(q-i) \ge p$ or $(2m-1)i \ge p$ for each $0 \le i \le q$. (In fact, if n(q-i) < p and (2m-1)i < p, then we get $n(q-i) \le 2q$ and $(2m-1)i \le 2q$ so that $nq+(2m-n-1)i \le 4q$. Hence we must have n=4 and i=0 and so $n(q-i) = 4q \le 2q$, which is impossible.) Thus

$$0 = X^{p} \left\{ d_{3}^{p} + \frac{1}{(2m-1)i < p} \left(\begin{matrix} q \\ i \end{matrix} \right) X^{n(q-i)-p} YZ^{(2m-1)i} a^{q-i} b^{q+1} c^{2p+i} \right\}$$

mod (Z^p) and thus we have an element $h \in \mathbf{p}^{(3p)}$ such that

$$Z^{p}h = d_{3}^{p} + (-1)^{q} \sum_{(2m-1)i < p} {q \choose i} X^{n(q-i)-p} YZ^{(2m-1)i} a^{q-i} b^{q+1} c^{2p+i}$$

As $Z^ph = d_3^p = Z^{(7m-2)p} \mod (X, c)$, we get $h = Z^{(7m-3)p} \mod (X, c)$. Thus we have the following

Lemma There exists an element $h \in \mathbf{p}^{(3p)}$ such that $h = \mathbb{Z}^{(7m-3)p} \mod (X, c)$.

(You can prove this lemma also in the case p = 2.)

Now recall Huneke's theorem. First we take f=c and g=h. Then

$$l_{A}(A/(X, c, h)) = l_{A}(A/(X, c, Z^{(7m-3)p}))$$

= $l_{A}(A/(X, Y^{3}, Z^{(7m-3)p}))$
= $3p \cdot (7m-3)$
= $1 \cdot 3p \cdot l_{A}(A/(X) + \mathbf{p})$.

Hence $R_s(\mathbf{p})$ is a Noetherian ring by Theorem 2. Because $A/(c) + \mathbf{p}^{(3)}$ is not a Cohen-Macaulay ring, $R_s(\mathbf{p})$ cannot be Cohen-Macaulay by Theorem 3.

To study the case of ch k = 0, we need further information in the case where ch k = p > 0. Let $\mathbf{F} = \{0 < l \in \mathbf{Z} \mid \exists g \in \mathbf{p}^{(l)} \text{ such that } l_{\mathbf{A}}(\mathbf{A}/(\mathbf{X}, \mathbf{c}, \mathbf{g})) = l \cdot l_{\mathbf{A}}(\mathbf{A}/(\mathbf{X}) + \mathbf{p}) \}$. Then $3\mathbf{p} \in \mathbf{F}$. Let $l_0 = \min \mathbf{F}$ and choose $g_0 \in \mathbf{p}^{(l_0)}$ so that $l_{\mathbf{A}}(\mathbf{A}/(\mathbf{X}, \mathbf{c}, \mathbf{g})) = l_0 \cdot l_{\mathbf{A}}(\mathbf{A}/(\mathbf{X}) + \mathbf{p})$. Then we have

Lemma (1) $l_0 \mid l$ for all $l \in \mathbf{F}$.

(2)
$$R_s(\mathbf{p}) = A[\{\mathbf{p}^{(n)}t^n\}_{1 \le n \le l_0 - 1}, \text{ ct, } g_0t^{l_0}].$$

(3)
$$g_0 t^{l_0}$$
 is not contained in $A[\{\mathbf{p}^{(n)}t^n\}_{1 \le n \le l_0 - 1}]$.

Let me use this lemma without proof. First, we have by (1) that $l_0 \mid 3p$; hence $l_0 = 1, 3, p, or 3p$. But if $l_0 \neq p, 3p$, then

we have by (2) that $R_s(\mathbf{p}) = A[\mathbf{p}t, \mathbf{p}^{(2)}t^2, \mathbf{p}^{(3)}t^3]$, which is impossible because $\mathbf{p}^{(4)} \neq \mathbf{p}\mathbf{p}^{(3)} + (\mathbf{p}^{(2)})^2$. Thus $l_0 \geq \mathbf{p}$ and by (3) we get $g_0t^{l_0}$ is not contained in $A[\{\mathbf{p}^{(n)}t^n\}_{1 \leq n \leq l_0} - 1]$. This means, to generate the A-algebra $R_s(\mathbf{p})$, you need at least one new element of degree $\geq \mathbf{p}$, depending on the characteristic $\mathbf{p} = \mathbf{ch} \ k$. On the other hand, if $R_s(\mathbf{p})$ were a Noetherian ring in the case where $\mathbf{ch} \ k = 0$, say $\mathbf{k} = \mathbf{Q}$, then because everything is defined over \mathbf{Z} , you can find a system of generators for the algebra $R_s(\mathbf{p}_{\mathbf{Q}})$ so that passing to the field $\mathbf{k} = \mathbf{Z}/\mathbf{p}\mathbf{Z}$ for $\mathbf{p} >> 0$, the system still generates the algebra $R_s(\mathbf{p}_{\mathbf{k}})$ (see the theorem below). This is impossible, because you need at least one new element of degree $\geq \mathbf{p}$. Thus $R_s(\mathbf{p}_{\mathbf{Q}})$ cannot be a Noetherian ring for our example \mathbf{p} .

Let me state the required theorem more explicitly.

(1)
$$I^{(l)} A_k = p_k^{(l)}$$
 and

(2)
$$l_{A_k}(A_k/(X, f, g)A_k) = l^2 \cdot l_{A_k}(A_k/(X) + \mathbf{p}_k)$$
,

where $k = \mathbb{Z}/p\mathbb{Z}$.

Here $A_k = k[[X, Y, Z]]$ and $\mathbf{p}_k = \mathbf{p}_k(n_1, n_2, n_3)$.

Before closing my talk, let me give a few open problems.

Problems Let $\mathbf{p} = \mathbf{p}_k(n_1, n_2, n_3)$ and $n = \min\{n_1, n_2, n_3\}$.

- (1) $ch k = p > 0 \implies R_s(\mathbf{p})$ is a Noetherian ring?
- (2) ch k = 0 and $R_s(\mathbf{p})$ is Noetherian $\Rightarrow R_s(\mathbf{p})$ is a Gorenstein ring?
- (3) $n \le 8$, $n \ne 7 \Rightarrow R_s(\mathbf{p})$ is a Gorenstein ring? (For $\mathbf{p} = \mathbf{p}_k(9, 10 \ 13)$ you can show that $R_s(\mathbf{p})$ is a Noetherian ring but not Cohen-Macaulay, if $ch \ k = 2, 3, 7$.)
- (4) $n = 5 \Rightarrow R_s(\mathbf{p})$ is a Noetherian ring?
- (5) $n = 6 \Rightarrow R_s(\mathbf{p})$ is a Gorenstein ring? (The Noetherian property of this case was guaranteed by Cutkosky.)
- (6) $\mathbf{p} = \mathbf{p}_{k}(11, 16, 13) \Rightarrow ?????$

References

- [1] S. D. Cutkosky, Symbolic algebras of monomial primes, J. reine angew. Math., 416 (1991), 71-89.
- [2] S. Goto and K. Nishida, On the structure of Noetherian Rees algebras of filtrations, preprint 1992.
- [3] S. Goto, K. Nishida, and Y. Shimoda, The Gorensteinness of symbolic Rees algebras for space curves, J. Math. Soc. Japan, 43 (1991), 465-481.
- [4] S. Goto, K. Nishida, and K. Watanabe, Non-Cohen-Macaulay symbolic Rees algebras for space monomial curves and counterexamples to Cowsik's question, preprint 1991.
- [5] C. Huneke, On the finite generation of symbolic blow-ups, Math. Z., 179 (1982), 465-472.
- [6] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J.,34 (1987), 293-318.
- [7] M. Morales, Noetherian symbolic blow-ups, J. Alg., **140** (1991), 12-

25.

- [8] M. Morimoto and S. Goto, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves, to appear in Proc. Amer. Math. Soc.
- [9] P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Alg., 132 (1990), 461-473.
- [10] P. Roberts, A prime ideal in a polynomial ring whose symbolic blowup is not Noetherian, Proc. Amer. Math. Soc., 94 (1985), 589-592.
- [11] W. V. Vasconcelos, Symmetric algebras and factoriality, Mathematical Sciences Research Institute Publications, 15 (1989), 467-496.