Remarks on complete intersection

Shin Ikeda

(歧阜教育大学 池田 信)

Let (R,m) be a Noetherian local ring. The monomial conjecture asserts that for any integer $n \ge 0$ and for any system of parameters a_1, \ldots, a_d of R we have

$$(a_1 a_2 \dots a_d)^n \notin (a_1^{n+1}, \dots, a_d^{n+1})$$
.

The monomial conjecture holds if R contains a field or dim R ≤ 2 . The purpose of this note is to show that the monomial conjecture is equivalent to the following property (P) of Gorenstein local rings.

(P) An ideal of height 0 is (0) if it is contained in a parameter ideal.

We begin with a reformulation of the monomial conjecture. Let a_1,\ldots,a_d be a system of parameters of a Noetherian local ring (R,m) and let $\underline{a}^n=(a_1^n,\ldots,a_d^n)$. We define an R-homomorphism

$$f_n : R/\underline{a}_n \rightarrow R/\underline{a}^{n+1}$$

by $f_n(1) = a_1 a_2 \dots a_d \mod \underline{a}^{n+1}$. Then the direct limit of the direct system $\{ R/\underline{a}^n \; ; \; n=1,2,\dots \}$ is the local cohomology module $H_m^d(R)$. Let

$$\Phi_n(a) : R/a_n \rightarrow H_m^d(R)$$

be the canonical homomorphism. Then $\Phi_1(a) \neq 0$ if and only if

$$(a_1 a_2 \dots a_d)^n \notin (a_1^{n+1}, \dots, a_d^{n+1})$$

for all $n \ge 0$.

Let I be an ideal of R with ht(I) = 0. Since (0:I) is an R/I-module we have an isomorphism

$$(0:1) \simeq (0:1) \otimes_{\mathbf{R}} \mathbf{R}/\mathbf{I}.$$

Hence we get an R-homomorphism

$$(0:1) \otimes_{\mathsf{R}} \mathsf{R}/\mathsf{I} \to \mathsf{R}$$
.

Tensoring this with the direct system $\{R/\underline{a}^n : n = 1, 2, \ldots\}$, we get a commutative diagram

where $\Psi_n(\underline{a}): R/(1,\underline{a}^n) \to H_m^d(R/1)$ is the canonical homomorphism. θ induces a homomorphism

$$\theta^* : H_m^d(R/I) \rightarrow Hom_R((0:I), H_m^d(R))$$
.

Lemma 1. If R is Gorenstein then θ^* is an isomorphism.

<u>Proof.</u> Since R is Gorenstein, $H_m^{-\alpha}(R)$ is isomorphic to the injective envelope of the residue field R/m. The lemma follows from the local duality.

In order to characterize unmixed ideals in a Gorenstein local ring, we have:

Lemma 2. Let (R,m) be a Gorenstein local ring and 1 an ideal of height 0. Then 1 is unmixed if and only if (0:(0:1))=1.

<u>Proof.</u> If (0:(0:1)) = 1 it is clear that 1 is unmixed. Conversely, suppose that 1 is unmixed. For any $p \in Ass(R/1)$, R_p is a 0-dimensional Gorenstein local ring and we have $(0:(0:1))R_p = 1R_p$. Since 1 is unmixed, we have (0:(0:1)) = 1.

Now we are ready to prove:

Theorem 3. The following statements are equivalent:

- (1) The monomial conjecture holds.
- (2) Every Gorestein local ring has the property (P).

<u>Proof.</u> (1) \Rightarrow (2): Let (R,m) be a Gorenstein local ring and 1 an unmixed ideal of height 0. Suppose that $1 \neq (0)$ and let j = (0:1). Since 1 is unmixed we have 1 = (0:j), by lemma 2. Let $\underline{a} = a_1, \ldots, a_d$ be a system of parameters of R. We have a commutative diagram

$$\begin{array}{cccc} I \otimes_{\mathsf{R}} R/(J \;,\; \underline{a}) & \to & R/\underline{a} \\ & \downarrow & & \downarrow \\ & I \otimes_{\mathsf{R}} H_{\mathsf{m}}{}^{\mathsf{d}}(R/J) & \to & H_{\mathsf{m}}{}^{\mathsf{d}}(R) \;. \end{array}$$

By Temma 1, we have an isomorphism

$$H_m^d(R/J) \rightarrow Hom_R(I, H_m^d(R))$$
.

The image α of the identity of R/(J, \underline{a}) in $H_m^{\alpha}(R/J)$ is not trivial by the monomial conjecture. α induces a non-trivial homomorphism

$$\alpha^*: \vdash \rightarrow \mathbb{H}_m^d(\mathbb{R})$$
.

From the above commutative diagram, we see that | is not contained in \underline{a} . (2) \Rightarrow (1): Suppose that the monomial conjecture is not true. Then, there is a Noetherian local ring A and a system of parameters of a_1, \ldots, a_d of A such that

$$(a_1 a_2 \dots a_d)^n \in (a_1^{n+1}, \dots, a_d^{n+1})$$

for some $n \ge 0$. We may assume that A is a complete local domain. There is a Gorenstein local ring R and an ideal + of R such that A = R/I. We can assume that dim $A = \dim R$. Since the monomial conjecture does not hold for A, we have $+ \neq (0)$. Let $+ \neq (0)$. Let $+ \neq (0)$ but the monomial conjecture does not holds for R/I there is a system of parameters $+ x_1, \dots, x_d$ of R such that $+ \neq (0)$ by lemma 1. By assumption (2), we get $+ \neq (0)$ but this is impossible

Corollary 4. Let R be a Gorenstein local ring containing a field and let I be an unmixed ideal of R. Suppose that there is a sytem of parameters a_1, \ldots, a_d of R such that $(a_1, \ldots, a_h) \subset I \subset (a_1, \ldots, a_d)$, with ht(I) = h. Then $I = (a_1, \ldots, a_h)$.

Example (J.R. Strooker and J. Stückrad). Let k be a field and $R = k[[X,Y,U,V]]/(XY - UV,V^2,YV) = k[[x,y,u,v]]$. Then R is a Cohen-Macaulay local ring but not Gorenstein. (y^2) is an unmixed ideal of R and contained in a parameter ideal (x + y,u).

The auther would like to thank S. Goto and Y. Yoshino who informed him that Strooker and Stückrad obtailed the same result.

References

- [1] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25-43.
- [2] J.R. Strooker and J. Stückrad, Monomial conjecture and complete intersections, preprint (1991).