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Symbolic Powers, Rees Algebras and
Applications
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Introduction.
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1 Hochster’s Theorem and Example.

Throughout this paper, all rings are commutative with identity. We use fully
the notation and terminology of EGA [3], Matsumura [7] and Nagata [8].
The set of natural numbers and that of non-negative integers are denoted
respectively by N and Ny.

Throughout this section, R denotes a Noetherian domain, P = (py,...,px) 2
prime ideal of R and p the k-tuple p;,...,ps. As mentioned in Introduction,
we first recall Hochster’s criteria for the equality of ordinal and symbolic
powers of a prime ideal P of a Noetherian domain R, namely, criteria for
the equality P* = P = P"Rp N R for any n. Then, for the later use, we
review Hochster’s third example of a height 2 prime ideal P of a polynomial
ring R in 4 variables over a field K such that R/P is not Cohen-Macaulay
but P* = P(™ for any n.

To state Hochster’s criteria, we fix notation. If P = (p;,...,px) is a prime
ideal of a Noetherian domain R, taking k + 1 algebraically independent in-
determinates ty,...,t;,q over R, we set S = R[t;,...,t;]. We define an
increasing sequence of ideals of S recursively as follows:

Jo(p) = (0), Jus1(p) = {Zhysitilsi € S, Ty sipi € Jo(p)} + Ju(p),
J(p) = U, Jn(p).

Theorem 1.1. (Hochster [5]) The following conditions on a prime ideal P =
(p1,...,pk) of a Noetherian domain R are equivalent:

(1.1.1)  P™ = P for every positive integer n, and the associated graded
ring of Rp is a domain.

(1.1.2) PSS+ J(p) is prime.

(1.1.3)  For some integern > 0, PS+ J,(p) is a prime of height k. In this
case, PS + J,(p) = PS + J(p).

(1.1.4)  There is a height k prime Q of S such that @ C PS+J(p). In this
case, Q = PS + J(p).

(1.1.5)  q is a prime element in the subring R{q,p1/q,...,px/q] of Rlg,1/q].

As applications of the theorem above, Hochster observed three examples of
prime ideals whose ordinal and symbolic powers are equal. The first example



is a prime ideal generated by an R-sequence, the second one is the prime
ideal generated by the k by k£ minors of a k£ by £+ 1 matrix of indeterminates
over a field. Though they are interesting as well, we shall only look close at
the third one for our later purpose.

Let X,Y be indeterminates over a field K. Set A = K[X, XY,Y? Y?], which
1s not Cohen-Macaulay. Let z,z;,2,, 23 be indeterminates over K and set
R = Klz,2,29,23]. Let $: R — A be the K—~homomorphism which maps
T, 21, 29,23 to X, XY,Y? Y3 respectively. Let P = Ker ¢. Then

Example 1.2 (cf.[5, p.61]). P = (25 —23,200% — 2%, 2921 — T23, 250 — 2321) =
(p1,p2,p3,P4) is a height 2 prime ideal of R where R/P is not Cohen-
Macaulay but P* = P™ for every positive integer n.

Indeed, Ji(p) contains @ = xt; — z3ts — zotg,b = 21t — 23t3 — 23t4,c =
zoto +zits—xty and d = 23ty + z9xts — 21t4. Then, e = 1+ 292 — 12 € Jo(p).
Hence, @ = (p1,p2,ps,p4,a,b,¢,d,€)S C PS+ Jo(p) C PS+ J(p). Hochster
shows that @ is a height 4 prime ideal of S = R|[ty, 2,13, t4).

We end the first section by notifying that the five relations a, b, ¢, d, e above
appear again in a very crucial step of our reconstruction of Brodmann-
Rotthaus peculiar unmixed local domain given below.

2 Construction of Peculiar Local Domains.

2.0 Notation. Let Ky be a countable field, for example, Q the field of

rational numbers, F, the finite field with ¢ elements, or F, the algebraic
closure of the prime field of characteristic p > 0, etc...., and let K be a
purely transcendental extension field of countable degree over K, that is,
K = Ko(aix) with transcendental basis {ay|i = 1,...,n; k = 1,2,...}.
Further, for any £ € N, let

(2.0.1) K= Kr_1(a1ky- -+, ank) = Kp_1(ai) and K = Ky .
k

Let u, z,..., 2z, be n + 1 indeterminates over K, and set
(2.0.2) So = Kolu, 21, .., 2,) and Ny = (u, 21, . .., 2,) S0,
(203) Sk = Sk_l[alk, cee ,ank] and ‘ﬁk = (u, ATRERE Zn)Sk.
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Then, Sy = Kolain,u,21,...,2,) with e =1,...,n and 1 < h < k. Further,
we set

(2.0.4) S =J Sk = Kolaik,u,21,..., 2] and M = (u,21,...,2,)5,
k

where 1 =1,...,n; k=1,2,.... Moreover, let
(205) RO = (So)mo = ]{Q[U, ATEREE, Zn](u)zlw‘yzn) with Ny = (u, Z)Ro,
(2.0.6) R =S8n=Kluzi,...,20)(uz,..en) With n = (u,21,...,2,)R.

Then R is a countable regular local ring. With notation as above, let

(20.7) P= {p €S

for each height one p € Spec(R), there is
at least one element p such that p € p '

Then, P 1s a countable set and we may assume that u € P and that P
contains an infinite number of elements of S.

2.1 Numbering. Now we come to an important lemma due to Heit-
mann (4], which guarantees a good enumeration on P.

With notation and assumptions above, we fix a surjective mapping p: N — P,
called a numbering on P, which, if we set p(z) = p;, satisfies the following:

(2.1.1) p1 = u, and p; € S;— for any ¢ > 2.

We define:

(212) g = p1ps,

(2.1.3) zio = 7 and zi = zi + anq1 + - + apgy.

Then Py = (z1k,. .., 2nk)R is a prime ideal of height n for any £ > 0.
Lemma 2.2 (Heitmann’s Lemma [4]). Notation being as above, let p be
a numbering on P which satisfies (2.1.1). Then

(2.2.1) pr & Pr whenever k> h — 1,

(2.2.2) (z1ky -+« y 2mk)Sk 15 a prime ideal, generated by an Si-regular

SEqUENCE Z1g,y - ..y Zmk for any m (1 < m < n).
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2.3 Relations. Taking polynomials in n variables over K, without con-
stant term: Fy(2), ..., F.(Z) € Ko[Z,,...,Z,)], we set

1 .
(231) ajk = q—kF:j(zlk,'--,an)E L:Q(R), J = ].,...’7'.
k

Then, by definition
1

Qjk+1) = k_HFj(zl(k+1)7 e ,Zn(k+1))
k+1

] k+1 k+1
= Tk+1 FJ(ZUC + Q1(k+1)Gk41> - - -1 Znk T an(k+1)qk+1)'

Q41
Thus
qk+1 qk+1
(23.2)  ajp = %aﬁkﬂ) + %rjk with r;, € R.
k k

LethUR[ajk]CLwithj:1,...,r and k =1,2,.... Then
k

Lemma 2.4. With notation as above, let M = (u,21,...,2,)B. Then M is
a mazimal tdeal of B.

Notation being as above, forz =1,...,nand j =1,...,r, we set

G = zi+ai1q1+...+a,‘kq,§+--- =2i+ZZ°=1@z'kQ1’§7
fj = Fj(Clr"aCn) € fz: I(Huazlv"'azn” = I{[[U)Ch-'-acn]]'

Let A = By C L be a quasi-local domain with maximal ideal m = M A.
Then

Theorem 2.5. (A, m) is a Noetherian local domain which satisfies the fol-
lowing conditions:

25.0)  EE[uGe GIIRQ), - B(O)E R (o ) 5 A,

(25.2) P =({G),...,i(Ca))A is a prime ideal of A and pN A = (0),

(2.5.3) A/p is essentially of finite type over K for any non-zero prime
p € Spec(A).
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3 Local Domains with Odd Non-zero Primes.

To begin with, we make a minor change of the previous notation.

3.0 Notation. Let Ky, K and K} be as in (2.0.1). Take n + 2 indeter-
minates u, x, z1,..., z, over K, and set

(3.0.1) So = Kolu,z,21,...,2,] and Ny = (v, z, 21, . .., 2,)S0,
(3.0.2) Sk = Sk-1]a1k, - - -, ank) and My = (u, 2, 21,. .., 2,)Sk.

Then, Sy = Kolaip, u,x,21,...,2,) withe =1,... ;nand 1 < h < k. Further,
we set

(3.0.3) S = USk = Kolaw,u,z,21,...,2,) and M = (u,z, 21,...,2,)5,
k

wherez =1,...,n; k =1,2,.... Moreover, let

" (3.0.4) Ro = (So)m, = Kolu,z,21,. .., Za)(uz,z) With ng = (u,z,2) Ry,

(3.0.5) R=Sn=Klu2,...,%]uz:) With n = (u,z,21,...,2,)R.

Then R is a countable regular local ring.

3.1 Numbering. Putting Spec(R)* = Spec(R) \ {zR}, let

for each height one p € Spec(R)*, there is
(3.1.1) P*=<pe S| atleast one element p such that p € p and ;.

p¢zR

Then, P* is a countable set and we may assume that u € P*. Denoting by 5
the image of s € Sin § = S/zS (or in R = R/zR), we may further assume
that P = {p € S |p € P*} satisfies the same condition as in (2.0.7), namely,

(3.1.2) D= {1_) €T for each height one p € Spec(R), there is }

at least one element P such that p € p

Next, we fix a surjective mapping p*: N — P* with p*(z) = p;, a numbering
on P*, which satisfies the following:

(3.1.3) p1 = u, and p; € S;_, for any ¢ > 2.



Moreover, we remark that, if p* is the numbering above, then the induced
mapping 7: N — P, which maps ¢ to 7;, is also an enumeration on P satisfy-
ng:

(3.1.4) P, =7, and p; € Si_y = S;_9/xS;_ for any i > 2.
Hence, p becomes a numbering on P. As in Section 2, we define:
(3.1.5) zio =z and zjp = z; +anq + - + aikqi,j with ¢ = p1- - px.

Then Q) = (z, 214, .., 2.) R is a prime ideal of height n + 1 for any k& > 0.
And the same proof as in Lemma 2.2 shows:

Lemma 3.2. With notation as above, if p* s a numbering on P* which
satisfies (3.1.3), then

(3.2.1) pn € Qr whenever k> h —1,

(3.2.2) (2, Z1ky -+ oy Zmk ) Sk 18 @ prime. ideal, generated by an Sy-regular
SEqUENCE T, Z1k, - ., Zmk for any m (1 < m < n).

3.3 Relations. Taking polynomials in n 4+ 1 variables over K, without

constant term: G1(X,Z), ..., G.(X,Z) € Ko[X, Z1,...,Z,], we set

(3.3.0) Fi(Z) = G(0,2) € Ko[Zy,...,2Z,],

1 :
(331) ﬁjk = 'q‘;Gj(:I?,Zlk, ce ,an) eL= Q(R), 3=1,...,r.
k
Then, by definition
1
ﬂj(k+1) = -k;i'Gj(l“, R1(k4+1)y- -+ ,Zn(k+1))
k+1
= Gz, 21k + @b 51 - -+ Znk + Gnke1) GhE1)-
k+1

Thus

G LG o R
(3.3.2) Bk = qk ,Bg(k+1)+ qk S;k with s;x € It.
k k
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Let B:UR[ﬁjk] CLwithj=1,...,rand k¥ = 1,2,.... Then, the same
k

reasoning as in Lemma 2.4 gives:

Lemma 3.4. Notation being as above, let M = (u,z,z1,...,2,)B. Then M
is @ mazimal ideal of B and B/[M = R/n = K.

With notation as above, forz=1,...,nand j =1,...,r, we set

CZ' :zi+a,-1q1+...+a,-kqf+..-=Zi+z1?;1aikql/§,
gj = Gj(:r?Clv- © 7Cn) € R = [{[[U,Z‘,Zl,.. . 7271” = ]{[[U,CIZ,Cl,. ) '7Cn]]’
f;=Fi(C,...,¢) € RjzR = K[[u, 21, ..., z)] = K[[u, (1, ., Ca]]-

Let A = By C L be a quasi-local domain with its maximal ideal m = M A.
On the other hand, let ¢, ¢ be ring homomorphisms:

3 KolU, X, Z)[Ts, ... T\] = Ko[U, X, zl[%l, . %] with T, o G, /U,
R,

¢: KolU, Z)[T1, ..., T, = Ko[U, Z] 7

%] with T; — F;/U.

Under the circumstances, we get:

Theorem 3.5. Regarding Ko(U,Z] as KolU, X, Z)| X Ko[U, X, Z], suppose
that

(3.5.0)  Ker¢ = Ko[U, Z)@ko,x,z)Ker 6.

Then, (A, m) is a Noetherian local domain with prime element x which sat-
isfies the following conditions:

(35.1) LKz, ¢)/(Gi(z,0), -, Gl ) ¥ RY(g1,-.,9,) = A,
(352)  EK[w, 0/ (Fi(C)s s Q) = (RIeR)M (fry- . o) S Al2A,
(3.5.3) q = (i(z), (), - .,Z(Cn))zzl is a prime ideal and N A = zA,
(3.5.4) A/p is essentially of finite type over K for any non-zero prime

p € Spec(A) \ {zA}.
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4 Brodmann - Rotthaus and Ogoma’s Examples.

In this section, we start with showing that Brodmann-Rotthaus example
(Example 4.1) can be gained as a joint application of Theorem 3.5 and Ex-
ample 1.2. Next, we shall remark that Ogoma’s example (Example 4.2) can
be reproduced in the same manner. The crucial point in our reconstruction
of these examples is to check the condition (3.5.0). Of course, even though
they mentioned implicitly, the same is one of the essential and hard parts of
their original work. Namely, Brodmann-Rotthaus use Hochster’s relations
a,b,c,d,e in Example 1.2 to get (3.5.0). As well, Ogoma wisely calculates
the Kernels by hand. Nevertheless, we should announce that MACULAY [6]

gives us the same result automatically.

Example 4.1 ([2]). Three dimensional analytically irreducible local domain
A, hence unmixed, but has p € Spec(A) such that A/p is not unmixed.

Construction. With notation as in Theorem 3.5, take

Gi(X,Z) = 73 - 72, GoX,Z) = ZoX? — 72,
Gs(X,2) = 232y — X 73, Go(X,Z) = Z2X — Z37,.

Here, MACAULAY gives us (cf. Example 1.2):

Ker¢ = (UTy — Gy, UTy = Gy, UTy — Gy, UTy — G,
XTy — Z5Ty — ZyTy, 23Ty — Z2Ts — ZsTy, Z3To + Z,T5 — X Ty,
73Ty + ZoXTs — Zy Ty, TiTy + Z,T2 — T2),
Ker¢ = (UTy — Gy, UTy — Gy, UTs — G, UTy — Gy,
— Z3Ts — ZoTy, 20Ty — Z3T5 — Z3Ty, 2,12 + Z4 75,
73Ty — 20Ty, TyTy + Z,TE — T2).

Consequently, Ker ¢ = Ko[U, Z]®k,[u,x,z1Ker é. Therefore, by Theorem 3.5,
we get a local domain (A, m) with prime element  which satisfies the fol-
lowing conditions:

(411) A5 K(fu,z,)/(Gi(2,0), ., Gr(=,()) = Kl[u, 2,2y, 5%, y°]l,
(4.1.2) AlzA = K[[u,z,zy,y%,y°) /e K][u, z, 2y, 7, v°)].
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Example 4.2 ([11]). Three dimensional analytically unramified unmixed lo-
cal domain A, which has p € Spec(A) such that A/p is not unmixed.

Construction. Notation being as in Theorem 3.5, take

Gl(X,Z) - Z]Za, GQ(X,Z) = Zl(X+ ZQ),
Gg(X,Z) - ZQZg, G4(X,Z) - ZQ(X + Zz)

Then, by MACAULAY, we get:

Ker¢ = (UTy = Gy, UT; — Gy, UTs — G5, UTy — Gy,
(X + Z)Ty — ZsTy, (X + Zo)Ty — Z4Ts,
(X + Zo)Ts — Z1Ty, (X + Z3)T5 — ZsTy, ThTy — ToT5),
Ker¢ = (UTy — Gy, UTy — Go, UTs — G5, UTy — Gg,
Zy Ty — 23Ty, 2, — 2,13, 2,15 — 2,7y,
Z2Ts — ZsTy, Ty Ty — ToTs).

Consequently, Ker ¢ = Ko[U, Z]®k,v,x 21 Ker . Therefore, by Theorem 3.5,
we get a local domain (A, m) with prime element 2 which enjoys the follow-

ng:
(421) A = ]{“ua z, Cl’ C?a CB]]/(Cla C2) n (C3a z+ C2)a
(4.2.2) A/ﬂ”/1 = K[[“v (15 €25 Cal}/ (Ci Gy CaCay CaCa, 622)
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