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Some Results on Jacobi Forms of
Higher Degree

JAE-HYUN YANG!

Abstract

In this article, the author gives some of his results on Jacobi
forms of higher degree without proof. The proof can be found in the
references [Y1] and [Y2].

1 Jacobi Forms

First of all, we introduce the notations. We denote by Z, R and C
the ring of integers, the field of real numbers and the field of complex
numbers respectively. We denote by Z+ the set of all positive integers.
F®D denotes the set of all k x [ matrices with entries in a commuatative
ring F. For any M € F(*) tM denotes the transpose matrix of M. For
A € F®) g(A) denotes the trace of A. For A € F*" and B ¢ Fkk)
we set B[A] = ‘ABA. E, denotes the identity matrix of degree n. For any

positive integer g € Z*, we let
Hy:={ZeCY9|Z="Z ImZ>0)}

the Siegel upper half plane of degree g Let Sp(g,R) and Sp(g,Z) be the
real symplectic group of degree g and the Siegel modular group of degree

g respectively.

!This work was supported by KOSEF 901-0107-012-2 and TGRC-KOSEF 1991.



37

Let
(1.1) O4(R*) := {M € R®%) | 1 J M = vJ, for somev >0}

be the group of similitudes of degree g, where

—( 0 E
J, = (_ 5 o )
Let M € Oy(R*). It 'MJI,M = vJ,, we write v = v(M). It is easy to see
that O,(R") acts on H, transitively by

M < Z>:=(AZ + B)(CZ + D)™,
A BY
o D) € Oy(R*) and Z € H,.

For | € Z*, we define

where M = (

(1.2) Oy(1) :={M € zCo%) | W j, M = 1J, }.

We observe that M = (g II;) € Oy(1) is equivalent to the conditions
(13)  'AC='CA, '‘BD='DB, ‘AD- ‘CB=IE,

or

(1.4) AB=B'A, C'D=DT, A'D - BC = IE,.

For two positive integers ¢ and h, we consider the H. eisenberg group
HOW = {{ ), 6] | A, p e RB) | e RGP o 4t symmetric }
endowed with the following multiplication law

(A ), 6o [N 1), K] i= [+ Ny 1), 6 4 6+ A= V],
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We define the semidirect product of O,(R*) and H j(qg k)
(1.5) O¥™ =: Oy(R*) x HEY
endowed with the following multiplication law

(1'6) (M’ [(’\’ "‘)? K’]) ' (Mla [(’\’7 V',)’ K’,])
= (MM, (/M) R+ N, u(M) i+ ), (M) 4+ K 4 oM)W~ @),
with M, M’ € O,(R*) and (X, i) := (A, p)M’. Clearly the Jacobi group

G%’h) := Sp(g, R) X Hl(f’h) is a normal subgroup of Og’h). It is easy to see
that O,(R*) acts on H, x C*9) transitively by

(1.7) (M, [(A 1), &) - (Z,W) :=(M < Z > v(W + AZ 4+ pu)(CZ + D)),

where M = (é’ g) € O,(R*), v=v(M), (Z,W) € Hy x Ch9),

Let p be a rational representation of GL(g,C) on a finite dimensional
complex vector space V,. Let M € R be a symmetric half integral
matrix of degree h. We define

(1.8) (floml(M,{(A, ), D](2Z, W)
= exp{—2mvic(M[W + AZ + u)(CZ + D)~'C)}
x exp{2rvip(M(AZ\ + 20W + (x + u\)))}
xa(CZ + D) f(M < Z >, v(W + A2+ u)(CZ + D)),

where v = v(M).

Lemma 1.1. Let g; = (M;, [(\i, i), &:]) € O™ (i = 1,2). For any f €
C>(H, x C(h*g),V;,), we have

(1.9) (FlomlgiDlowanymlga] = florl9192)-



Definition 1.2. Let p and M be as above. Let
HP = { [\ ), 6l € HED |2 p € 209, k€ 209},

A Jacobi form of index M with respect to p is a holomorphic function
f € C®(H, x C"9) V) satisfying the following conditions (A) and (B):

(A) fIP,M[:)‘/] = f for all ’7 € r“; = Sp(g’ Z) X Hég’h).

(B) f has a Fourier expansion of the following form :

fzZw)y= Y >~ C(T,R)exp(2mic(TZ + RW))

720 (9.h)
half —integral ReZts:

with ¢(T, R) # 0 only if( T %R) >0
’ ' IR M=

If ¢ < 2, the condition (B) is superfluous by Koecher principle(see [Z]
Lemma 1.6). We denote by J, m(Ty) the vector space of all Jacobi forms of
index M with respect to p. In the special case V, = C, p(A) = (det A)* (k €
Z, A € GL(g,C)), we write Ji,m(Ty) instead of J, m(T'y) and call k the
weight of a Jacobi form f € Jy m(Ty).

Ziegler([Zi] Theorem 1.8 or [E-Z] Theorem 1.1) proves that the vector space

Jom(Ty) is finite dimensional.

2 Singular Jacobi Forms

In this section, we define the concept of singular Jacobi forms and char-
acterize singular Jacobi forms.
Let M be a symmetric positive definite, half integral matrix of degree

h. A Jacobi form f € J, m(T',) admits a Fourier expansion (see Definition
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1.2 (B))

(2.1) f(Z,W) =Y o(T,R)ex*@D . 2micB¥) 7 c H W e C(hs).
T.,R ;

A Jacobi form f € J, m(T,) is said to be singular if it admits a Fourier

expansion such that the Fourier coefficient ¢(T, R) is zero unless det (4T —

RM-YR) = 0.

Example 2.1. Let M =M be as above. Let S € Z(?%2¥) be a symmetric
positive definite integral matrix of degree 2k and ¢ € Z(**h. We consider

the theta series

(2.2) 19,(;'1(2, W)= % i (SNZH2SNEW) 7 e f - ko),

: , e Z(2k,9)
We assume that 2k < g + rank(M). Then ¥5.(Z, W) is a singular Jacobi
form in Jy m(T,), where M = %thc. We note that if the Fourier coeflicient
(T, R) of 19599) is nonzero, there exists A € Z(®%9) such that

sC

1, (T 1R
E(A,C)S(A,C)—(ltR ik

2

Thus

1
rank (l%;{ j\f) <2k < g + rank(M).

2

Therefore det (4T — RM~1'R) = 0.
The following natural question arises:
Problem: Characterize the singular Jacobi forms.

The author([Y1]) gives some answers for this problem. He characterizes
singular Jacobi forms by the differential equation and the weight of the rep-

resentation p.



Now we define a very important differential operator characterizing sin-

gular Jacobi forms. We let
(2.3) Py:={Y e R4 Y=Y >0}

be the open convex cone in the Euclidean space R%%™. We define the
differential operator operator M, ; xs on P, x R("9) defined by

0 1t/ 0 (0
(2.4) M, ppm:=det(Y) - det (-a—}—; + 3 (W) M (W)) s
where 578)7 = (L_y_l1+25 4 a_y%:) and 3—3‘; = (B%H) .

Definition 2.2. An irreducible finite dimensional representation p of
GL(g,C) is determined uniquely by its highest weight (A\i,---, ;) € 29
with Ay <--- < A;. We denote this representation by p = (A, -+, ;). The
number k(p) := A, is called the weight of p.

Theorem A. Let f € J, m(Ty) be a Jacobi form of index M with respect

to p. Then the following are equivalent:

(1) f is a singular Jacobi forms.

(2) f satisfies the differential equation My, mf = 0.

Theorem B. Let 2M be a symmetric positive definite, unimodular even

matrix of degree h. Assume that p satisfies the following condition
(2.5) p(A) = p(—A) for all A€ GL(g,C).

Then any nonvanishing Jacobi form in J, m(T,) is singular if and only if

2k(p) < g + rank (M). Here k(p) denotes the weight of p.

Conjecture. For general p and M without the above assumptions on

them, a nonvanishing Jacobi form f € J, m(Ty) is singular if and only if
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2k(p) < g + rank (M).

REMARKS. If f € J, m(T,) is a Jacobi form, we may write
W) F@W) =Y fulZ) Pamao(Z,W), ZEHy, WE Cha),
a€N

where { f, : H, — V,|a € N} are uniquely determined holomorphic func-
tions on H,. A singular modular form of type p may be written as a finite
sum of theta series 9s,p(Z)’s with pluriharmonic coefficients (cf. [F]). The

following problem is quite interesting.

Problem. Describe the functions { f.la € N} explicitely given by (*)

when f € J, m(Ty) is @ singular Jacobi form.

'3 The Siegel-Jacobi Operators

In this section, we investigate the Siegel-Jacobi operator and the action

of Hecke operator on Jacobi forms. The Siegel-Jacobi operator
Uy, Jpm(Ty) — J . m(Tr)

is defined by

(e £)(Z,W) i= Jim f (( o B ) LW, 0>) . £ e Tpm(T)

t—00

ZeH, We ¢ and J, m(T,) denotes the space of all Jacobi forms of
index M with respect to an irreducible rational finite dimesional represen-
tation p of GL(g,C). We note that the above limit always exists because
a Jacobi form f admits a Fourier expansion converging uniformly on any

set of the form

(2,W)e Hyx C™) | ImZ2Yo >0, We K c C™9) compact}.
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Here the representation p(" of GL(r,C) is defined as follows. Let V) be
the subspace of V, generated by {f(Z, W)|f€ J,m(T,), (Z,W)EH,xC*9 },

Then Vp(') 1s invariant under

{(g E?_r) g€ GL(T,C)}.

Then we have a rational representation p(” of GL(r,C) on V") defined by

r 0 .
pM (g :=p ((g qu)) v, g€ GL(r,C), ve Vp( ),

In the Siegel case, we have the so-called Siegel ®—operator
®=®,9-1 : [[y, k] — [[g-1, k]

defined by

@n@=tims( 5 5) rem, zem,

where [I',, k] denotes the vector space of all Siegel modular forms on H, of

weight k.

Here [I'y, k] denotes the vector space of all Siegel modular forms on H, of
weight k.

The following properties of ® are known :
(S1) If k > 2¢ and k is even, ® is surjective.
(S2) If 2k < g, then ® is injective.

(S3) If 2k + 1 < g, then ® is bijective.

H. Maass([M1]) proved the statement (1) using Poincaré series. E. Freitag
([F2]) proved the statements (2) and (3) using the theory of singular mod-

ular forms.
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The author([Y2]) proves the following theorems:

Theorem C. Let 2M € Z(®H be a positive definite, unimodular sym-

metric even matrix of degree h. We assume that p satisfies the condition

(3.1):
(3.1) p(A) = p(—A4) for all A€ GL(yg,C).

We also assume that p satisfies the condition 2k(p) < g + rank (M). Then
the Siegel-Jacobi operator

Vg1 Jpm(Ty) — Jp(g—l),M(Py—l)

is injective. Here k(p) denotes the weight of p.

Theorem D. Let 2M € Z(*" be as above in Theorem A. Assume that
p satisfies the condition (3.1) and 2k(p) +1 < g + rank (M). Then The

Siegel-Jacobi operator

l];’g,y—l : Jp,M(Fg) - Jp(g—l),M(Fg—l)

is an isomorphism.

Theorem E. Let 2M € Z*4) be as above in Theorem A. Assume that
2k > 49 + rank (M) and k = 0(mod 2). Then the Siegel-Jacobi operator

Wyg-1: Jem(Ty) — ']k.,M(Fg-l)

is surjecitve.

The proof of the above theorems is based on the important Shimura cor-
respondence, the theory of singular modular forms and the result of H.

Maass.
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We recall
Oy() :={ M € Z¢ | '"MJ M =1J, }.

Oy(1) is decomposed into finitely many double cosets mod T', i.e.,

(3.2) O,(1) = UL Tyg;T, (disjoint union).

We define

(3.3) T(l):=>_ T,9;,Ty € HY, the Hecke algebra.
j=1

Let M € O,(l). For a Jacobi form f € J, m(T,), we define
—g(gt1)
34)  flom(T,MT,) = =557 57 £, (M3, [(0,0),0])],
where I') MT'y = UP"T', M; (finite disjoint union) and k(p) denotes the weight
of p. ~
Theorem F. Let M € Oy(1) and f € J, m(Ty). Then

f‘p.M(PyMFy) € JPJM(FQ)‘

For a prime p, we define
(3.5) Oyp = UZOOQ(PI)'

Let £,, be the C-module generated by all left cosets r'yM, M € Oy, and
H,, the C-module generated by all double cosets FyMTy, M € O,,. Then

H,,p s a commutative associative algebra. Since j(H,,) C L, ,, we have a

monomorphism 7 : H, , — L, ..
P J g,p g,p

In a left coset I'yM, M € O, ,, we can choose a represntative M of the form

_ (A B\ pn_ & tnn _ t
(3.6) M_(O D), AD = p™E,, 'BD = 'DB,
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on  as(p 3) o= (4 B) 2= 2)

where a, (1, B2, § € Z971. Then we have

(38) M = (/(l) g*) € Og-1,p-

For any integer r € Z, we define

1

(3.9) (T, M) = —

T, M".

If T,MTy = UL Ty M; (disjoint union), M, M; € Ogy,, then we define in

a natural way

._ 1 & .
(3.10) (CMT,)" = = 3T, M.
1=1

We extend the above map (3.9) linearly on H,, and then we obtain an

algebra homomorphism

(3.11) Hop — 7:(y—l,za
T—T".
It is known that the above map is a surjective map([ZH] Theorem 2).

Theorem G. Suppose we have

(a) a rational finite dimensional representation
p- GL(g,C) - GL(VP)’
(b) a rational finite dimensional representation

po:GL(g—1,C) — GL(V,,)



(c) a linear map R : V, — V,,, satisfying the following properties (1) and
(2):
(1) Rop ([1) 31) = po(A)o R forall Ae GL(g —1,C).

0
2) Rop(f o )=a'R f z.
(2) Rop 0 E, . a or some a €

Then for any f € Jp,M(Fg) and T € H,p, we have
(Ro¥yu-1)(fIT) = R(¥y,e-15)IT7,
where T* is an element in H,_;, defined by (3.11).

Corollary. The Siegel-Jacobi operator is compatible with the action of

T +— T*. Precisely, we have the following commutative diagram:
Jp,M(Pg) wig—ll Jp(9'1),JV(Pg—1)
T [T
‘ Jp,N(Fg) %’—g—)l Jp(y"l),N’(Fg-—l) .
Here N is a certain symmetric half integral semipositive matrix of degree
h.

Definition 3.2. Let f € J, m(T,) be a Jacobi form. Then we have a
Fourier expansion given by (B) in Definition 1.2. A Jacobi form f is called

1
a cusp formif ¢(T, R) # 0 implies (l?R 3‘?) > 0. We denote by J:fﬂ(lf‘g)
2

the vector space of all cusp forms in J, m(T).
Theorem H. Let 1 < r < g. Assume k(p) > g +r + rank (M) + 1 and
k(p) even. Then

J;:_’}\?(FT) C \I'g,r(Jp,M(Fg))-

47
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4 Final Remarks

In this section we give some open problems which should be investigated

and give some remarks.

Let .
GE™ = Sp(g, R) x HZY

be the Jacobi group of degree g. Let FgJ = Sp(g,2) X Hég’h) be the dis-
crete subgroup of G}?h). For the case ¢ = h = 1, the spectral theory for
LATI\G%") had been investigated almost completely in [B1] and [B-B].
For general g and h, the spectral theory for L2(I‘g \Gg’h) ) is not known yet.
Problem 1. Decompose the Hilbert space L*(T'J \G%’h)) into irreducible
components of the Jacobi group G}é’”‘) for general g and h. In particular,

classify all the irreducible unitary or admissible representations of the Ja-

cobi group G%’h) and establish the Duality Theorem for the Jacobi group
GYM.

Problem 2. Give the dimension formulae for the vector space J, m(Ty)

of Jacobi forms.

Problem 3. Construct Jacobi forms. Concerning this problem, discuss

the vanishing theorem on the vector space J, m(T',) of Jacobi forms.

Problem 4. Develope the theory of L-functions for the Jacobi group G](;g’h).
There are several attempts to establish L-functions in the context of the

Jacobi group by Japanese mathematicians A. Murase and T. Sugano using

so-called the Whittaker-Shintani functions.

Problem 5. Give applications of Jacobi forms, for example in algebraic

geometry and physics. In fact, Jacobi forms have found some applications



in proving non-vanishing theorems for L-functions of modular forms [BFH],
in the theory of Heeger points [GKS], in the theory of elliptic genera [Za]
and in the string theory [C].

By a certain lifting, we may regard Jacobi forms as smooth functions on
the Jacobi group Gg‘g’h) which are invariant under the action of the discrete
subgroup I’ gJ and satisfy the differential equations and a certain growth

condition.

Problem 6. Develope the theory of automorphic forms on the Jacobi
group G%”h). We observe that the Jacobi group is not reductive.

Finally for historical remarks on Jacobi forms, we refer to [B2)].
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