Some Results on Jacobi Forms of Higher Degree

JAE-HYUN YANG¹

Abstract

In this article, the author gives some of his results on Jacobi forms of higher degree without proof. The proof can be found in the references [Y1] and [Y2].

1 Jacobi Forms

First of all, we introduce the notations. We denote by Z, R and C the ring of integers, the field of real numbers and the field of complex numbers respectively. We denote by Z^+ the set of all positive integers. $F^{(k,l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F. For any $M \in F^{(k,l)}$, tM denotes the transpose matrix of M. For $A \in F^{(k,l)}$, $\sigma(A)$ denotes the trace of A. For $A \in F^{(k,l)}$ and $B \in F^{(k,k)}$, we set $B[A] = {}^tABA$. E_n denotes the identity matrix of degree n. For any positive integer $g \in Z^+$, we let

$$H_g := \{ Z \in C^{(g,g)} \mid Z = {}^tZ, Im Z > 0 \}$$

the Siegel upper half plane of degree g. Let Sp(g,R) and Sp(g,Z) be the real symplectic group of degree g and the Siegel modular group of degree g respectively.

¹This work was supported by KOSEF 901-0107-012-2 and TGRC-KOSEF 1991.

Let

(1.1)
$$O_g(R^+) := \{ M \in R^{(2g,2g)} \mid {}^t\!M J_g M = \nu J_g \text{ for some } \nu > 0 \}$$

be the group of similitudes of degree g, where

$$J_g := \left(egin{array}{cc} 0 & E_g \ -E_g & 0 \end{array}
ight).$$

Let $M \in O_g(\mathbb{R}^+)$. If ${}^t M J_g M = \nu J_g$, we write $\nu = \nu(M)$. It is easy to see that $O_g(\mathbb{R}^+)$ acts on H_g transitively by

$$M < Z > := (AZ + B)(CZ + D)^{-1},$$

where $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in O_g(R^+)$ and $Z \in H_g$.

For $l \in \mathbb{Z}^+$, we define

$$(1.2) O_g(l) := \{ M \in Z^{(2g,2g)} \mid {}^t M J_g M = l J_g \}.$$

We observe that $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in O_g(l)$ is equivalent to the conditions

$${}^{t}AC = {}^{t}CA, \quad {}^{t}BD = {}^{t}DB, \quad {}^{t}AD - {}^{t}CB = lE_{q}$$

or

(1.4)
$$A^{t}B = B^{t}A, \quad C^{t}D = D^{t}C, \quad A^{t}D - B^{t}C = lE_{g}.$$

For two positive integers g and h, we consider the Heisenberg group

$$H_{R}^{(g,h)}:=\{\,[(\lambda,\mu),\kappa]\mid \lambda,\,\mu\in R^{(h,g)},\,\,\kappa\in R^{(h,h)},\,\,\kappa+\mu^{\,t}\lambda\,\,symmetric\,\}$$

endowed with the following multiplication law

$$[(\lambda,\mu),\kappa] \circ [(\lambda',\mu'),\kappa'] := [(\lambda+\lambda',\mu+\mu'),\kappa+\kappa'+\lambda^t\mu'-\mu^t\lambda'].$$

We define the semidirect product of $O_q(R^+)$ and $H_R^{(g,h)}$

(1.5)
$$O_R^{(g,h)} =: O_g(R^+) \ltimes H_R^{(g,h)}$$

endowed with the following multiplication law

$$(1.6) \qquad (M, [(\lambda, \mu), \kappa]) \cdot (M', [(\lambda', \mu'), \kappa'])$$

$$:= (MM', [(\nu(M')^{-1}\tilde{\lambda} + \lambda', \nu(M')^{-1}\tilde{\mu} + \mu'), \nu(M')^{-1}\kappa + \kappa' + \nu(M')^{-1}(\tilde{\lambda}^{t}\mu' - \tilde{\mu}^{t}\lambda')]),$$

with $M, M' \in O_g(R^+)$ and $(\tilde{\lambda}, \tilde{\mu}) := (\lambda, \mu)M'$. Clearly the Jacobi group $G_R^{(g,h)} := Sp(g,R) \ltimes H_R^{(g,h)}$ is a normal subgroup of $O_R^{(g,h)}$. It is easy to see that $O_g(R^+)$ acts on $H_g \times C^{(h,g)}$ transitively by

$$(1.7) \ (M, [(\lambda, \mu), \kappa]) \cdot (Z, W) := (M < Z >, \nu(W + \lambda Z + \mu)(CZ + D)^{-1}),$$

where
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in O_g(R^+), \ \nu = \nu(M), \ (Z, W) \in H_g \times C^{(h,g)}.$$

Let ρ be a rational representation of GL(g, C) on a finite dimensional complex vector space V_{ρ} . Let $\mathcal{M} \in R^{(h,h)}$ be a symmetric half integral matrix of degree h. We define

$$(1.8) \qquad (f|_{\rho,\mathcal{M}}[(M,[(\lambda,\mu),\kappa])])(Z,W)$$

$$:= \exp\{-2\pi\nu i\sigma(\mathcal{M}[W+\lambda Z+\mu](CZ+D)^{-1}C)\}$$

$$\times \exp\{2\pi\nu i\rho(\mathcal{M}(\lambda Z^t\lambda+2\lambda^tW+(\kappa+\mu^t\lambda)))\}$$

$$\times \sigma(CZ+D)^{-1}f(M< Z>,\nu(W+\lambda Z+\mu)(CZ+D)^{-1}),$$

where $\nu = \nu(M)$.

Lemma 1.1. Let $g_i = (M_i, [(\lambda_i, \mu_i), \kappa_i]) \in O_R^{(g,h)}$ (i = 1, 2). For any $f \in C^{\infty}(H_g \times C^{(h,g)}, V_{\rho})$, we have

$$(1.9) (f|_{\rho,\mathcal{M}}[g_1])|_{\rho,\nu(M_1)\mathcal{M}}[g_2] = f|_{\rho,\mathcal{M}}[g_1g_2].$$

Definition 1.2. Let ρ and \mathcal{M} be as above. Let

$$H_Z^{(g,h)} := \{ [(\lambda, \mu), \kappa] \in H_R^{(g,h)} \, | \, \lambda, \mu \in Z^{(h,g)}, \, \, \kappa \in Z^{(h,h)} \, \}.$$

A Jacobi form of index \mathcal{M} with respect to ρ is a holomorphic function $f \in C^{\infty}(H_g \times C^{(h,g)}, V_{\rho})$ satisfying the following conditions (A) and (B):

- (A) $f|_{\rho,\mathcal{M}}[\tilde{\gamma}] = f$ for all $\tilde{\gamma} \in \Gamma_g^J := Sp(g,Z) \ltimes H_Z^{(g,h)}$.
- (B) f has a Fourier expansion of the following form:

$$f(Z,W) = \sum_{T \geq 0 \atop \text{half-integral}} \sum_{R \in Z^{(g,h)}} C(T,R) \exp(2\pi i \sigma (TZ + RW))$$

with $c(T,R) \neq 0$ only if $\begin{pmatrix} T & \frac{1}{2}R \\ \frac{1}{2}^{t}R & \mathcal{M} \end{pmatrix} \geq 0$.

If $g \leq 2$, the condition (B) is superfluous by Koecher principle(see [Z] Lemma 1.6). We denote by $J_{\rho,\mathcal{M}}(\Gamma_g)$ the vector space of all Jacobi forms of index \mathcal{M} with respect to ρ . In the special case $V_{\rho} = C$, $\rho(A) = (\det A)^k$ ($k \in \mathbb{Z}$, $A \in GL(g,C)$), we write $J_{k,\mathcal{M}}(\Gamma_g)$ instead of $J_{\rho,\mathcal{M}}(\Gamma_g)$ and call k the weight of a Jacobi form $f \in J_{k,\mathcal{M}}(\Gamma_g)$.

Ziegler([Zi] Theorem 1.8 or [E-Z] Theorem 1.1) proves that the vector space $J_{\rho,\mathcal{M}}(\Gamma_g)$ is finite dimensional.

2 Singular Jacobi Forms

In this section, we define the concept of singular Jacobi forms and characterize singular Jacobi forms.

Let \mathcal{M} be a symmetric positive definite, half integral matrix of degree h. A Jacobi form $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ admits a Fourier expansion (see Definition

1.2(B)

$$(2.1) \quad f(Z,W) = \sum_{T,R} c(T,R) e^{2\pi i \sigma(TZ)} \cdot e^{2\pi i \sigma(RW)}, \quad Z \in H_g, \quad W \in C^{(h,g)}.$$

A Jacobi form $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ is said to be *singular* if it admits a Fourier expansion such that the Fourier coefficient c(T,R) is zero unless $det(4T - R\mathcal{M}^{-1}R) = 0$.

Example 2.1. Let $\mathcal{M} = {}^t\mathcal{M}$ be as above. Let $S \in Z^{(2k,2k)}$ be a symmetric positive definite integral matrix of degree 2k and $c \in Z^{(2k,h)}$. We consider the theta series

(2.2)
$$\vartheta_{S,c}^{(g)}(Z,W) := \sum_{\lambda \in Z^{(2k,g)}} e^{\pi i \sigma(S[\lambda]Z + 2S\lambda^{\ell}(cW))}, \quad Z \in H_g, \quad W^{(h,g)}.$$

We assume that $2k < g + rank(\mathcal{M})$. Then $\vartheta_{S,c}(Z,W)$ is a singular Jacobi form in $J_{k,\mathcal{M}}(\Gamma_g)$, where $\mathcal{M} = \frac{1}{2}{}^t c \mathcal{M} c$. We note that if the Fourier coefficient c(T,R) of $\vartheta_{S,c}^{(g)}$ is nonzero, there exists $\lambda \in Z^{(2k,g)}$ such that

$$\frac{1}{2}{}^{t}(\lambda,c)S(\lambda,c) = \begin{pmatrix} T & \frac{1}{2}R \\ \frac{1}{2}{}^{t}R & \mathcal{M} \end{pmatrix}.$$

Thus

$$rank \, \left(egin{array}{cc} T & rac{1}{2}R \ rac{1}{2}R & \mathcal{M} \end{array}
ight) \leq 2k < g + rank(\mathcal{M}).$$

Therefore $det(4T - R\mathcal{M}^{-1}R) = 0$.

The following natural question arises:

Problem: Characterize the singular Jacobi forms.

The author([Y1]) gives some answers for this problem. He characterizes singular Jacobi forms by the differential equation and the weight of the representation ρ .

Now we define a very important differential operator characterizing singular Jacobi forms. We let

$$(2.3) \mathcal{P}_{q} := \{ Y \in R^{(g,g)} | Y = {}^{t}Y > 0 \}$$

be the open convex cone in the Euclidean space $R^{\frac{g(g+1)}{2}}$. We define the differential operator operator $M_{g,h,\mathcal{M}}$ on $\mathcal{P}_g \times R^{(h,g)}$ defined by

$$(2.4) M_{g,h,\mathcal{M}} := det(Y) \cdot det\left(\frac{\partial}{\partial Y} + \frac{1}{8\pi}^t \left(\frac{\partial}{\partial V}\right) \mathcal{M}^{-1}\left(\frac{\partial}{\partial V}\right)\right),$$

where
$$\frac{\partial}{\partial Y} = \left(\frac{(1+\delta_{\mu\nu})}{2} \frac{\partial}{\partial y_{\mu\nu}}\right)$$
 and $\frac{\partial}{\partial V} = \left(\frac{\partial}{\partial v_{kl}}\right)$.

Definition 2.2. An irreducible finite dimensional representation ρ of GL(g,C) is determined uniquely by its highest weight $(\lambda_1,\dots,\lambda_g)\in Z^g$ with $\lambda_1\leq\dots\leq\lambda_g$. We denote this representation by $\rho=(\lambda_1,\dots,\lambda_g)$. The number $k(\rho):=\lambda_g$ is called the *weight* of ρ .

Theorem A. Let $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ be a Jacobi form of index \mathcal{M} with respect to ρ . Then the following are equivalent:

- (1) f is a singular Jacobi forms.
- (2) f satisfies the differential equation $M_{g,h,\mathcal{M}}f=0$.

Theorem B. Let $2\mathcal{M}$ be a symmetric positive definite, unimodular even matrix of degree h. Assume that ρ satisfies the following condition

(2.5)
$$\rho(A) = \rho(-A) \quad \text{for all } A \in GL(g, C).$$

Then any nonvanishing Jacobi form in $J_{\rho,\mathcal{M}}(\Gamma_g)$ is singular if and only if $2k(\rho) < g + rank(\mathcal{M})$. Here $k(\rho)$ denotes the weight of ρ .

Conjecture. For general ρ and \mathcal{M} without the above assumptions on them, a nonvanishing Jacobi form $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ is singular if and only if

 $2k(\rho) < g + rank(\mathcal{M}).$

REMARKS. If $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ is a Jacobi form, we may write

$$(*) \qquad f(Z,W) = \sum_{a \in \mathcal{N}} f_a(Z) \cdot \vartheta_{2\mathcal{M},a,0}(Z,W), \quad Z \in H_g, \quad W \in C^{(h,g)},$$

where $\{f_a: H_g \longrightarrow V_\rho \mid a \in \mathcal{N}\}$ are uniquely determined holomorphic functions on H_g . A singular modular form of type ρ may be written as a finite sum of theta series $\vartheta_{S,P}(Z)$'s with pluriharmonic coefficients (cf. [F]). The following problem is quite interesting.

Problem. Describe the functions $\{f_a \mid a \in \mathcal{N} \}$ explicitely given by (*) when $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ is a *singular* Jacobi form.

3 The Siegel-Jacobi Operators

In this section, we investigate the Siegel-Jacobi operator and the action of Hecke operator on Jacobi forms. The Siegel-Jacobi operator

$$\Psi_{g,r}: J_{
ho,\mathcal{M}}(\Gamma_g) \longmapsto J_{
ho^{(r)},\mathcal{M}}(\Gamma_r)$$

is defined by

$$(\Psi_{g,r}f)(Z,W) := \lim_{t o \infty} f\left(\left(egin{array}{cc} Z & 0 \ 0 & itE_{g-r} \end{array}
ight), \, (W,0)
ight), \;\; f \in J_{
ho,\mathcal{M}}(\Gamma_g),$$

 $Z \in H_r$, $W \in C^{(h,r)}$ and $J_{\rho,\mathcal{M}}(\Gamma_g)$ denotes the space of all Jacobi forms of index \mathcal{M} with respect to an irreducible rational finite dimesional representation ρ of GL(g,C). We note that the above limit always exists because a Jacobi form f admits a Fourier expansion converging uniformly on any set of the form

$$\{(Z,W) \in H_g \times C^{(h,g)} \mid Im \ Z \ge Y_0 > 0, \ W \in K \subset C^{(h,g)} \ compact \}.$$

Here the representation $\rho^{(r)}$ of GL(r,C) is defined as follows. Let $V_{\rho}^{(r)}$ be the subspace of V_{ρ} generated by $\{f(Z,W) \mid f \in J_{\rho,\mathcal{M}}(\Gamma_{g}), (Z,W) \in H_{g} \times C^{(h,g)}\}$. Then $V_{\rho}^{(r)}$ is invariant under

$$\left\{ \begin{pmatrix} g & 0 \\ 0 & E_{g-r} \end{pmatrix} \, : \, g \in GL(r,C) \right\}.$$

Then we have a rational representation $\rho^{(r)}$ of GL(r,C) on $V_{\rho}^{(r)}$ defined by

$$\rho^{(r)}(g)v := \rho\left(\begin{pmatrix} g & 0 \\ 0 & E_{g-r} \end{pmatrix}\right)v, \quad g \in GL(r,C), \quad v \in V_{\rho}^{(r)}.$$

In the Siegel case, we have the so-called Siegel Φ -operator

$$\Phi = \Phi_{g,g-1} \, : \, [\Gamma_g,k] \longrightarrow [\Gamma_{g-1},k]$$

defined by

$$(\Phi f)(Z) := \lim_{t \to \infty} f \left(egin{array}{cc} Z & 0 \\ 0 & it \end{array}
ight), \quad f \in [\Gamma_g, k], \quad Z \in H_{g-1},$$

where $[\Gamma_g, k]$ denotes the vector space of all Siegel modular forms on H_g of weight k.

Here $[\Gamma_g, k]$ denotes the vector space of all Siegel modular forms on H_g of weight k.

The following properties of Φ are known:

- (S1) If k > 2g and k is even, Φ is surjective.
- (S2) If 2k < g, then Φ is injective.
- (S3) If 2k + 1 < g, then Φ is bijective.

H. Maass([M1]) proved the statement (1) using Poincaré series. E. Freitag ([F2]) proved the statements (2) and (3) using the theory of singular modular forms.

The author([Y2]) proves the following theorems:

Theorem C. Let $2\mathcal{M} \in Z^{(h,h)}$ be a positive definite, unimodular symmetric even matrix of degree h. We assume that ρ satisfies the condition (3.1):

(3.1)
$$\rho(A) = \rho(-A) \quad \text{for all } A \in GL(g, C).$$

We also assume that ρ satisfies the condition $2k(\rho) < g + rank(\mathcal{M})$. Then the Siegel-Jacobi operator

$$\Psi_{g,q-1}: J_{\rho,\mathcal{M}}(\Gamma_q) \longrightarrow J_{\rho(g-1),\mathcal{M}}(\Gamma_{q-1})$$

is injective. Here $k(\rho)$ denotes the weight of ρ .

Theorem D. Let $2\mathcal{M} \in Z^{(h,h)}$ be as above in Theorem A. Assume that ρ satisfies the condition (3.1) and $2k(\rho) + 1 < g + rank(\mathcal{M})$. Then The Siegel-Jacobi operator

$$\Psi_{g,g-1}:J_{
ho,\mathcal{M}}(\Gamma_g)\longrightarrow J_{
ho^{(g-1)},\mathcal{M}}(\Gamma_{g-1})$$

is an isomorphism.

Theorem E. Let $2\mathcal{M} \in Z^{(h,h)}$ be as above in Theorem A. Assume that $2k > 4g + rank(\mathcal{M})$ and $k \equiv 0 \pmod{2}$. Then the Siegel-Jacobi operator

$$\Psi_{g,g-1}: J_{k,\mathcal{M}}(\Gamma_g) \longrightarrow J_{k,\mathcal{M}}(\Gamma_{g-1})$$

is surjective.

The proof of the above theorems is based on the important Shimura correspondence, the theory of singular modular forms and the result of H. Maass.

We recall

$$O_g(l) := \{ M \in Z^{(2g,2g)} \mid {}^t M J_g M = l J_g \}.$$

 $O_g(l)$ is decomposed into finitely many double cosets $mod \Gamma_g$, i.e.,

(3.2)
$$O_g(l) = \bigcup_{i=1}^m \Gamma_g g_i \Gamma_g \quad (disjoint \ union).$$

We define

(3.3)
$$T(l) := \sum_{j=1}^{m} \Gamma_{g} g_{j} \Gamma_{g} \in \mathcal{H}^{(g)}, \ \ the \ Hecke \ algebra.$$

Let $M \in O_g(l)$. For a Jacobi form $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$, we define

(3.4)
$$f|_{\rho,\mathcal{M}}(\Gamma_g M \Gamma_g) := l^{gk(\rho) - \frac{g(g+1)}{2}} \sum_i f|_{\rho,\mathcal{M}}[(M_i, [(0,0), 0])],$$

where $\Gamma_g M \Gamma_g = \bigcup_i^m \Gamma_g M_i$ (finite disjoint union) and $k(\rho)$ denotes the weight of ρ .

Theorem F. Let $M \in O_g(l)$ and $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$. Then

$$f|_{\rho,\mathcal{M}}(\Gamma_q M \Gamma_q) \in J_{\rho,l\mathcal{M}}(\Gamma_q).$$

For a prime p, we define

$$(3.5) O_{g,p} := \cup_{l=0}^{\infty} O_g(p^l).$$

Let $\check{\mathcal{L}}_{g,p}$ be the C-module generated by all left cosets $\Gamma_g M$, $M \in O_{g,p}$ and $\check{\mathcal{H}}_{g,p}$ the C-module generated by all double cosets $\Gamma_g M \Gamma_g$, $M \in O_{g,p}$. Then $\check{\mathcal{H}}_{g,p}$ is a commutative associative algebra. Since $j(\check{\mathcal{H}}_{g,p}) \subset \check{\mathcal{L}}_{g,p}$, we have a monomorphism $j: \check{\mathcal{H}}_{g,p} \longrightarrow \check{\mathcal{L}}_{g,p}$.

In a left coset $\Gamma_g M,\, M\in O_{g,p}$, we can choose a representative M of the form

$$(3.6) M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}, \quad {}^t\!AD = p^{k_0}E_g, \quad {}^t\!BD = {}^t\!DB,$$

$$(3.7) A = \begin{pmatrix} a & \alpha \\ 0 & A^* \end{pmatrix}, B = \begin{pmatrix} b & {}^t\beta_1 \\ \beta_2 & B^* \end{pmatrix}, D = \begin{pmatrix} d & 0 \\ \delta & D^* \end{pmatrix},$$

where $\alpha, \ \beta_1, \ \beta_2, \ \delta \in Z^{g-1}$. Then we have

(3.8)
$$M^* := \begin{pmatrix} A^* & B^* \\ 0 & D^* \end{pmatrix} \in O_{g-1, p}.$$

For any integer $r \in \mathbb{Z}$, we define

$$(3.9) \qquad (\Gamma_g M)^* := \frac{1}{d^r} \Gamma_{g-1} M^*.$$

If $\Gamma_g M \Gamma_g = \bigcup_{j=1}^m \Gamma_g M_j$ (disjoint union), $M, M_j \in O_{g,p}$, then we define in a natural way

(3.10)
$$(\Gamma_g M \Gamma_g)^* = \frac{1}{d^r} \sum_{j=1}^m \Gamma_{g-1} M_j^*.$$

We extend the above map (3.9) linearly on $\check{\mathcal{H}}_{g,p}$ and then we obtain an algebra homomorphism

It is known that the above map is a surjective map([ZH] Theorem 2).

Theorem G. Suppose we have

(a) a rational finite dimensional representation

$$\rho: GL(g,C) \longrightarrow GL(V_{\rho}),$$

(b) a rational finite dimensional representation

$$\rho_0: GL(g-1,C) \longrightarrow GL(V_{\rho_0})$$

(c) a linear map $R: V_{\rho} \longrightarrow V_{\rho_0}$ satisfying the following properties (1) and (2):

(1)
$$R \circ \rho \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix} = \rho_0(A) \circ R$$
 for all $A \in GL(g-1, C)$.

(2)
$$R \circ \rho \begin{pmatrix} a & 0 \\ 0 & E_{q-1} \end{pmatrix} = a^r R$$
 for some $a \in Z$.

Then for any $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ and $T \in \check{\mathcal{H}}_{g,p}$, we have

$$(R \circ \Psi_{q,q-1})(f|T) = R(\Psi_{q,q-1}f)|T^*,$$

where T^* is an element in $\check{\mathcal{H}}_{g-1,p}$ defined by (3.11).

Corollary. The Siegel-Jacobi operator is compatible with the action of $T \mapsto T^*$. Precisely, we have the following commutative diagram:

$$\begin{array}{ccc} J_{\rho,\mathcal{M}}(\Gamma_g) & \stackrel{\psi_{g,g-1}}{\longrightarrow} & J_{\rho^{(g-1)},\mathcal{N}}(\Gamma_{g-1}) \\ \downarrow T & & \downarrow T^* \\ J_{\rho,\mathcal{N}}(\Gamma_g) & \stackrel{\psi_{g,g-1}}{\longrightarrow} & J_{\rho^{(g-1)},\mathcal{N}}(\Gamma_{g-1}) \end{array}.$$

Here \mathcal{N} is a certain symmetric half integral semipositive matrix of degree h.

Definition 3.2. Let $f \in J_{\rho,\mathcal{M}}(\Gamma_g)$ be a Jacobi form. Then we have a Fourier expansion given by (B) in Definition 1.2. A Jacobi form f is called a $cusp\ form\ if\ c(T,R) \neq 0$ implies $\left(\begin{array}{cc} T & \frac{1}{2}R \\ \frac{1}{2}{}^tR & \mathcal{M} \end{array}\right) > 0$. We denote by $J_{\rho,\mathcal{M}}^{cusp}(\Gamma_g)$ the vector space of all cusp forms in $J_{\rho,\mathcal{M}}(\Gamma_g)$.

Theorem H. Let $1 \le r \le g$. Assume $k(\rho) > g + r + rank(\mathcal{M}) + 1$ and $k(\rho)$ even. Then

$$J_{\rho,\mathcal{M}}^{cusp}(\Gamma_r) \subset \Psi_{g,r}(J_{\rho,\mathcal{M}}(\Gamma_g)).$$

4 Final Remarks

In this section we give some open problems which should be investigated and give some remarks.

Let

$$G_R^{(g,h)} := Sp(g,R) \ltimes H_R^{(g,h)}$$

be the Jacobi group of degree g. Let $\Gamma_g^J := Sp(g,Z) \ltimes H_Z^{(g,h)}$ be the discrete subgroup of $G_R^{(g,h)}$. For the case g = h = 1, the spectral theory for $L^2(\Gamma_1^J \setminus G_R^{(1,1)})$ had been investigated almost completely in [B1] and [B-B]. For general g and h, the spectral theory for $L^2(\Gamma_g^J \setminus G_R^{(g,h)})$ is not known yet.

Problem 1. Decompose the Hilbert space $L^2(\Gamma_g^J \backslash G_R^{(g,h)})$ into irreducible components of the Jacobi group $G_R^{(g,h)}$ for general g and h. In particular, classify all the irreducible unitary or admissible representations of the Jacobi group $G_R^{(g,h)}$ and establish the *Duality Theorem* for the Jacobi group $G_R^{(g,h)}$.

Problem 2. Give the dimension formulae for the vector space $J_{\rho,\mathcal{M}}(\Gamma_g)$ of Jacobi forms.

Problem 3. Construct Jacobi forms. Concerning this problem, discuss the vanishing theorem on the vector space $J_{\rho,\mathcal{M}}(\Gamma_g)$ of Jacobi forms.

Problem 4. Develope the theory of L-functions for the Jacobi group $G_R^{(g,h)}$. There are several attempts to establish L-functions in the context of the Jacobi group by Japanese mathematicians A. Murase and T. Sugano using so-called the Whittaker-Shintani functions.

Problem 5. Give applications of Jacobi forms, for example in algebraic geometry and physics. In fact, Jacobi forms have found some applications

in proving non-vanishing theorems for L-functions of modular forms [BFH], in the theory of Heeger points [GKS], in the theory of elliptic genera [Za] and in the string theory [C].

By a certain lifting, we may regard Jacobi forms as smooth functions on the Jacobi group $G_R^{(g,h)}$ which are invariant under the action of the discrete subgroup Γ_g^J and satisfy the differential equations and a certain growth condition.

Problem 6. Develope the theory of automorphic forms on the Jacobi group $G_R^{(g,h)}$. We observe that the Jacobi group is not reductive.

Finally for historical remarks on Jacobi forms, we refer to [B2].

References

- [B1] R. Berndt, The Continuous Part of $L^2(\Gamma^J \setminus G^J)$ for the Jacobi Group G^J , Abh. Math. Sem. Univ. Hamburg **60**, 225-248 (1990).
- [B2] R. Berndt, On Automorphic Forms for the Jacobi Group, Hamburg Univ., Heft 17 (1991).
- [B-B] R. Berndt and S. Boecherer, Jacobi Forms and Discrete Series Representations of the Jacobi Group, Math. Z. 204, 13-44 (1990).
- [BFH] D. Bump, S. Friedberg and J. Hoffstein, Nonvanishing Theorems for L-functions of Modular Forms and their Derivatives.
- [C] J. L. Cardy, Operator Content of Two-dimensional Conformally Invariant Theories, Nuclear Physics B 270, 186-204 (1986).

- [E-Z] Eichler, M. and Zagier, D., The Theory of Jacobi forms, Progress in math., 55, Birkhäuser, Boston-Basel-Stuttgart (1985)
- [F] E. Freitag, Thetareihen mit harmonischen Koeffizienten zur Siegelschen Modulgruppe, Math. Ann. 254, 27-51 (1980)
- [GKZ] B. Gross, W. Kohnen and D. Zagier, Heeger Points and the Derivative of L-series II. Math. Ann. 278, 497-562 (1987).
- [Y1] J.-H. Yang, The Differential Operators and Singular Jacobi Forms, preprint (1991).
- [Y2] J.-H. Yang, The Siegel-Jacobi Operator, preprint (1992).
- [Y-S] J.-H. Yang and Jin Woo Son, A note on Jacobi forms of higher degree, Jour. Korean Math. Soc., 341-358 (1991)
- [Za] D. Zagier, Note on the Landweber-Stong Elliptic Genus, Springer Lecture Notes 1326, 216-224.
- [Zi] C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Univ. Hamburg 59, 191-224 (1989)

Department of Mathematics Inha University Incheon 402-751 Republic of Korea