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Abstract

One method to compute residues of zeta functions associated with prehomogeneous
vector spaces is given with a typical example. Tt is based on the calculation of invariant
hyperfunctions on prehomogeneous vector spaces.
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0 Introduction

We know that the calculation of functional equations of (global) zeta functions associated
with prehomogeneous vector spaces is reduced to that of Fourier transforms of the complex
powers of the relatively invariant polynomials. The next problem: how is the calculus of the
residues of zeta functions ? We may easily see that the calculation of the Fourier transform
of the “singular” invariant hyperfunction is important for the computation of the residues.
It has been implicitly shown in Sato-Shintani [Sa-Sh] in the calculation of one example.
However we face a lot of difficulty when we try to carry out the explicit calculation of
the residues following their method. One difficulty is to handle the divergence on the
process of the calculation and the other is to compute the Fourier transform of the singular
invariant hyperfunctions. We have ;so far, no complete algorithmic method to control
such divergence or to compute the Fourier transforms. We can find only some cases in
which the calculation is possible by using the theory of holonomic systems and microlocal
analysis. It is one of the important topics in the theory of invariant holonomic systems
and hyperfunctions on prehomogeneous vector spaces.

In this paper, we give a brief explanation for this theory and give one example —
“Shintani’s zeta function”. Shintani [Sh1] succeeded to evaluate part of the residues. We
evaluate all of the residues in a different manner though some of them are conjectures. Of

course, our result and Shintani’s result coincides with each other in their intersection.
1 Review on Prehomogeneous Vector Spaces
1.1 Prehomogeneous Vector Spaces

Let G¢ be a complex reductive linear algebraic group ,V¢ a finite dimensional vector

space and p : G¢ — GL(V¢) a linear representation of G¢ to V.

Definition 1.1 (Prehomegeneous Vector Space) (1) We say that (Gg,p, V) is a

prehomogeneous vector space if there exists a point zg € V¢ such that p(Gg) - zo is an
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open dense subset in V¢
(2) A polynomial f(z) € C[V¢] is a relative invariant of (Gg,p, V) if there exists a
character x : Gg +—— C* such that f(p(g) - z) = x(9)f(z) for all g € G¢ We call it a

relative invariant corresponding to the character x.

It is proved that any relative invariant of (G¢, p, V¢) corresponding to the character
x is uniquely determined modulo a constant multiple.

We suppose the following conditions.

1. Any relative invariant of (G¢,p, V¢) is an integer power of the irreducible relative

invariant P(z). We denote n = dim V¢ and d = degree of P(z).
2. (Gg,p, V) is regular jie., det(g—igf%) # 0.
3. V¢ decomposes into a finite number of G ¢-orbits.

Let (G¢,p*, V) be the dual prehomogeneous vector space to (G, p, V) e, Vi
is the dual vector space of V¢ and p* is the contragredient representation of p. Then the
triplet (G¢, p*, V) also satisfies the above conditions. We denote by Q(y) the irreducible
relative invariant of (Gg,p*, Vig). The degree of Q(y) is same as that of P(z). The

corresponding character of Q(y)is x7 ! e, Q(p*(g9) - z) = x"H9)Q(y).

We suppose one more assumption.

4. There exists an inner product < z,y > on z,y € V¢ such that (Gg¢,p, V) and
(Gg, 0%, V) have the same fundamental relative invariant,i.e., P(z) = Q(y) by

identifying V¢ and V.

Definition 1.2 (Real form) (Gg,p, VR) is a real form of (Gg,p, V) if and only if

the following conditions hold.

1. Vg 15 a real form of V.



2. Ggp = G NGL(VR) is a real form of G¢.
We denote by G& the connected component of the real group Gg.
1.2 Singular set and Singular orbit

The complement of the open orbit p(G¢) - zo is denoted by S¢. We call it the singular set
of (Gg,p, V) . From the assumption 3, S¢ decomposes into a finite number of orbits.

Let

be the G ¢-orbital decomposition of S¢c. We call each S,¢ a singular orbit of (Gg,p, V).
Let G&: be the subgroup of G¢ defined by G&: :={g € G¢;x(g) = 1}. We suppose that

5. Sc={z € V¢g;P(z) =0} and each S;¢c (i =1,...,m)is a G}E-orbit.

Let Sg:=ScNVpgandlet S ,g:=S,cNVR (0 =1,2,...,m). The real locus S_g
decomposes into a finite number of connected components,
. e
Sek = | ] Sap
B=1
Each connected component S, g is a G%R—orbit where Gﬂla = G&: N Gﬁ.

2 Local zeta functions and Their poles

2.1 Local Zeta Functions
Let (GR, p, VR) be a real form of (Gg, p, V¢) and let
V1UV2LJ...UV1=V|R—SC

be the connected component decomposition of Vg — Sg. Each connected component

V,(t=12,...,l)isa Gﬁ—orbit. For a complex number s € C, consider the function on

VR,
|P(z)]* <€V,

|P(2)[; :={ 0 cd v, (1)
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for ¢« = 1,2,...,1 with a complex parameter s € C. If the real part R(s) is sufficiently

large, |P(z)|; is a continuous function. It satisfies the equation

[P(p(9) - )IF = Ix(9)I°| P(2)I}

for all ¢ € G. Namely |P(z)|! is a relatively invariant function corresponding to the
character |x{g)|° .

We denote by S(Vg) the space of rapidly decreasing functions on V. For f(z) €
S(VR) , the integral

Zi(f,s) = /VR IP@)|tf(a)dz G=1,2,...,])

is absolutely convergent if the real part ®(s) > —1 and is a holomorphic function in s € C.

It is continued to a meromorphic function on s € C. The map

f@) = Zi(f,5)  (f(z) € 5(VR))

defines a tempered distribution with a meromorphic parameter s € C. In fact, we see
easily that Z,(Q*(Ds)f,s + 1) = b(s)Z;(f, s) with a polynomial b(s) called a b-function.
This implies that Z;(f, s) is meromorphic in R(s) > k — 1 if it is meromorphic in R(s) >
k. Z,(f,s) is a relatively invariant distribution ,i.e., Z;(f,,s) = Zi(f, s)|X(g)|“5‘% with
fo(z) = f(o(g) - 7).

Theorem 2.1 (Sato-Shintani [Sa-Sh]) The local zeta function Z;(f,s) has the follow-

ing properties.

1. They have a functional equation of the form
! n
Zify8) = e (LN =5 - ) (2)
j=1
where c;;(s) are meromorphic functions in s € C and f* is the Fourier transform of

f.



2. Z(f,s) has possible poles in the set

{seCib(s+k)=0,k=0,1,2,...}

The formula (2) is the Fourier transform of the relatively invariant distribution |P(z)|¢.
The explicit computation of ¢;;(s) is often possible by analyzing the micro-local structure

of |P(z)|!. This formula (2) gives the functional equation of the global zeta function (see

[Sa-Sh)).
2.2 Poles of Local Zeta Functions

The poles of Z;(f, s) are located in the set {s € C;b(s+ k) =0,k =0,1,2,...}. I Z;(f,s)
has a pole ai s = o of order k,, we ave the expression

ko
Z(f,8) = z(s - 0)"jff(f) + (holomorphic part).

1=1

The distribution I7(f), appearing in the principal part of the Laurent expansion of Z;(f, 5),
are supported in the singular set Sg. Indeed, if f belongs to the space C*(V g — Sg) of
compactly supported C-functions on Vg — SR, then Z;(f, s) is an entire function of s €
C. It means that I7(f) = 0 for all j = 1,2,...,k;. On the other hand, Z,(fy, s) = Z:(f, )
forall g € Gh with GﬂlR = G&:OGIE. Then the distribution Z;(f, s) defines a G-invariant
distribution. Namely, the distribution IJ‘-’(f) is supported in S¢ and invariant by the
action of g € G. From the result of [Mul], we have the following fact: any G%R—invarizmt
distribution supported in Sg is given as a linear combination of I7(f) if any relatively
invariant distribution is written as a linear combination of Z;(f,s) (1 = 1,2,...,1).

What we need in the computation of the residues of the global zeta functions is the
Fourier transforms of Gﬁa-invariam distributions whose supports are contained in Sp.
Above all, the Gﬁ invariant measures on the G-orbits in S are important. If they are
written as a linear combination of Z;(f,s) (1 = 1,2,...,1) , then their Fourier transforms

are computed from those of |P(z)|5, ..., |P(z)];-
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3 Global Zeta Functions and Their Residues

3.1 Zeta Integrals

Let (GR, p, VR) be a 1eal form of the prehomogeneéus vector space (G¢c,p, V). In this
section, we suppose that G¢ is a reductive group. We take a discrete subgroup I' in Gﬁ
and a lattice L in V' satisfying p(I')- L C L. For a function f(z) € S(VR) , we consider
the integral

> f(e(g) - z)x(9)dg (3)

z€L—{P(z)=0}

Z(f,s.L) =
(f;5.) /Gﬁ/l’

where dg is the Haar measure on G3. We suppose that the integral (3) is absolutely
g R g

convergent for all f € S if the real part R(s) of s is sufficiently large. Then we have

l n
Z(f,s.L):= (s, L P(z :—7 z)dz, 4
(he) =65 0) [, PG 1(0) ®)
where
Z(faSL) = Z u(.ﬁ) : ‘P(III)t—S, (5)
[z]eLnV j~

with p(z) := fG:/F:c dvy; ~ stands for 1"-equiva1ence;kG;c+ and I', stands for the isotropy
subgroup at £ of G* and I, respectively, and dv, is the invariant measure on G .

The Dirichlet series &;(s, L) is absolutely convergent for R(s) > 0. Sato-Shintani’s
[Sa-Sh] main result is that &(s, L) is extended as a meromorphic function in s € C with
a finite number of poles and has a functional equation. We call &(s, L) is called a zeta
function associated with the prehomogeneous vector space (Gg, p, V).

Now we shall try to evaluate the residues of ¢;(s, L). Suppose that f(z) € C§°(Vg —

SRr). Then we can divide the integral Z(f, s, L) into two parts,

Z2(f,8,L) = /Gﬁ/FZf(p(g)W)x(g)’dg
€L
/G}ﬁ/r > f(olg) - 2)x(9)dg (6)
x(91 *€L
+ /Gﬁ/l‘ > flo(g) - ©)x(g)*dg (7

x(9) <1 z€L



We denote by Z4+(f,s,L) = (6)and Z_(f,s, L) := (7). Then we see easily that Z(f,s, L)
is extended as an entire function in s € C. From the Poisson’s summation formula, we

have

Z-(5,5,0) = [gg,p vD 7X@ Y N6 0) - v)dg (8)

x(g)<1 veLs
where z(L) is the volume of Vg/L, L* is the dual lattice of L and f* is the Fourier

transform of f. We divide the integral (8):

ZAfsD) = WD [gr px@TE X N0 v (9)
x(9)<1 yGL"—S

+D)7? g px@t T @ g (10)
x(9)<1 yeL‘nSR

For the same reason of the entireness of Z.(f,s, L), the integral (9) can be extended as

an entire function. The poles of Z(f,s, L) are contained in the integral (10).
3.2 Arithmetic Part and Analytic Part

We can compute (10) a little more precisely under some suitable conditions. Note that

the singular orbits are decomposed as

m Mg
Sg = l_] |__J S8
a=18=1
We put

Lna(f() = |

G > Met(9) - y)dg.

yeL*nS, 5
Then

/Gﬁ/I’X(g)k% >, fe(9) y)dg

x(9)£1 yeL*nSp
1 n m Ma
- / B3 S0S Lp(f(t))de
0 a=1 ﬂ:]

m me 1 .
= L3 [ ) an
a=1 (=1
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if each of I, g(f(¢-))dt is an integrable function of t. We suppose that each S, g admits a

Gulk—invariant measure dv, g. Then dv, g relatively invariant measure on S, g:
dva,p(p™(9) - y) = x(9)**™ 4dva,p(y)
with some constant s, € C. Therefore,

Lo p(f(1)) = t*La,p(f(:))-

Then we have

() = / bR ()t

i M§ L'M§

_)Ia,ﬁ(f(-))dt-

s—}—sa

Thus we have to evaluate I, g(f(-)) for the computation of the residues of Z(f,s, L).
Moreover we can divide theintegral I, 5(f(-)) into the arithmetic part and the analytic

part. That is to say, we have

Taglf(D) = agp [ S @)dvas(v)

where

Aap = > Vol(G,/Ty). (12)
[y]GL“‘ﬂSR/~

Here Vol(G,/T'y) is the volume of the fundamental domain G,/I', and ~ means I-
equivalence. From the relatively invariance of the measure dv, g, we have the formula of

the Fourier transform

l n
[ M @vas) = [ 1@ Y el plP@) . (13)
=0

Thus we have the following formula.
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Proposition 3.1 The zeta function &(s, L) has a simple pole at s = —s4 + & with the

residue
Ma .
Z Aa’ﬁ : Cf’vﬁ
g=1
We call A\, p the arithmetic part and cfxﬁ the analytic part.

We are led to the following problem naturally.

Problem 1 FEvaluate the arithmetic part Ao g defined by (12) and the analytic part cfxﬁ
defined by (13)

In the next section, we give an example of the calculation of these parts.

4 An Example: Shintani’s zeta function
4.1 Complex Prehomogeneous Vector Space
Let Gg:n) := GL,(C). and let Vﬁ:n) := Sym,(R) = the space of real symmetric n X n matrices..
The group action of Gg:”) on Vg’) is given by
p(g):zvr—yg-z-g

for g = (g:;) € G%) and z = () € Vg?). Then (G%),p,V%)) is a prehomogeneous
vector space with the singular set S¢ = {z € Vgcn);det(as) = 0}. P(z) := det(z) is an
irreducible relative invariant. The corresponding character is x(g) = det(g)?. We define

the inner product < z,y >:=Tr(z-y) for z,y € V.
4.2 Real Form of Prehomogeneous Vector Space

We take the following real form.
Gy == GL.(R)* = {g € GL,(R);det(g) > 0}.
V[(él) := Symn(R) = the space of real symmetric n x n matrices.

Then (G%),p, Vl(él)) is a real form of (G(é'), 0 VS(?)) with the singular set

S(RT‘) = {z € V(™;det(z) = 0}.
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We let
Vgcn) := {z € Sym,(R);z has k positive eigenvalues and n — k negative eigenvalues}.

Then
"y ) g
|| Vi = Vg’ - Sg
k=0
is the connected component decomposition.
We define the following measures.
dz(™) = | Ai<i<i<n dzij| for = = (zi;) € V(™ (the euclidean measure on V(™) ).

dg™ = |det(g)|™| Ni<i<j<n @9i5| for g = (gi;) € G™, (invariant measure on G'™ ).

dggn) := an invariant- measure on SLn(R) defined by dg(™ = dggn) X %{—gj.
4.3 Discrete groups and Lattices
We take the following discrete group and lattices.
r .= sr.(7)
L™ = {¢ € Sym,(Z/2);the diagonals are elements of Z}
L0V .= Sym,(Z)
Then L™ and L(™* are I'™-invariant sets.
s L™ (L™ N S) if n#2
T L™ - {(I™nS)u{z e I™; /~dei(z) € Q}} ifn=2
L LW —(L™* 0 §) if n# 2
LV _{((L*nSYu{z e L™ /det(z) e Q}} ifn=2

Then they are also I'™-invariant sets.
4.4 Zeta Integrals

Let M be a I'™-invariant subset of L'™ or L/(™*,

We set

20,M,9):= [y @U@ T F0la) - 2)dg ™),
/ .’L‘GM
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for f € S(V™) where S(V{™) is the space of rapidly decreasing functions on V(). Then
the integrals Z(f, L'™, s) and Z(f, I'™"*, s) are absolutely integrable when the real part
R(s) of s is sufficiently large. We obtain the Dirichlet series E,(cn)(s, L) and &,gn)(s,L*) by

separating the Dirichlet series from the integrals.

Z(f, L’("),s) - Z f;(cn)(S, Ll(n)) /V(") |P(x)|5'(("+1)/2)f(z)dx(”)
k=0

: n
Z(f, L™, 5) = 3 &M (s, L) |P(2)|s D) £(5)dz™)
k=0

v
These Dirichlet series f,(c")(s,L(”)) and fi") (s, L{"™*) are absolutely convergent for
R(s) > ﬂ—'zﬂ , and continued to the whole complex plane as meromorphic functions with

poles at s =1, %, cee, f‘—'z"—l The order of these poles are 1 except for the case n=2. When

n=2, the pole at s = 1 may not be simple.

On the other hand, we need the following Dirichlet series

&5, 1) = 3 |det(2)|™*
{ceL® /= dei(2)e@}/T®
(s, L") = ) | det(z)|~*

{ze L™/~ det(2)€@} /T
for the evaluation of the residues of f,(cn)(s, L(™) and f,(c")(s, L(*) | They are essentially

the Riemann’s zeta function.
4.5 Residues

Our problem is the following.

Problem 2 For n > 3, evaluate the residues of fgcn)(s,ll(")) and f,(cn)(s,L(")*) in terms of
the special values of f,(:)(s,l}(")),f,(:)(s, L(i)*) for i1 < mn—1, and some other special values
, for example , those of the gamma function T'(s) , the volume of the fundamental domain

SL,(R)/SL,(Z) and so on.
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The residues of fl(cn)(s,L(”)) is given by the following formulas according our calcula-
tion. However some of them are now conjectures. See the Remark 4.1.

We denote by Ress=s,-(§,(c")(s, L™)) the residue of §£")(3, L™yat s =g,
Casel (1 >1and i1 #n—2)

Ressz%i(ﬁl(cn)(s,ll(”))) =
(D21 ()i DI Y ol (SL(R)/SLi(Z))
o n)j o(n—1), N n—1)%
X Zbgkhf; )(5>L( )
7=0
Here Vol means the volume of the fundamental domain.

The values of BV s given by the following formulas. We put
ik

bEZ)] — 2—n(n~1)/4 . (271')(”+1)(2z’——n)/4 . H F(g) : CEZ)J
p=1

with

o when n—1=0,7 =0 (mod.2)

. (n—1)
CEZ)J = exp(%ﬁ((n —1)(n — 2k + 2i) + Zij))( : )

[N S )

o whenn—1=0,5 =1 (mod.2)

(n)y _
cikJ—O

e whenn—1=1,5 =1 (mod.2)

: (n=i=1)
P = exp(Ev/=T((n — §)(n — 2k + 24) + 2i(j + 1)))( 2 )
2
o whenn—1=1,7 =0 (mod.2)

. (n—1—1
PP = exp(ZV/=T((n - 6)(n — 2k + 20) + 2i(j + 1) + 4k — 2))( ] )
Case 2 (1 =1and i #n —2)
Res,_s1 (§"(s, L™)) =

n—1

— - n)j n— L n—1)%
R DO RN L |
=0
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The values of bgz)j(s) 18 given by the following formulas. We put
b(]’]z)J(s) — 2-—n(n—1)/4—(n—1)s . (2W)(—n2+3n)/4 . a{k(s)'
Then a{k(s) is given by
n—1 )
Z al ()t =
=0
. n—2 D+ 1 T
(2m)~=DE T (s + T)exp(z\/_—l((n — 1)n — 2k))
p=1

(t? exp(—7V/—1s) — exp(7r\/_—_1$))L"_z_lJ x (t exp(——g\/—_ls) - exp(g\/—_l7rs))(1"'(_1)n)/2

,ifk=n and

n—1 )
Z af () =
J=0

n—2
(27)~(n=1/2 H I'(s + Pt l)exp(:}\/j((n —1)n — 2k))

p=1 2

x (¢ exp(—1/—1s) — exp(m/—ls))tgJ x (t?exp(1y/=1s) — exp(~7r\/—1‘9))”-2’6_1
x(t exp(g\/——ls) - exp(Qg\/—_lws))(1+("1)n_k)/2
x (1 exp(—g\' ~1s) — exp(gx/ﬁm))ﬂﬂ—l)"“)/?

; if k #n. Here |z] stands for the greatest integer less than T .

Case 3 (1 =n — 2 , namely the residues at s = "2;1)

RessznT.l(fl(cn)(s, L("))) =

r(n=D/4=1 (g py(n=2)/4 r(-;—) Vol(SLns(R)/SLu (D)) - £(5, L)
+(xx)

and

(k) =
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gn(n=1/2=1 . (7)== =D/4 . o) S Lp5(R)/SLn-2(Z))

2
n ] n *
x 348,675, 1)
=0
,ifn >3 and

(k%) =

2 .
(2,’(.)—1/2 . Z b(lrlt;)J(s)f‘gZ)(% + S’L(Q)*)Iszo
. =0

,ifn=3. Here, bsln_)ék and b(lz)j(s) are the same ones given in the case 1 and the case 2

, Tespectively.

Remark 4.1 In the calculation of the residues, we must sometimes ezchange the order of
the limit and the integral. The author believes that they would be justified, but so far, the

author has not the right proof in one place.
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