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On functional equations of local zeta functions of
prehomogeneous vector spaces
yASE:S AW t /'?C/Té,;_ (Yasuhiro Kajima)
Introduction
In 1960's, M.Sato introduced the notion of prehomogeneous vector
spaces‘and proved the functional equations of zeta functions

associated with prehomogeneous vector spaces defined over R or C
(f@) 9= =y, () |7 |74,
i p; 17 J

where f(x) is the relative invariant of the prehomogeneous vector
space V, yij(a) are meromorphic functions on C, n=dim V, d is the
degree of f(x), ~ means the Fourier transform, and

Flz)| ™48 ey
|f(z) | M9 . | J

I ' 0 otherwise
where Vj are G;orbits in V-8 (for detail, see [SS]).

Similar functional equations associated with regular
prehomogeneous vector spaces defined over #A-adic fields have been
proved by J.Igusa and F.Sato assuming some conditions of its singular
set ([S]1,[I1).
But even when a prehomogenebus vector space (G,p,V)
satisfies the sufficient cohditions of F.Sato which assure the
functional equations of zeta functions, the prehomogeneous vector
space (G,p,V¥), which is obtained by the castling transform of
(G,p,V), does not necessarily satisfy them(cf.[S],[SK]).

Thus even if the functional equations of zeta functions of (G,p,V)

hold, we do not know whether the functional equations of zeta
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functions of (&,p,V) hold or not. Since the castling transform is g
standard procedure of constructing new prehomogeneous vector spaces,
it is naturai to ask the existence of the functional equations of
(&,p,V¥) when the functional equations of (G,p,V) hold.

In this paper we prove the following theorem using the results
of [SO]:
Theorem If the funetional equations of zeta funetions of (G,p,V)
hold, then the functional equations of zeta functions of (5.3,?) hold

and vice versa (see §4).

81 Preliminaries

First we recall some basic notions in the theory of prehomogeneous
vector spaces over a sA-adic field and give some definitions
following [SO].

Let k be a #-adic field and denote by k (resp.@k)its algebraic
closure (resp.maximal order). Let G be a connected linear algebraic
group defined over k and V be a finite dimentional %k-vector space
with k-structure Vk' Let p: G — GL(V) Dbe a k-rational
representation of G on V. Then the triple (G,p,V) 1s called a
prehomogeneous vector space if there exists a proper algebraic subset
S of V such that V-§ 1is a single p(G)-orbit. The algebraic set
S 1is called the singular set. It is known that V-S is a single
p(G)-orbit implies that the number of p(Gk)—orbits in Vk—Sk is finit@
A nonzero rational function P(v) 1is called a relative invariant of

(G, p,V) if there exists a rational character x(g) of &G such that
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Plp(gdv) = x{(g)P(v) (geG, vev).
Let Si (1<i<l) be the k-irreducible hypersurfaces contained in S.
For each {1 (1<i<l), take a k-irreducible polynomial Pi(v) defining
Si' Then it is known that Pi(v) are relative invariants and any

relative invariant P(w) in k[V] is written uniquely as

l vt 5
Pivw=¢c¢ w P_(v) (cek™ , v,,...,v,€L).
_ i 1 l
=1
The polynomials PI""'PL are called the basic relative invariants

of (G,p,V), and 1t the k-rank of (G,p,V).

A relative invariant P(v) 1is called nondegenerate if the Hessian

det(§%§§5}) does not vanish identically. A prehomogeneous vector
space (G,p,¥) 1la called regular if there exists a nondegenerate
relative invariant; and then one can find a nondegenerate relative
invariant in k[V].

Let V* be the vector space dual to V and p* G ——»GL(V*) the
rational representation of G contragredient to p. The vector space V*
has a k-structure canonically defined by the k-structure of V.
Then the representation p* is defined over k.

Let m and =n be positive integers with m>n>1. We consider a
rational representation Po :H — GL(m) of a connected linear
algebraic group H. We assume that # and Py are defined over
the field k. Put G=HxXGL(n) and V=H(m,n). Also put &= H x GL(m-n)
and V = H(m,m—n). Let p : G — GL(V) (resp. p : G — GL(V))
be a rational representation of G on V (resp. & on V) defined by

1

p(h,g )V = Do(h)UQ; ((h,g,)€G =H x GL(n))

(resp. B(h.g, )u = tpo(h)“lutgm_n ((h.g,_ )€l =HxGL(m-n))).
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The triple (G,p,V) is called the castling transform of (G,p,V)

and vice versa. Then we have the following lemma:

Lemma 1 (Sato-Kimura [SK1) The triplet (G,p,V) is a prehomogeneous

vectltor space if and only if so is its castling transform (5.5,V).

In the following, we assume that (G, p,V) and (&,p.V) are

prehomogeneous vector spaces with k-structure

Ck = Hk x GL(n; k), Vk = Mm n: Kk,
6k = H, x GL(m-n:k), V) = Hm,m-nik).
Put N = (ﬁ) and let Al(v),...,AN(v) (resp. Kl(u),....zN(u)) be

the minor determinants of veV (resp. weV) of size n (resp. m-n).
Let V0 be the vector space of column vectors of m entries and V;
the vector space dual to VO. We identify V (resp. V) with the direct

product of n (resp. m-n) copies of VO (resp. V; ) in the standard

n m-n
manner. Let A :V — A V0 and A : V — A Vs be the mapping
defined by
A(w) = A(vl,....vn) = vlh--'A v, (Vyse..sv, € Vo)
and
*
A(w) = A(ul""’”m-n) = WA A . (g, ooy, o € Vo)

n m-n
respectively. We identify A VO with A VS via the canonical

isomorphism:

n o m-n « o BT
AVyg — (A Vy) — AV,

n n-n
By taking the standard basis, we may identify A V0 and A V;

with FN , so that the mappings A and A are given by
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A(W) = (A (W), ...,A,(¥))
A(w) = (Zl(u),....ZN(u)).

Here the minor determinants are indexed such that

N
det(v,w) = 3 Ai(v)zi(u).
i=1

Then it i1s easy to See that
. - 1 n
A(o(h;gn)v) = det 9, (A po(h))(A(v))

and

n
A(p(h,gm_n)u) = (dét Gp_nldet po(R))-C A py(h))(A(w)).
Thus we consider that G(resp.G) operates on A(V)(resp.a(V)).
Now put
V'={veV|rank v=n} (resp. V'={weV|rank w=m-n})
Vk=V nd (resp. Vk=V'nd).
Then we have

Y=a(v')=A(V")cE

Y =av) =K@ erl.
Moreover we have the following lemma:
Lemma 2 (cf.[SO] Lemma 1.2)
(1) The k-rank of (G,p,V) s equal to the k-rank of (G, p,V).
(2) There exist irreducible homogeneous polynomials
Ql""’QL € k[yl....,yn](L=the k-rank of (G,p,V)) such that

Pl(v)=Ql(A(v)) vy ooy P (v)=QL(A(v))

l

are the basic relative invariants of (G,p,V) over k and
Poan=QAw) ,..., P aw=Q (Aw))

are the basic relative invariants of (G, p,V) over k.

(3) Put di=deg QL' Then there‘emist k—-rational characters

¢1,...,wl of H such that
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-d .
P (p(h g )v)=x,(hg )P (), x (kg )=(det g ) ‘¥ (h)

P,(b(higy_)w)=X, (h g, )P, (),

d
X (g, )=(det g __fdet py(h)) ¥ (h).

Let X be a subset of Vk (resp.Vk) to which Gk (resp.ﬁk)operates.
Denote by ¢(X) the Schwartz-Bruhat space of the topological space X
and by ¥'(X) its dual space as a {-vector space. We call an element
of 9'(X) a distribution on X. And for a subset X' of X, we denote
the characteristic function of X' by Ch(X'). For fe¥(X), T€¥'(X),
geGk. we define fI(z)e¥(X) and gTe¥'(X) as follows:

Az)=fe(g)z),
9T (£(2))=T (5 (2))=T (s (p(g9)T)).
In this paper, we always mean by a character o of Gk a

character of Gk of the form

o=¢(x),

where x:G —k* 1s a k-ratlonal characfer of G, and ¢:k*—C* 1is
a continuous homomorphism. V

Now for a group Ck and a character m:Gk ——ACX, define E(X,Gk,m)
as follows:

£(X,G,,0) = {Te?' (X)|gT=0(g)'T for all geG,}.

_And for a subgroup H of Gk we define the modular funetion &(H) by
d(halhh0)=8(H)(hO)-dh, where dh is a left invariant measure on H.

Now we quote the following lemma which will be used in the next

chapter:

Lemma 3([I] p.1015) Let G be a linear algebraic group defined over
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k, Gk be the set of its k-rational points and Hk be a closed subgroup
of Gk. Let x=Gk/Hk, and o as above; then &(x,Gk,w)¢0 if and only
if

and in that case dimcﬁ(x,Gk,m)=l

Put
S(1)={ver| rank v < n}.
Then we have
p(Gk)S(l)=S(1)-
Thanks to results of [SO], we know that our theorem is valid if we
restrict ourselves to the case where mEVk\S(l). Therefore we study

the distributions E(S(l),Gk,m) in §2 and prove the main theorem

in §3.

§2 We keep the notations in §1. The aim of this section is to prove

the following proposition:

Proposition 1
If &(S(l),Gk.m)#O, there exist a finite number of subgroups Hi
1i<q of GL{(n:k) such that

le = S(HL) for some i,
i

and 5(HL) i8 not {identically equal to 1 if H£¢GL(n:k).
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Let Vk be as before and G° the set of k-rational points of
a connected algebraic group which acts on Vk by a k-rational
representation op.

Let A be a G'-stable subset of Vk such that for any %,¥€A, the
isotropy subgroups Gé and G; are conjugate in G'. Then there exists
a complete system VA of representatives of G'-orbits in A such that
Gé=G; for any x,erA. We put GA=G& for xEVA.
Then we have a bijection |

o: G'/GA X Vy— A
defined by @(g:G, ,z)=p(9)Z,

Now we assume that

® is a homeomorphism.

Lemma 4 Under the conditions above, we have

E(A,G',0)#0 if and only if ©-3(G")l,. =8(Gjg,).
180

Proof. 1t 1s easy to see that if there exists a G'-orbit 6 in A
" such that £(0,G',0)#0, then we have £(A,G',0)#0. Therefore "if"

part is trivial from Lemma 3. Now we prove "only if" part.

Notice that any compact open subset of totally disconnected

topological space C'/GA X VA can be written as a disjoint union of

compact open subsets of the form U0 X Uv, where Uo (resp.Uv) is

a compact open subset of C'/GA (resp. VA).

Thus, if E(A,G',w)##0, then there exists

T€eE(A,G',0) such that T(Ch(®(U)))=0

where U=Uo X Uv. We fix these U0 and Uv' Now for each compact



open subset U(o) of G‘/GA, we define a mapping <t by
t: U(o) — o(U(0) X Uv).
Then we have
t(UO)=¢(U).

It is easy to see that t 1is G&G'-admissible 1i.e.,

t(g-U(0))=0(g-U(o) X Uv)=g-¢(U(o) X Uv)=g't(U(o)).

Now T 1induces a linear mapping

T $(G"/Gy) — F(A).
Using (1), we have

g (t(F(x)))=T(f(p(g)x))
for all fe€¥(x). Now we define FG?'(G'/GA) by

F(£)=T(x(f)).

Then we have

g-F(H) =TT =1((T(rNY)

=9'T(?(f))=m—1(9)T(?(f))=m(9)_lF(f),
where geG'.
Therefore we have Fe&(G'/Ck,G',m). Moreover we have
F(f)=I(Ch(U(0)))=0
for f=Ch(U(0)), which implies
§(G"/G,,G",0)=0.

Thus, from Lemma 3, we have

m-es((;’)lc;q = 8(Gy) .

Now put
S.={veS(1)| rank v = r} for Osrsn—l.‘

Then p(l,GL(n;k))Sr=Sr for all 0sr<n-1 and

155

(1)
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S(1) = Sn—l U e u SO (disjoint union).

Now the following lemma holds.

Lemma 5
Each Sr can be decomposed as follows:

Srép(I,GL)Srl U -+ Uy p(I,GL)Srt {disjoint union),

where {&= (?), GL=GL(n;k), and by putting G”=GL, A=p(1.GL)Srh and
VAzsrh , these G’, A, and VA satisfy the conditions (a),($),

and (c¢) above for all 1<h<¢.

Proof. For a matrix x=(x£j) and j=1,...,n, we denote by I(J,z)
the smallest { for which mij#o. We denote by Rep(r) the set of
matrices of the form

m=(ulo)eﬂ(m,n), u=(uij)eﬂ(m.r)
with the condition that
ul(j,w)h=6jh (Kronecker's symbol) for all 1<j<r, 1<h<r -and
I(f,2)<I(j+1,2)-1 for all 1<j<r-1.
It is trivial that Rep(r) is a complete system of representatlves of
p(1,GL)-orbits in S, Also define o(z)€Z” by

a(z)=(I(1,2),...,I(r,2)).
Then, for zeRep(r), we have
1II(1l,z)<+<I(r,z)<m.

Now put

I={(£1....,tr)|1$£1<---<£r$m}.
It is clear that |I|=Ez), and we number the elements of the set J in

an arbitrary order and write I as follows:

I={1, (1$i5( ))}
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For any I£=(I(l),...,1(r))GI we define Sri by
_.-1
Sri'a (Ii)’
Now Sri is homeomorphic to the k-vector space of dimension

r-1
(m-I(r))xr + 3 (I(j+1)-1(4)-1)x4,

and it is easy to see that if we put G’ =GL, A=p(I,GL)Srh ) VAzsrh ,
these G°, A, VA satisfy the conditions (a),(6), and(c¢). Moreover
the condition ’

Sr=p(l’GL)Sr1 U s+ U p(l,GL)Srt (disjoint union)

is now trivial. o

Now we can prove Proposition 1.

Proof of Proposition 7. We keep the notation in Lemma 5.

Since E(S(l).Gk,m)#O implies E(S(1),GL(n;k),0)#0, we have only to
prove that the conditions in our proposition are necessary if
E(S(1),GL(n;k),0)=0.

The isotropy subgroup of GL(n:k) for z€Rep(r), which we denote by Hm’

is given by

H$={[ IrIO]EGL(n:k)}, where Ir is the identity matrix of size r.

—~ I=

Therefore 6(Hx) is not identically equal to 1 if H$¢GL(n:k)
(H$=GL(n;k) if and only if £=0). Thus using Lemma 4 and Lemma 5,
S(1) 1is decomposed as follows:

5(1)= v Srh (disjoint union),
where the union runs through 0<r<n-1, 1$h$(ﬁ), and

. _ _ m .
p(1,GL(n;Kk))S =S . for all lsrsn-1, 1sh$(r), and if

E(Srh,GL(n;k),m)#O, then there exist Hrh(=Hz for ze€Rep(r)) < GL(n;k)
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such that

5(6[.(7’-;’() ) 'mlHr =5(Hrh)

h
and B(Hrh) is not identically equal to 1 if Hrh¢GL(n;k). Now since

GL(n;k) is unimodular, we have

ol, =8(H_,).
Hrh rh
Thus we have proved the proposition. a
8§83 Main result
For o=(al,....oL)eCL, we define the character o, of Gk by
wa=(¢1wol(xl)"°"¢Lwol(xl))’
24 X X
where @, (a)=|alk (zek”™ ,1<i<l), ¢, (1<i<l) are dual of Ok and 1
i
is the k-rank of (G, p,V). Also define o, for o=(0;,...,9;) by
wa=(¢1wal(x1)"'"¢LmaL(xl))’

and put Q={seCt| EkS,Gk,mo)#O}.

Now we recall some facts in the theory of prehomogeneous vector
spaces roughly.

The foundamental theorem in the theory of regular prehomogeneous
vector spaces states that there exist ueGL(n;Z), AGCL, and

meromorphic functions Yij(o) such that

v
_ P ~ . * A+U9g
F(w,o)i—(IP(m)Ik,i) ? v,i(0) |P (x)lk’j
vanishes for all mer, oeCL, and 1<i,j<v ,i.e.,

v
(UP@) g " = Z v (o) 1P @ 13777, (2)
’ j ’

where ~ means the Fourier transform, v is the number of
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i )
p(Gk)—orbits in Vk—Sk. and IP(z)Iz’i= hgllph(x)lk?i (functional

equations of zeta functions, see [S]).

For mEVk—S, the theorem above is proved by the uniqueness of
relatively invariant distributions of homogeneous space (cf. Lemma 3)
Moreover, thanks to.results of [SO], we know that if the functional
equations of zeta functions of (G,p,V) hold for zer—S(l), then the
functional equations of zeta functions of (G.p,V) hold for zeV, -5(1) .
On the other hand, it is known that F(x,a)tto for some z€S(1)
implies that there exists non-zero TeE(S(l),Gk,ma) such that T is
meromorphic with respect to aeCL. Therefore we can prove F(m,4)£=0
for all z€S(1), oe@L by showing that CL\Q is dence in Cl.

Hence, for the proof of the functional equations, it is enough to
show that C\Q is dense in C'.

Now we prove the main theorem.

Theorem If the functional equations of zeta functions (2) of
(G, p,V) hold, then the functional equations of zeta functions (2) of

(5,3.?) hold and vice versa.

Proof. Put Q(1)=(seC*|£(S(1),6L(n:k),a )0},
G(1)=10eCt1£(3(1),6L(m-n;k) & )0} .

For a subset Q' of CL, we denote C'\Q by C(Q).

Now from Proposition 1 of §2 and the fact that o, is not trivial on
GL(n;k), we know that C(Q(1)) and C(fi(1)) are dense subsets of C°.

Now using the remarks above, we have proved the theorem. o
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