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ON A ZETA FUNCTION FOR EQUIVALENCE CLASSES OF
BINARY QUADRATIC FORMS
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0. INTRODUCTION

For an arbitrary number field K with ring of integers denoted by O we study GL(2, 0)
(=:G)- and SL(2, O)—equivalence classes of binary quadratic forms ®(z,y) = az®+bzy+cy?
defined over 0. After fixing A € O we define the following zeta functions for G-equivalence
classes of the binary quadratic forms over O of discriminant A. For this we set E(®) :=
{g € G:(g®) = ®}. We define

¢als) = ) > INk/Q(®(z,y)I™°,

[®] (z,9)E(OxO)/E(P)
A(®)=A (z,9)0=0
@(z,y)#0

the first sum running over the G-equivalence classes of binary quadratic forms of discrim-
inant A and the inner sum over pairs of numbers in O modulo the automorphism group
of the form, which are coprime.

For the rational numbers and imaginary quadratic fields one can define this function
also for SL(2, O)-equivalence. It arises in the calculation of the Selberg trace formula
for integral operators on L?(PSL(2, O)\H) where H is either the two dimensional or the
three dimensional upper half space and O is the rational integers or the ring of integers
of an imaginary quadratic number field respectively, cf. [Z3,Ba2]. It turns out that G-
equivalence is the right equivalence to generalize the wellknown formula for the field of
rational numbers with SI(2, O)-equivalence.

We will express (a(s) closed form in terms of L-series for K by generalizing the proof
for the rational integers (cf. [L],[Hi-Z]), which is based on counting the solutions of the
congruence b? = A(4a) in Z/2aZ, to arbitrary number fields. The final result is stated in
theorem 4.1. Most proofs will be ommitted. They can be found in [Ba2].

1. PRELIMINARIES

Let K be an algebraic number field, O its ring of integers. For a,b,c € O define the
binary quadratic form

®(z,y) = az® + bzy + cy’.
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It has discriminant A(®) = b*> — 4ac. We can assign the symmetric matrix A = (

e Q
o wojo
N

to ® and write &(z,y) = (z,y)A(z,y)t.
On such a form the 2 x 2-matrices with integral coefficients operate by

G18(a) = B((a)o) g @'y 9= (G 7) eM20)
=al.’r2 +b'xy+c'y2

with

!

a' =aa® + bary + c7? = B(a, )
(1.1) b =2aaB + b(aé + Bv) + 2¢v6
¢ =aB? + bBs + c6? = ®(B,6).

The discriminant behaves under this operation like A([g]®) = det(g)?A(®).
For the study of equivalence classes of binary quadratic forms of a fixed discriminant
we introduce the following equivalence relation. We fix A € O and set G := GL(2,0).

1.1. Definition. We call two binary quadratic forms ® and ¥ over @ of discriminant A
G-equivalent if there exists an element g € G such that

(98)(z,y) = det(g) " @((z,y)9) = ¥(z,y).
If we only allow transformations of determinant 1, we call the forms 1-equivalent.

This is in fact an equivalence relation. Two equivalent forms represent up to a unit the
same numbers.
The matrices which leave a form invariant,

(1.2) E(®):={9€G:(¢g®)=®} and E;(®):={g€G:(¢gP)=®,detg=1}

form the groups of G-automorphisms and 1-automorphisms of ®.

The numbers hg and h; of G- and l-equivalence classes for a given discriminant A # 0
are finite.

For a binary quadratric form ®(z,y) over the ring of integers O of K a solution of
®(z0,y0) = n € O such that (z9,y0)o = O is called proper. If (z¢,y0)o = (r)o for some
non-unit r € O, r # 0, then ®(zg,yo) is divisible by r* and the solution ®(z¢,yo) = n
comes from a solution ®(zy,y1) = & with (z1,y1)0 = O. We define the following zeta
function for proper solutions for G—equivalence classes of binary quadratic forms over O
of discriminant A € O, without yet specifying the region of convergence:

1.2. Definition. Let Nk\q denote the absolute norm. We set

1
RETS VD SR M
[®] (2,9)E(OXO)/E(®) INk/q(®(z,y))|

®(z,y)#0
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E(®) denotes the automorphism group of ®.

In fact, (a(s) is independent of the choice of representatives. About the convergence we
only remark that if it converges for big enough real part of s then it converges absolutely.

So we can change the order of summation. We will see that (a(s) also makes sense for
A =0.

2. A BASIC IDENTITY

One can—as in the classical case over the rational integers—express (a(s) as a Dirichlet
series involving the solutions of quadratic congruences in Q. We introduce the following
notation.

2.1. Definition. Fix n € O. We denote by

Rs(n) := {(z0,90) € (O x O)/E(®) : (®(z0,%0))o = (n)o, (0, %0)o = O},
rg(n) := |Re(n)|

the set, respectively the cardinality of the set of G-inequivalent proper representations of
the ideal (n)o by the binary quadratric form ®, and for a set {®;}i=1,..,n, of representa-
tives of G—equivalence classes of binary quadratric forms of fixed discriminant A

ha

ra(n) = Z re;(n).

=1
We define ka(n) to be the cardinality of the following set:
Ka(n):={b€O/(2n): b =A mod (4n)}.

Obviously ka(n) is finite.
With this definition, (a(s) = (oo mﬁ%r

2.2. Lemma. For all (n)o € O, ra(n) = ka(n).

Proof.

The proof is by a classical idea (cf. [L]).

First we note that for g,h € G one has ((¢h)®)(z,y) = (9(h®))(z,y) and E(¢g®) =
gE(@)g™ 1.

Fixn € 0. If (z0,y0)o = O and ®(zo,y0) = n then there exists a matrix g € GL(2,0)
with first row (z9,yo) such that (g®)(z,y) = na? + byay + cyy? (here detg = 1). All
matrices with the prescribed first row are obtained from ¢ by multiplication from the left

with (ei) 2) for w € O and € € O*. These matrices form a subgroup of G, denoted by

B. The resulting matrix we call g..,. With this, (¢¢,.®)(z,y) = €7 'nz? + be w7y + €cew
and be ., = b1 + 2we 'n. Remember that the discriminant remains unchanged: A =
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biw — 4(ne~1)(ece o). Furthermore (((1) 2) ®)(r,y) = e 'nz® + bry + ecy? if B(z,y) =
nz? + bxy + cy?.
From this we see that we can choose b modulo 2n. The variation by (1) 2) (ie. the

variation in the determinant) corresponds to the variation in the modulus.

Set M := B\G/E(®;). We denote the double coset class of ¢ by g Then by the above:

dorem=3_ 3 1=> ) ) L

i t geEM t beO/(2n) GEM s.t. for a e€O*
(2((1,0)9)=(n) b2=A(4n). (9@)(z,y)=¢ " 'nz2+bzy+tecy®

We will show that if such a matrix ¢ exists then it is unique modulo multiplication by
a matrix in B from the left and E(®) from the right. First we fix a form ® and as-
sume that there exist g1,92 € G satisfying (g:®)(z,y) = einz? + bry + €; 'cy?, & € O,
i = 1,2. Then (9297 )(91®)(z,y) = (92®)(z,y) and gog;" has the property that it
leaves b fixed and multiplies e;n by ez¢;! and e 'c by €;'e;. Such a matrix is of the
1 0 1 0
form (0 e) T where T € E(®). For h := (0 e
((h™g297 Ng1®)(2,y) = (918)(2,y), ie. h7'g29;" € E(91®). Hence gag; ' = hg1Tg7"
for a T € E(®) and equivalently g = hg1T. This was to show.
It follows from the above discussion that

Yoran) =) b,
b...

i i

> does the same as gog7! and

where &8 ; is 1 if [®;] = [nz? + bzy + cy?] and 0 otherwise. Furthermore if [®;] # [®;] then
b; # b; (by b; we mean the middle coefficient of the @; after transformation to the leading
term n). Hence for given b, 6, ; = 1 exactly once. For A = 0 almost all 8, ; are zero. Thus

qu,’. =#{be O/(2n)s.t. ¥* = A mod (4n)}.
O
As a corollary we have:
2.3. Corollary. For big enough real part of s,

N ka(n)
(2:3) Cals) = (n)z;co Nx\e((n))*

Since the summation in (2.3) only runs over the principal ideals we cannot yet use the
Chinese remainder theorem for further study. Therefore we first define the following zeta
function and the corresponding L-series associated to the characters of the ideal class group

T of O:
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2.4. Definition. For a prime ideal p C O and 1 > 0 (p° := O) define
Fa(p') := |Ka(p, D)l := {b€ O/p': ¥ =A modp'}].

For a character x of T and Rs > 1 one can define the local factors

oo

k' Iyorml
=0 —A%TX)(&—M7 fOI'p’i'Q,
ZA(Xap73) =

k,( I42e ( l) .
2o S, for b2

and

Za(x,8) = [ Zalx,p,s).
pCO

prime

2.5. Lemma. Let n denote the degree of K over Q and h the class number of K. Then
1
(7.4) Ca(s) = o7 ; Za(X; ),

where the sum runs over all characters of T.

Proof. By construction together with application of the inversion formula given in
[EGM, Lemma 3.6] the sum in the right hand side of formula (7.4) is equal to

kly (4n)
2 N((n))*’

(n)CO

It remains to show k), (4n) = 2"ka(n). If bis in Ka(n) then b, := b+ 2en € K/ (4n) for
each unit ¢ € O*. b and b, are equivalent modulo (4n) if and only if € = n mod (2).
Hence b € Ka(n) gives Nk ,q(2) = 2" different elements in I (4n). Vice versa for each
b € K),(4n) one can find an e € O* U {0} such that b, is already given modulo (2n). The
assertion follows. 0O

3. COMPUTATION OF THE LOCAL FACTORS

One computes k) (p') by localization. For p be a prime ideal in O lying over the prime
p € Z one has the isomorphism O/p ~ F,;, the finite field of p/ elements, where f denotes
the residue degree of p over p. O/p' is isomorphic to the ring of Witt vectors Wi(Fps) of
lenght [ over F);. Each a € O is congruent to the sum a = ap+ay7+---+ai—; 7!~ mod p'
for some 7 € p such that p||z and a; € O/p for all i. Furthermore O/p' ~ O, /x'O;, where
O, denotes the completion of Op. So one can work with principal ideals and k/y (p') =
k!,(x') where d corresponds to A in the localization and k/)(r') is defined the obvious way.

One has to look at different cases seperately. We only give the results. The proof uses
the pigeon hole principle. First we consider the case that p does not divide A. The first
lemma is a generalization of [L, Satz 87, Satz 97].
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3.1. Lemma. For A € O and a prime ideal p C O such that p{ A the number k\ (p') is
equal to

1, forl =0,
2fl3], for pe||2, 1<1< 2, if A isasquare mod p’,
kL (p') = ﬁ gfetl for p¢||2, 2e+1 <1, if Ais asquare mod p2et! |
0, for p¢||2, 1<1,if A is not a square mod pmin(h2e+1)
L1+(%)’ forpt2, 1<I.

with 2/ = Nk ,q(p) for p|2, [4] the Gauss bracket of 1, and the generalized Legendre

1, if A is a square mod p,
bol (&) = :
Sympbo (p) { ~1, if not,

The argumentation is as follows: One determines

1) the number @ p, of elements in the set of definition which fulfil the divisibility condition
imposed by A on the squareroot, here: the number of elements in O/p! that are not divisible
by p;

i1) the maximal number Qnayx, of possible solutions of the congruence for fixed A

iii) conditions ‘E;’ which arise from squaring a number of the set in i) and the number

QE, of elements in O/p! that fulfil ‘E;’. By the pigeon hole principle, if Qmax, = g—g’-
!

then Qmax, is the exact number of solutions. This is equivalent to the statement that the
conditions ‘E;’ are necessary and sufficient. For primes dividing 2 the one doesn’t have
the convenience of applicability of Hensel’s lemma. This case is more tedious than in the
situation over Q, whereas the other case in this lemma is completely analoguous to the
classical case.

Before we turn to the case that p divides A we have to do some preparation.

3.2. Definition. Fix a prime ideal p € O and (7)o, = pOy. Given a € Oy define
kT(l,m):=|{b€ Op/r': b =ar™ mod '}

for m,l > Q.
Let N(p) denote the absolute norm of p.
3.3. Lemma. Let p € O be prime ideal and (7)o, = pOy, a € O}. Then

N(p)[%], for m > 1,
kx(l,m)=<¢ 0, for m < I, m odd,
N(p)ZkT(l—m,0), form <, m even.

Proof. First one observes that k¥(I,m) = N(p)kI(l —2,m — 2). If n is a solution of
2?2 = ar™ % mod 7’2 then 7(n + 7'~2r), r = 0,1,...,7 — 1, are the solutions of the
congruence with respect to [ and m. By repeating the reduction the last case follows.
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For m > I the congruence reduces to 22 = 0 mod «'. All multiples of 71'[52:'1'], of which
there are N(p)[%] different ones in @p/'n"(;)p, solve this.

If m is odd and smaller than ! it follows from the congruence condition that r|(a+rz!=™)
for some r. Since a was supposed not to be divisible by 7 one gets a contradiction to the
maximality of m. O

Next we count the number of solutions b in O/p’ of the quadratic congruence 42 = A
mod p if p divides A.

3.4. Definition. Take A # 0 and let m € N be such that p™||A. Let first p be a prime
ideal in O not dividing 2. Let d = n™a correspond to A in the localization of O by p with
uniformizing element w. Set

(A,m) { 1, ifaisasquare mod

p —1, if not.
A 0, ifplA
(—p—) =< 1, ifp{A and A is a square mod p

-1, ifptA and A is not a square mod p.
For p and e € N such that p°¢||2 define
(A,m) _ { 1, ifaisasquare mod w2¢t1

p -1, if not,
A 0, ifp|lA
(-p—) :=< 1, ifp{A and A is a square mod p2?¢+!

—1, ifptA and A is not a square mod p2et?!,
These are generalized Legendre symbols.
Now we can formulate the results for p|A.

3.5. Lemma. Fix A € O. Let p € O a prime ideal that does not divide 2. For A # 0
let m € N be such that p™||A. Then the number k'\(p') of z € O/(p') such that 22 = A
mod p! is equal to

N(p)[%], for0<l<m,orA=0and!>0
k'A(;JI) ¢ 0, for A#0,m odd, l >m
(1+(%’;ﬂ))N(p)%, for A# 0, m even, [ >m .

Let x be a character of the ideal class group I of O. The generating series Q% (z,x) =

LiZo x(p')ka (p")e! for x(p")k'\ (p') with respect to I is equal to

( 1-(x(p)z)? B
A= (P =) A-N(p)(x(p)z)?)* for A =0
1=(x(P))HA=(N(P) (x(p) )" *") | ~

QA (z,x) = 4 a-(x(P=NT-Np)(x(p)z)D) for A0, m=2n+1
AV - 1—(N (p)2)2)" .

NGt (L+ (x(P)e)+

14(22) (x(p)2) n o
\ +( (l—p(x()p;z) )N(p) (X(p)l')“ ) for A # 0, m =2n.
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Proof. Take an uniformizing element 7 for p, let d be the image of A in the localization
with respect to p and d = n™a for appropriate a € Op. Then k' (p') = kT(I,m). At this
point we can apply Lemma 3.3. For even m and m < [ we get k(I —m,0) by Lemma 3.1.
The formula for the generating series follows easily. O

For prime ideals which divide 2 we determine the generating series with a shift of { by
2% the ramification degree over 2 in view of Definition 2.4 and Lemma 2.5.

3.6. Lemma. Fix A€ O. Letpe O a prime ideal that divides 2 with ramification degree
e. For A # 0 let m € N be such that p™||A. Then the number k' (p') of ¢ € O/(p") such
that 22 = A mod p' is equal to

(N(p)[%], fOTOSlSm’OrAZOandlZO
0, for A # 0, m odd, I >m
k,A(pI) = 4 N(p)[%], fOI‘ A # 0 a Square mOd pl—-m,

meven,m <l <2e+m

\ (1 + (—A_an->) N(p)3+e, for A#£0, m even, 2e+m < I .

The generating function for x(p*)k)y (p'*2¢) with respect to | is equal to

(N iR G- for A=0
N () N for A£0,m=2n+1
2 (o) = | YO (CERBRBER 0+ (e
BN e, or a0 m=2n
0, if A not a square mod p’

for some 0 < | < 2e.

Proof. The same way as Lemma 3.5.
Over Z such formulas can be derived from [Hi-Z, cpt 1.2, (23)]. See also [Z2, Par. 4.
Prop. 3 iii.]. '
4. RESULTS

Specialization of the generating series at ¢ = N(p)* and comparison of Euler factors
gives the desired expression for Zx.

4.1. Theorem. For A € O, x a character of the ideal class group of K, p a prime ideal
in O and a complex number s with big enough real part, the following identities hold

(4.1) Za(x,p,8) = QL (N(p)*)
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and
(4.2)
o[K:Q] Lx(8)Lx(25—1) A =0
Ly (2s) ’ ’
A # Onot a square mod p'
Za(x,s) =14 0,

for a prime ideal p|2 and 0 < | < 2e,,

\ Q[qulff% L(a)y(9)za,x(s), otherwise,

_ 1 N QAN ~*x)
where L(a) () = Il sco irmyzmms 2n() = Ihhia prime TG+ 2nd Lx(s)

is the L-series for K associated to the character x of the ideal class group I. Furthermore
it follows that Za(x,s) is meromorphic in C.

If A is a square, then L(A)’X(s) = Ly(s).
Over Q and imaginary quadratic number fields one can also consider 1-equivalence of

binary quadratic forms. The zeta function defined in an analogous way to Definition 1.3
but for 1-equivalence. For arbitrary A € O we can show the following relation between

CA(s) and (a.

4.2. Lemma. 0]
(als) =10"6a(s) = Jeaqry; Y Zalx:s).
X
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