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Characters of cuspidal unramified series
for central simple algebras of prime degree

RIEAFL KA ERIZEI SR EH  (Tetsuya Takahashi)
INTRODUCTION

Let A be a central simple algebra of dimension n? over a non-archimedean local field

F and L be a a maximal unramified extension of F' in A. Gerardin [G] constructed an
irreducible supercuspidal representation 7y of A* associated with a regular quasi-character
6 of L*. (0 is regular <= 07 # 0 VYo € Gal(L/F)).

The aim of this article is to get the character formula of 7y on regular elements in
all compact modulo center Cartan subgroups of AX when [A : F] = {2, | an odd prime.
(For the case | = 2, see [HSY]). We note that, when ! is a prime, A is isomorphic to
the division algebra of dimension /2 over F or the algebra of I x | matrices over F. Our
character formula is as follows.

THEOREM. Let 6§ be a regular quasi-character of L* with min f(§ ® (no Ny p)) =m+1
7

andI' = Gal(L/F). (f(6) = min{n|Ker8 D 1+ P} ). We denote by xr, the character of
mg. Let © be an elliptic regular element in A*.

(1) If F(z) = L, then

g (Z 9(3;0)) if zeU; (0<j<m)

o€l

g (Z a(m”)) if x€Up,.

o€l

Xmg (:I)) =

where Uy = L*,U; = F*(1 + P}J) (:>1)and U} = U; — Uiz1.
(2) If F(z) +# L, then

0 if =g F*(1+ Pt
X (T) = W-nm Im+1
0(c)lqg™ if z=c(l4+y)eF*(1+Pg.})

Remark. (a) Any compact (mod center) Cartan subgroup of A* is isomorphic to E*
for some extension E/F of degree n. Therefore the above formula gives the complete
information on the set of elliptic regular elements of A*.

(b) For the case F'(z) = L, the above formula can be written as follows:

Xro(@) = Ax)™ Y 6(z°) if zeU; (0<j<m).
cEW (LX)
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where A(z) = |det(Ad(z) — 1)14/1;]1%J and W(L*) is the Weyl group with respect to the
Cartan subgroup L*. This is the analogy of the following formulas:
(1) character formula for irreducible square-integrable representations of real semisim-
ple Lie groups (see [HC]);
(2) character formula for principal series induced from a regular character of a maximal
split torus;
(3) character formula for irreducible unitary representations of compact Lie groups
(Weyl’s character formula).

In this article, we shall prove the formula when A is a division algebra. For the ma-
trix algebra case, we use the result of division algebra case and Deligne-Kazhdanabstract
matching theorem ([BDKV]): there is a bijection between irreducible representations of
D) and essentially square-integrable representations of GL, (F') which preserves the char-
acters up to (—1)"~! (D™ is a division algebra of dimension n? over F'). Then we have
only to calculate the character only on the set of ‘very cuspidal’ elements. More precisely,
see [T].

We denote by Op, Pr, wp,kr and vp the maximal order of F', the maximal ideal of
OpF, a prime element of Pg, the residue field of F' and the valuation of F' normalized by
vr(wr) = 1. We set g be the number of elements in kr. Hereafter we fix an additive
character v of F' whose conductor is Pg i.e. v is trivial on Pz and not trivial on Op. For
an irreducible admissible representation 7 of A*, the conductoral exponent of 7 is defined
to be the integer f(7) such that the local constant (s, 7, ) of Godement-Jacquet [GJ] is
the form ag=*(f(")=") where n? = [A : F]. We call 7 minimal if

f(n) = mnin f(m®(noNyr))

where 7 runs through the quasi-characters of F'*. For a quasi-character n of F*, no N,/ p
is denoted by simply  when there is no risk of confusion. Let G be a totally disconnected,
locally compact group. We denote by G the set of (equivalence classes of) irreducible
admissible representations of G.

1. Construction of the representation. Let D be a division algebra of degree [
(dimension lz) over F' with lan odd prime. We denote by Op, Pp, wp and vp the
maximal order of D, the maximal ideal of Op, a prime element of Pp and the valuation
of D normalized by vp(wp) = 1.

Let L be an unramified extension of F' of degree {. L can be embedded into D and ,up
to conjugacy, the embedding is unique.

DEFINITION 1.1. Let 6 be a quasi-character of L*.
(1) 6 is called regular if all its conjugates by the action of Gal(L/F) are distinct. We
denote by E;‘eg the set of regular quasi-characters of L*.
(2) Let f(0) = min{n|Ker8 D 1+ P}'}. 0 is called generic if either
(a) f(8) =1 and 8 is not written in the form o N, where 1 is a quasi-character
of F* or
(6) f(8) > 1 and kp(wf(®~1,) = kz, where v5 € PL 7 — P27/ sych that
0(1 + ) = p(try p(vez)) for € Pg(e)—q‘
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We note that any regular quasi-character of L* is written in the form (no Ny r) ® 6
where 7 is a quasi-character of F* and 6 is a generic quasi-character of L*.

We construct an irreducible representation mg from 6 € E;‘eg according to [G]. At first
we treat the case 8 is generic. If f(8) = 1, then 6 itself can be regarded as a quasi-character

of F*OJ since F*OF/1+ Pp ~ L*/1 + Pr. Therefore we set
— DX
(1.2) _ 7o = Ind ox 6.

Then 7y is an irreducible representation of D* with f(mp) = 1. If f(§) = m + 1 > 1, then
there exists an element g € PL™ — (FNP.™) + P;~™ such that

mt2

(1.3) 0(1+z) = P(trp r(vez)) for z€ PI[, 2
where [ | is the greatest integer function. (Recall that the conductor of ¢ is Pp.) Let
} [mliZ] . . [mliZ]
Yye(1+2) = P(trp/p(vez)) for x € Py 2 °. Then 9, is a quasi-character of 1+ Pp, * .

mit2
Set H=L*(14+ Py * ') C D* and define a quasi-character ps of H by

mit2
(1.4) po(h-g) = 0(h),,(g) for heLX, gel4+PL2
We set
(1.5) _ Ty = Indgx Po-

Then 7y is an irreducible minimal representation of D* with f(mg) = I(m+1). (cf. [H],IV).
For a regular quasi-character 6 written in the form § = (9o N /p) ® 6’ where 7 is a
quasi-character of F* and ' is a non-trivial generic quasi-character of L*, we set

(16) Tg = Tgr Q1.

Now we get a correspondence 8 € E,’fe g T € DX. The following result is known about
this correspondence. (cf. [G],[H]).

PROPOSITION 1.7. With the above notations, for any regular quasi-character 8 of L*, mg
is an irreducible representation of D* such that:

(a) the representations mg and me: associated two regular quasi-characters 6 and §' are
equivalent if and only if  and 6’ are conjugate under Gal(L/F');

(b) the central quasi-character of my is the restriction of 8 to F'*;

(¢) for any quasi-character 1 of F'*, the twisted representation of mg ® 1) is equivalent
Lo To@noNy, s

(d) the contagredient representation of g is equivalent to mg-1;

(e) the L-function of my is 1;

(f) the e-factor of mg is e(mg, ) = €(0,% o trp p); in particular f(mg) =1- £(0);

(9) {mol6 € L7y} = {m € D*|f(m) =0 (mod })}.
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2. Character formula. In this subsection we compute the character of mg. More pre-
cisely, for a separable extension E/F of degree [ in D/F, we give the decomposition of 7
as E* module . First we treat the case F is unramified. We can assume F = L because
E is conjugate to L in D. Let Uy = L*,U; = F*(1+ P}) (s > 1), U} = U; — Ui41 and
Xi= @ x. WesetT = Gal(L/F) and denote by xn, the character of my.

X€(LX/U;)
THEOREM 2.1. Let 0 be a generic quasi-character of L* with f(8) = m + 1 and 7y as in
(1.2) and (1.5).

(1) (Decomposition of mg as L*-module)

m;Lx_@ooa)@(xoﬂq—n

g€l

l!l 1!

qullZa.lXa’).

(2) (Character formula of mg on L*)

ql‘(“l:zi)l (Z 9(3:0)) if zeU; (0<j<m)

g€l

6 (:13) =
¢ T (Z ﬂ(x")) if ©€Un.

o€l’

COROLLARY 2.2. Let 0 be a regular quasi-character of L* with min f(6 ® (no Ny /p)) =
n
m + 1 and 7y as in (1.6).

(1) (Decomposition of mg as L*-module)

molx = (@00 0) Q) (X0+(q—1

o€l

l!l 12

qullZaIXa).

(2) (Character formula of g on L*)

M(Z“"’”) if zelU; (0<j<m)

o€l

Xmg (:E) =
o= () 1 e

ol

PROOF OF COROLLARY 2.2: This follows immediately from Proposition 1.7 (¢) and The-
orem 2.1. ‘

We need several steps to prove Theorem 2.1. Let us start with the structure of D. By
Skolem-Noether theorem, there exists a prime element £ € Op such that

¢ et =2° forany z €L,
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where o is a generator of Gal(L/F). We set @ = ¢!. Then it follows that w is a prime
element of Of and

D =L @ ¢ o --- ¢ 'L
Op =0, & €0, & - @®¢10g
(2.3) Pp =P, ® £0p ® - @70
Pyl =P, @ ¢PL @ - @05
Let 6 be a generic quasi-character of L* with f(8) = m + 1. If f() = 1, then 7y =
Indgzog 6. Since {1,¢,&2,--- , €71} is a complete system of representatives of DX /F*OF,

we get Xz, = )., cr(f000). We assume f(f) =m + 1> 1. We recall that mp = Indgx o,

ml
where H = L*(1 + PI[)_#]). (See (1.4) for the definition of pg). It follows from (2.3) that
i mtl —1 mil 1 m m
(24)  H=FX0F+¢PL* 4. 4 ¢ TP 4 e® P o peiplEl),
By Mackey decomposition [S],
(25) 71-(9IL>< = @ Indfga—lﬂLx pga
a€LX\DX /H

where p&(z) = pg(a~'za) for z € aHa™1 N L*.
At first, we shall investigate L*\D*/H. We have only to consider L*\F*O}/H be-
cause

-1
(2.6) LX\D*/H = | J¢(L*\F*O}/H)  (disjoint union).
=0
For convenience, we often use the following notation:
m4l 1<i< &t
5] (FF <i<i-1).

LEMMA 2.8. Let a =14 '} ¢y and b= 1+ Y\2) 68 (o4, Bi € O1). Then aH = bH
if and only if a; — B; € PE(Z) for 1<i<l-1.

(2.7)

ProoF: By (2.4), aH = bH implies that there exist v € OF and 7, -+ ,Y—1 € Pg(i)
such that b = a(Zi;(l) £'v;). Since Op = OL @ EOL @ --- ® €10 and ¢ 1x¢ = 27 for
x € L, we obtain:
-1 .
l=7y+@» ol ;
j=1
i—1 _
(%) Bi—ai=(y-1)+v+) vl
j=1
-1 .
+w Y yafo; (1<i<i-1).
Jj=i+1
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Therefore we have vy € 1 + P[L;—]+1 and B; — a; € Pg(i) (1<i<l-1).
Conversely we assume f; — o; € P"(l) (1 <37 <1-1). By putting 7 —1 =

—w ZJ Ll ”; into (x), we get
i_l . . l’_‘l . .
i J J J J .
Bi—a; = (1—waf_i)'y,-—}-Z'yj(af_j—wa}’_j)+w Z 7j(a;’+i_j—a;’_j) (1<i<i-1).
j=1 j=i+1

Thus it follows that

vr(vi) > min([Z ), vp(n), - vp(Yi-1)yvo(yisr) + 1, vrp(yi-1) + 1)
for 1<i< i1

’UL(FYi) Z mln([%]) vL(71)7 e )vL(7i—1)7 vL(’Y’i-{-l) + 1) e 7’vL(7l—l) + 1)
for £:2L1 <:<l-1

Hence our lemma follows from the following simple fact that there is no solution to the
system of inequations:

i 2> mill($1,"' 1 Li—1y Li41 +17 y L1—1 +1) (1 < 1 Sl_ 1)

LEMMA 2.9. We put

2

M={(a®a",a”"a"?, - ,aa"la—1)|a e L*} C Og) . X 0(1) (0(1))

where (9(1) Ker Np/p. Then the map (o) € ((’)L)l“1 — 14+ Ei_i £ia; € OF induces a
bijection from M\(Op)"~ 1/(P[ 2 ]) (P[ 2 ]) to LX\F*O[/H.

ProoF: For a € L* and By, -+ .0i—1 € Oy,

-1
a1+ ¢B)H = 1+Zf’ a”1B)H
=1
Therefore our lemma is obtained from Lemma 2.8.

In order to prove Theorem 2.1, we need more information about L*\F*O};/H. We
prepare some notations.
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For1<i<l-1and0<p<n(t), we set

( i1 x 1—i—1 j( pl®FH—p—1yi1 (2] —n
M\(O2)= x OF x (05)== [(PLIFI™ )it 5 (1 4 PLFI74)

; ) (P[M{—l]—#)!—‘—l—i v (P[%]—M)-’——l for 1<i< =L,
i — _

M\(OL)! x OF x (0g)==1/(PY 17715 x (P

\ (1+_P£2]”)><(PI[J]“)II’—Lfor HL <<

7 mily . m4ly mtly - .
(OL/P}I 2 ] 23 1)1—1 % (O});E/l-*‘PLv 3 ] N) X (OL/PI[J P ] ﬂ)-z———zx

(OL /P[ﬂ"’l]_”)l:?l for 1<i< L
(On/PEFI 5 x (0 /P T x (03 /14 P T
\ ((’)L/PE;_] “)i-t=i for HLl <i<I-1,

Ju,i = 4

and

K,i={1 +w“(§j wt! B +Zf?ﬂj By, -+, Bi-1) € Lui}-

_7 i
We define ¢; : (OL)z 1 x OF x (Op)=1 = (Op)1 x OF x (O)—1
as follows:
(2.10) pilar, -, ai1) = (B, fi1), B = ajagﬂag*zz "-af_kt,
where k is determined by 0 < k <[ and —ki = j (mod ). (In particular ; = Ny /ra;).

LEMMA 2.11. (1) A complete system of representatives of the double coset

L*\F*Of/H is given by |J K,;U{l}.
1<i<i—1
0<p<n(s)

(2) The map ¢; induces a bijection from I, ; to J,, ;.

ProOF: Part one follows immediately from Lemma 2.9. For part two, it suffices to see
that ¢, induces a bijection from Iy to Jo1. If 81,7 € O}f and Ba, -+, Bi—1,72, " »Vi-1

. m+tl mily 13 ml -1
€ Op satisty (11, ,mi—1) € M(Br,--,Boa)(1+ PE™ ) x (P2 )5 x (PLF)'),
then there exist o € OF and y; € PZ(Z) (1 <i<1-1)such that

m=ca’a" Bi(l+ 1),
vi=a”a N (Bi+y) (2<i<i-1).
This implies:
[ma] L .
NL/F(ﬂl) NL/F(fyl) mod 1+ P; ? (multiplicative equivalence),
iy = BB 87 mod PP for 2<i<i-1.
Therefore ¢ mduces a well-defined map from I ; to Jy;. The induced map’s bijectivity

follows from the bijectivity of the map (’)(1)\(’)L /14 PL 25 0% /1 + PL.

Np,r

Next we consider the term aHa™' N L* in (2.5).
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LEMMA 2.12. Ifa € K, ;, then aHa™' N LX = FX(1 + PrO=#),

PROOF: Since FX C aHa~! N L*, we have only to see aHa ' NOF = Op(1 + Pg(i)_“).
IfaceaHa N OF, then there exist vy € OFf and v; € PE(Z)_”(I <1 <1l -1) such that
aa=a Zi;é ¢y, Puta=1+ Zé;ll ¢9;. Then we have

Yo _O’,—WZ’)’Z -7

-1
(aaﬂ —%)Bi = v + Zﬁz—ﬂy +w Z ﬂﬁi—j')’j' (I<i<l-1).
J=i+1

By replacing vo by o — @ ZJ 1 'ylﬂl_jj, we get
(@ —a)fiePMY  (1<i<i-1).

Therefore o € O%(1+PF)™*) and aHa"1NOF C OX(1 +P3(i)_“). AsforaHa 'NOF D
OF(1+ Pg(z)_“), we can prove it by the same argument in the proof of Lemma 2.8.

Our next task is to compute p§ for a € L*\D*/H. The above lemma tells us that
ps € (F*(1+ P9 if ¢ € K, ;. If o’ = ¢ia, then o’ Ha'~' N L* = aHa™' N L* and
p% = p% o gi. Therefore it suffices to consider p% for a € LX\F*O}/H.

LEMMA 2.13. LetceFx,yEPn(’) “anda—l-I—w“(wZ’ b ]+Z] La;) e K,
Then

i—1

(P5p5 )1+ v)) = Y(trrp @ (@ > (%7 fij(a)ag

j—1

—J

— 0 fij(a))” ;)
+z “ fimi(@)ed T = ve(fi-i(@)” e))y),

where f;(a) € L is defined by a™! = ¥.'3 ¢4 f;(a).

ProOF: Since (pgpe_l) is trivial on F'*, we can assume ¢ = 1. Put ¢ = 1 + z, then

a"lgag™t = (1+a-1)""g(1+a-1)g7"
=(1+a—-1)"'1+gla-1)g™"

=1+a7 (gla—1)g7" —(a—1))

-1
=l+a o (@) Fai(g” g7 - 1)+ )Y Eaj(¢” g7 - 1)).
Jj=t

j=1
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iy mit2 mit2
Since wh(ew ok €y + NUTie9ay) € PL), po(1+ ) = lirppyez) ( € P )
and trD/F’)’aﬁjL =0 (1<j<i=1),

(pps ) (g) = po(agag™")

= ¢(trD/F ,Yga—lwll'(wajaj(gan_l - 1)

7=1
-1 S
+Y ta;(g” g™ - 1))
Jj=1
i—1 . .
= p(trp/p 00 @ (@ Y (fi-j(a))” @j(97 g1 ~ 1)
j=1

+Z fi-j(a) aa]g 9 ~t-1).

i

In the last term of the above equations, y9 € P; ™, fi—j(a) € P} and g l-1=y" —y
mod Pz("(z)_” ). Therefore

)

(pgp5 )(9) = Y(trr p yea " w"+( Z(fl——] ) aj(g” gt — 1)

-1 4 |
+ Z(fl—j(a))aj a;j(g” g7t = 1))).

(We note 1 is trivial on Pr). Hence our lemma follows from the following property:
trp/p w = trp/F w’ v for any wu,v € L.
We prepare the next lemma for the purpose of writing fi(a) by (a;)i1<j<i—1
LEMMA 2.14. Fora=Y\"( & a; (o; € L), put

Ala) = (w[1+L?—l]ai—jmodl)ogi,jgl——l

1—1

oy  woay way
ap af :
=1 0 | e M),
: s way_y
1—2 -1
a1 Ce aif ag

and
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a,k—l k+1 o_l—-l
QWO gy WOyt WO
. k|l o1 Sk+1 o1 X
Ag(a)=(-1)°"| o -+ af wa | - waf,, | €L
k 1 k+1 a'z—-l
Q-1 Qg ] Tt Qg

i.e. Ag(a) is the (1,k + 1)-cofactor of A(a). Then

; Ay(a)
Zf Ada)]”

where |A(a)| is the determinant of A(a).
PRrROOF: By the map A: D — M;(L), we can embed D into M;(L). Then our lemma

follows from the basic matrix theory.

We define L-valued functions R, ; on (’)2‘1 x O 1’;( X Oi‘i_l by :
i-1 _ . ‘
Ry, -+, Bim1) = wht? Z(’)’g fij(@)a] = ve(fi-j(a))” ;)
+ @t Z('y fimi(@)ad —ve(fi—i(a)” ),

where ;(ay, - ,a1-1) = (B1,-+,0i—1) and a = 1 + w“(wzz;ll oy + Zé; & ay).
(As for the definition of ¢; and f;(a), see 2.10 and Lemma 2.12 respectively). It is eas-
ily seen that R, ; is well-defined. In fact, we can show by virtue of Lemma 2.14 that

R, (B, ,Bi—1) is a rational function of {[3 }1<_7,k<l 1. Wefix 8;(1 <j<Il-1) for
all j but ! — 7 and define a function Ru ; on O by:

Ru,i(m) - Rp,,i(/Bla e nBl—i—ly z, ﬂl—i+1, e a/Bl—l)-
The next lemma is the key point in this proof of Theorem 2.1.
LEMMA 2.15. Let LO) = {z € L | trypz =0} Then R,; has the following property:

~ my_ —[mtl
1) R, ; induces a surjection from Op, plEI=# o p2rtl=m (o) prt1=1%71 4 1(0)
(N L L L
and each fiber of the induced map has ¢|¥17# elements if 1 < i < I_Tl,
S L (25 —p—1 2u+2-—m 0) s ptt+1-[%] 0
(2) Ry, induces a surjection from Or/P} * to P/ nL®) /Py 2'nL©
and each fiber of the induced map has q[lzﬂ]‘“‘l elements if 52'—1— < <Il-1.

PRrOOF: We assume 1 < < Tl By virtue of Lemma 2.14 and Lemma 2.15, we can show

R, i(z) = az — (az)” +b mod PEL(‘B)+2H+1—m,
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where a = @?*1(y"" — 79) € PP#1™™ — PP***7™ and b is a constant in pprrimm,
= _[mtl
Therefore we can get our lemma by induction on ['—2"-] — u since R, ;(z) mod P£+1 [=5=]

is a polynomial of {z,z7,--- ,m"l‘l} whose coefficients belong to Pg““"m. The case

'izl— < ¢ <1l -1 is proved by the same way.

Summing up the above lemmas, we have the following result.

LEMMA 2.16. (1) If1<:i< B2

mtly_
K, — (FXQ+P, 7 ™)
a PPy

is a surjection to (Fx(l + P}lﬂ;—l']““)/Fx(l + PZL_Z”)) and each fiber of the map has
(q . 1)q$l—1!!1—§!!m—2u!_l(i_l)_l

(2 I <i<i-1,

elements.

K, — (FX(1+PLEI")
@ Psrs

is a surjection to (Fx(l + P}?]_“)/F"(l + P£"_2“_1)) and each fiber of the map has
(=1)(=2)(m=2u=1) _j; 141y_
(¢—1g : =)

elements.
PrROOF: Let 1 < s <t < 2t,b € P NL®,c € FX and y € P,~". Then the map
b b= (c(1+7y) Y(try/p by)) induces an isomorphism between P} N LO /PN LO

and (F*(14+P;~")/F*(1+P;™*))" since the conductor of  is Pr, and L/F is unramified.
Hence our lemma holds by virtue of Lemma 2.15 and 2.12.

Proor oF THEOREM 2.1: By Lemma 2.16,

A=00=2)(m=20) 51y
(Q"‘ 1)q 2 i(i-1) 1‘)51711—2;1.
x if 1<:1< 5=
Indea—lan pg =10 (1—1)(1—2)(m—21u-—1) AT
ag,i ® (q - 1)q 2 _l(za%)_le—Zu—l
- ' if Bl<i<i-1,
where X; = D x- Thus by Lemma 2.11 and (2.5), we have:
XE(LX [FX(1+P}))"
‘ 1(i—1) m

. . q 2 —_ 1-1)(1—2)(a—1

The rest of Theorem 2.1 follows immediately from the above formula.

Next we consider the case E % L. Then E is a totally ramified extension of F' of degree
[. This case is very easy.
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THEOREM 2.17. Let 8 be a regular quasi-character of L* with min f(6®(noNr r)) = m+1
7
and mg as in (1.6).

(1) (Decomposition of wg as E*-module)

(-1-2)m
D

Tolpx =0®q 2 X

XE(BX[F*(1+Pg"*h)"
(2) (Character formula of mg on E*)

0 if x¢g F*(1+ Pt
Xﬂ’e(m) =

0(c)lg™ =" if x=c(1+y) € FX(1+ Pt

ProoF: It suffices to say that xn,(z) = 0 if [{%2] < vg(z — 1) < Im. (We note that
FX(1+ Pi™) = FX(1 + PZ™)). Set 7 = vg(z — 1). From the definition of =,

Xw(®) = > po(g ' zg)

gEDX [H
1 L
T l(imtl—r—[mii=r)) Z Z po((1+k)"Tg  zg(1 + k).
q Z geEDX /H keP][)!ﬂi'il_*_"]/PIle_*_l_r

Set g7lzg = 1 + h. By virtue of (1 +k)"1(1 +A)(1 + k) =1 + hk — kh mod Pll)m+1,
po((1+ k)~1(1 + h)(1 + k)) = %(trp p(70h — hye)k). Since h € P} and h & PJ + P5,

A AN fot [ll_%ﬂ] Im+41—r
the map k +— ¥(trp,r(veh — h7e)k) is a non-trivial character of Pp, /Pp . (cf.

6.7 [Ca]). Therefore x,(z) = 0.
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