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In this note, we give topological invariants of $\Sigma_{1,\ldots,1}$-type singularities for isotropic

mappings, namely, for Lagrange immersions with singularities. The simplest one of our

formulae can be considered as the symplectic version of Rieman-Hurwitz formula.

\S 0 Introduction

Let $L$ be an n-dimensionl $C^{\infty}$ manifold, and $(M, \omega)$ a $2n$-dimensional symplectic

manifold (i.e. $\omega$ is a nondegenerate closed 2-form on $M$ ). A $C^{\infty}$ mapping $f$ : $Larrow M$ is

called isotropic if $f^{*}w$ is null on $L$ . In particular, an isotropic immersion is usually called

a Lagrange immersion.

The notion of Lagrange immersions plays an important role in classical mechanics,

geometric optics, asymptotic analysis on solutions of nonlinear P.D.E... etc, and there

have been many works on the topology of Lagrange immersions from various viewpoints.

On the other hand, for Lagrange immersions with singularities (i.e. non-immersive points
$)$ , the local theory is recently developed (see Ishikawa [I], Givental’ $[G]$ ), but few are results

on their global topological aspects. As far as the author knows, there is only the work of

Givental’ concerning singular Lagrange surfaces in a 4-dimensional symplectic manifold $($

see [G]). Here we introduce the result of Givental’ in a simple situation as follows.

Theorem (0.1) (Givental‘ [G]). Let $S$ be a closesd surface, $M=R^{4}pro$vided with

th $ec$anonical symplectic structure, an$df$ : $Sarrow R^{4}$ an isotropic mapping which $h$ as th $e$

$op$en Whitney umbrellas as its singularities (see Remark below). Then,

(1) if $S$ is orientable, the number of singular poin $ts$ of $ft$aking accounts of signs is $eq$ ual

to zero (the sign of a singular point is $d$efin$ed$ by th $e$ local Maslov index at that poin $t$ ).

(2) If $S$ is $n$ on-orientable, the number of singular points of $f$ is equal to the Euler num $ber$

of $L$ modulo 2.
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Remark (0.2) $([G|)$ : (1) An open Whitney umbrella is described by the following local

model: $f_{2,1}$ : $R^{2},0arrow R^{4},0$ defined by $f_{2,1}(u, v)=(p_{1}, q_{1},p_{2}, q_{2})=(v^{3}/3, u, \prime uv, v^{2}/2),$ $\omega=$

$dp_{1}\wedge dq_{1}+dp_{2}\wedge dq_{2}$ . Note that the map $f$ in the above (0.1) has isolated singular points.

(2) We will review the definition of the local Maslov index in a general situation in \S 3.

In this paper, we generalize the above formulae (1) and (2) of Givental’ from the

viewpoint of Thom polynomials in the singularity theory (see Porteous [P]).

As another appraoch to the original work of Givental’ [G], Ishikawa and the author

obtained formulae of integrations some local invariants over a real singular surface in an

almost complex manifold of dimension 4 ([I-O]).

Throughout this paper, all manifolds and maps are of class $C^{\infty}$ .

\S 1 Preliminary and the formulation of results

Let $f$ : $L”arrow M^{2n}$ be isotropic, and assume that its differential $df_{x}$ at each $x\epsilon L$ has

kernel rank at most 1.

We use Thom’s geometric descriptions of singularity sets of $f$ , considering $f$ simply

as a $C^{\infty}$ mapping : Set $\Sigma_{1}(f)=\{x\epsilon L|dimKer(df)_{x}=1\}$ , and if $\Sigma_{1}(f)$ is a $C^{\infty}$ sub-

manifold of $L$ , then set $\Sigma_{1,1}(f)$ $:=\Sigma_{1}(f|_{\Sigma_{1}(f)})$ . We may continue to define $\Sigma_{1^{k}}(f)(=$

$\Sigma_{1,\ldots,1}(f)$ with 1 repeated $k$ times) as $\Sigma_{1}(f|_{\Sigma_{1^{k-1}}}(J))$ inductively.

By using Ishikawa’s theorem in [I], we can see that if $f$ is in some open dense subset

$G$ of the space of all isotropic mappings from $L$ to $M$ with kernel rank at most 1, then

each $\Sigma_{1^{k}}(f)(1\leq k\leq[\frac{\eta}{2}])$ is well-defined, and the codimension of $\Sigma_{1^{k}}(f)$ in $L$ is equal to

$2k$ . $G$ is also defined in terms of suitable transversal properties on intrinsic derivatives.

We let $P_{h}(f)$ (resp. $P_{h}’(f)$ ) denote the cohomology class dual to $[\Sigma_{1^{k}}(f)]$ in

$H^{2h}(L, Z)$ (resp. $H^{2h}(L,$ $Z_{2})$ ).

According to [W] every symplectic manifold $(M, w)$ admits an almost complex struc-

ture $J$ such that $w(*, J*)$ is positive definite, and $J$ is uniquely determined up to homotopy.

Here we fix such a $J$ , by which we will consider the tangent bundle $TM$ as a complex vector

bundle over $M$ . Remark that Chern classes $c_{i}(TM)$ are independent of the choice of $J$ .
We now state the main results in this paper.
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Theorem (1.1). Let $f$ : $L^{n}arrow M^{2\tau\iota}$ be an isotropic mapping in $G$ , an $d$ le $t1 \leq k\leq[\frac{n}{2}]$ .

Then, (1) if $L$ is orientable, then 2$c:(f^{*}TM-TL_{C})=0$ for $(i\geq 2)$ , and $P_{h}(f)=$

$f^{*}c_{1}(TM)^{h}$ modulo elements of order 2, an$d$

(2) if $L$ is non-orientable, then $P_{h}’(f)= \sum_{j}^{[\frac{k}{2=}]_{0}}\sigma_{j}w_{2}^{h-j-1}w_{2j+2}$ , where $w$ . means th $e$ s-th

Stiefel-Whitney class of the diff’erence bun$dlef^{*}TM-TL\oplus TL$ , and the number $\sigma_{j}$ denotes
$(^{[\frac{k}{i^{2}}]})$ .

In the case of $n=2$ , we have the following formulae, which are slightly different from

Givental’s (0.1) at the point that some characteristic numbers appear.

Corollary (1.2). Let $f$ be an isotropi$cm$apping from a closed surface $S$ to a 4-dimensional

symplectic manifold $M$ with open Whitney umbrellas as its singularities. Then,

(1) if $L$ is orientable, the number of $singular$ points of $f$ taking accounts of signs is $eq$ ual

to the Chern number $<f^{*}c_{1}(TM),$ $[S]>$ (th$e$ sign is given by the local Maslov index at

that poin $t$ ), and

(2) if $L$ is non-orienta$ble$, the number of singular poin $ts$ (mod.2) is equal to the sum of

$\chi(S)(mod.2)$ and the Stiefel-Whitney number $<f^{*}w_{2}(TM),$ $[S]_{2}>$ .

\S 2 Outline of the proof for $\Sigma_{1}$ -type

Let $f$ : $L^{n}arrow M^{2n}$ be an isotropic mapping with kernel rank at most 1, and let $TM’$

denote $f^{*}TM$ .
First, we define the tautological (R-linear) bundle isomrophism

$\rho$ : $Hom_{R}(TL, TM’)arrow Hom_{C}(TL_{C}, TM’)$

by $\rho(h)(u, v)$ $:=h(u)+Jh(v)$ for $(u, v)\epsilon TL_{p_{C}}$ . lf $h:TL_{p}arrow TM_{p}’$ is an isotropic linear

map, we can see that $ker\rho(h)=(kerh)_{C}\subset TL_{p_{C}}$ . Thus $\Sigma_{1}(f)$ coincides with $(\rho odf)^{-1}\Sigma_{1}^{C}$ ,

where $\Sigma_{\tau}^{C}$ denote the subbundle of $Hom_{C}(TL_{C}, TM’)$ consisting of all C-linear maps with

kernel rank $r$ .
Second, we assume that the induced section $\rho odf$ is transversal to $\Sigma_{1}^{C}$ (see Remark

(2.1)). It can be proved that this condition is independent of the choice of the almost
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copmlex structure $J$ on $TM$ and is a generic condition on the space of isotropic mappings

with kernel rank at most 1.

Then we can apply Thom-Porteous’ formula to $\rho odf$ , and hence we obtain that

$P_{1}(f)=f^{*}c_{1}(TM)-c_{1}(TL_{C})$ . In particular, in the case of $n=2$ , this formula can be

considered as the symplectic version of Rieman-Hurwitz formula.

For higher order singularities $\Sigma_{1^{k}}$ , under the appropriate transversality conditions on

the higher derivatives of $f$ , we can apply the desingularization method due to Porteous [P]

to obtain the formulae in Theorem (1.1). For the detail, see [O].

Remark (2.1): Unfortunately, it is non-sense to consider the similar approach to the case

of kernel rank greater than 1. In fact, for any isotropic mapping $g$ which has singularities

of kernel rank $r$ greater than 1, $\rho odg$ is never transversal to $\Sigma^{C}$ . This comes from the fact

that all isotropic linear mappings form an algebraic variety whose singular locus consists

of isotropic linear mappings with kernel rank greater than 1 (see $[I],[O]$ ).

\S 3 The local Maslov class and the co-orientation of $\Sigma_{1}(f)$

In this section, we shall review the the local Maslov class, and complete the proof of

(1) in Corollary (1.2).

First, let $f$ : $L”arrow M^{2n}$ be isotropic simply, $\Sigma(f)$ the set of all singular points of $f$

and $p\epsilon\Sigma(f)$ . We assume $L$ is oriented.

Recall the definition of the local Maslov class at $p$ of $f$ according to [I’] (or [G]

$)$ : Choose a contractible neighborhood $U$ around $p$ and a trvialization of the symplectic

bundle $\sigma$ : $TM’|U\simeq U\cross R^{2\pi}$ . Set $\Sigma=U\cap\Sigma(f)$ , and then the restriction of $f$ to $U-\Sigma$

is a Lagrange immersion. By using the trivialization $\sigma$ , this restriction map induces the

Gauss map $\phi_{f}$ from $U-\Sigma$ to the oriented Lagrange Grassmannian A$(n)$ . Let $\mu$ be the

Maslov class of A$(n)$ , and then we define the local Maslov class at $p$ of $f,$ $m(f)p)$ , as

$\phi_{f}^{*}\mu\epsilon H^{1}(U-\Sigma;Z)$ . $m(f,p)$ is independent of the choice of $\sigma$ (see [I’]).

Next, we assume that $p\epsilon L$ is a singular point at which $df$ has kernel rank 1, and also

that $\rho odf$ is transversal to $\Sigma_{1}^{\circ}$ at $p$ . Then, $\rho odf$ induces an orientation of the normal
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space to $\Sigma_{1}(f)$ at $p$ , and hence it determines a generator of $H^{1}(U-\Sigma;Z)$ for sufficiently

small $U$ . It can be verified that

LEMMA. This generator coincides with the local Maslov class $m(f,p)$ .

The proof of (1) of Corollary (1.2)

In the case of $n=2$ , for an isolated singular point $p$ of an isotropic mapping $f$ : $Sarrow M$ ,

we define the local Maslov index of $f$ at $p$ as $<\phi_{f}^{*}\mu,$ $c>\epsilon Z$ , where $c$ is the generator of

$H_{1}(U-p;Z)$ compatible to the orientation of $S$ .
We now assume that $f$ has only open Whitney umbrellas as its singularities (i.e.

$\rho odf$ is transversal to $\Sigma_{1}^{C}$ ). Then, the above lemma yields that the sum of the local

Maslov indices is equal to the transversal index of $\rho odf$ and $\Sigma_{1}^{C}$ , and hence we have (1)

of Corollary (1.2) by the formula of $P_{1}(f)$ . This completes the proof.

\S 3 Application to the ray system

Finally, we introduce a simple application of our formulae to the generalized Cauchy

problem for an Hamilton-Jacobi equation defined in a symplectic manifold $(M, w)$ of di-

mension $2n$ . Our framewark described below is based on $[A],[A- M]$ and $[G’]$ (i.e. the ray

system in [A] and $[G’]$ ).

Let $E$ be a hypersurface in $M$ with the normal bundle $\nu,$
$\xi$ the characteristic line field

on $E$ (i.e. the skeworthogonal line bundle $TE^{\perp}$ ) and $F$ : $M\cross Rarrow M$ the flow of $\xi$ .
Note that $\nu$ is canonicaly isomorphic to $\xi$ .

Let $N$ be an (n-l)-dimensional compact isotropic submanifold of $M$ such that $N\subset E$ .
It is well known that if $N$ is transverse to $\xi$ , then $F(N\cross R)$ is a Lagrange submanifold

contained in $E$ , which can be considered as the geometric solution of the equation $E$ with

the initial data $N$ . If $N$ is tangent to $\xi$ at some points, $F(N\cross R)$ becomes a Lagrange

manifold with singularities, whose singularities appear along the union of integral curves

through the non-transeversal points of $N$ to $\xi$ . A point $x$ of $N$ is called tangential to $\xi$ of
order $k$ if the integral curve through $x$ is tagent to $N$ at $x$ of order $k$ . Let $S_{h}(\xi)$ be the set

of the k-th order tangential points in $N$ . For the initial data $N$ in general position, $S_{h}(\xi)$
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is a closed $C^{\infty}$ -submanifold of $N$ with codimension $2k$ .

Now our interest is to find topological obstructions of the existence of $S_{h}(\xi)$ . Applying

above Theorem to this situation, for instance, we have

Corollary (1.3). The Poincaxe dual to th $eh$omology $class[S_{1}(\xi)]$ of $N$ is equal to

$c_{1}(i^{*}\tau_{M}-\nu_{C}-TL_{C})$ .
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