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COMPLETELY INTEGRABLE
FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

SHYUICHI IZUMIYA (泉屋周一)
Department of Mathematics, Hokkaido University, (北大理)

Sapporo 062, Japan

Abstract. This is a summary of recent papers ([5,8,9,10,11,12]). We consider some properties
about completely integrable first order differential equations for real-valued functions. In
the first part, we will give the general frame work and introduce the theory of Legendrian
unfoldings in order to study this subject. We give a characterization of equations with classical
complete solutions in terms of Legendrian unfoldings. We will consider the single equation
case in the second part in where a characterization of complete integrability by the equation
itself will be given. Furthermore, we will consider the holonomic case in the third part.
We will give a classffication of completely integrable holonomic systems by the equivalence
relation due to Lie. By the aid of the classification, we will draw some pictures of graphs of
complete integrals.

PART 1. GENERAL FRAMEWORK

We now consider the following fundamental problems in the geometric theory of difFer-
ential equations :
A) Find out a good class of differential equations.
B) Characterize the above class in some sense.
C) Classify equations in the above class by a good equivalence relation.

In this note we stick to completely integrable first order partial differential equations for
real-valued functions because this class has very nice general natures and it is a prototype
of higher order cases.

In the classical theory, a system of first order partial differential equations (or, briefly,
an equation) is written in the form $F_{k}(x_{1}, \ldots, x_{n}, y,p_{1}, \ldots,p_{n})=0$ for $k=1,$ $\ldots,$ $2n+$

$1-r,$ $r\geq n$ . $A$ (classical) solution of the equation is a smooth function $y=f(x_{1}, \ldots, x_{n})$

and $p_{i}= \frac{\partial f}{\text{\^{o}} x_{i}}(x)$ . We usually assume that $F_{k}$ are $(2n+1)$-variable smooth function and

rank$( \underline{\partial}\partial xFr_{i}\frac{\partial F}{\partial z}h\frac{\partial F_{k}}{\partial p_{j}})=2n+1-r$ . We now define

$\Sigma=\{(x, y,p)|F_{1}(x, y,p)=\cdots=F_{2n+1-r}(x, y,p)=0$ and

rank ( $\frac{\partial F_{k}}{\partial p_{j}}(x, y,p)<\min(n, 2n+1-r)$ }.

An (classical) solution of the equation is a smooth function $y=f(x_{1}, \ldots, x_{n})$ with $p_{i}=\lrcorner\partial\partial x$

:
which satisfy the relation $F_{k}=0$ . We say that an $(r-n)$-parameter family of (classical)
solutions $y=f(t_{1}, \ldots,t_{r-n}, x_{1}, \ldots, x_{n})$ of the equation is $a$ (classical) complete solution
if rank$( \partial\lrcorner_{j}\frac{\partial^{2}f}{\partial t_{i}\partial x_{j}})=r-n$ .

The following theorem is one of the best results in the classical theory.
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THEOREM 1.1. (CLASSICAL EXISTENCE THEOREM). If the $eq$uation is involutory near a
point $(x_{0}, y0,p_{0})$ and $(x_{0}, y_{0},p_{0})\not\in\Sigma$ , then there exists a (classical) compl$ete$ solution of
th$eeq$uation near $(x_{0}, y_{0},p_{0})$ .

We say that th$e$ equation is involutory if $[F_{j}, F_{k}]=0$ for $j,$ $k=1,$ $\ldots$ , $2n+1-r$, where

$[F, G]=F \cdot\frac{\partial G}{\partial z}-G\cdot\frac{\partial F}{\partial z}+\sum_{i=1}^{n}(\frac{\partial F}{\partial x_{i}}\cdot\frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}}\cdot\frac{\partial G}{\partial x_{i}})$

$+ \sum_{i=1}^{n}p_{i}\cdot(\frac{\partial F}{\partial z}\cdot\frac{\partial G}{\partial p_{i}}-\frac{\partial G}{\partial z}\cdot\frac{\partial F}{\partial p_{i}})$ .

We now give a geometric framework of the theory of first order differential equations. Let
$J^{1}(R^{n}, R)$ be the l-jet bundle of functions of n-variables. Since we only consider the local
situation the l-jet bundle $J^{1}(R^{n}, R)$ may be considered as $R^{2n+1}$ with a natural coordinate
system $(x_{1}, \ldots, x_{n}, y,p_{1}, \ldots,p_{n}),$ $where(x_{1}, \ldots, x_{n})isacoordinatesystemofR^{n}$ . We have
the natural projection $\pi$ : $J^{1}(R^{n}, R)arrow R^{n}\cross R$ ; $\pi(x, y,p)=(x, y)$ .

An immersion germ $i$ : $(L, q)arrow J^{1}(R^{n}, R)$ is said to be a Legendrian immersion germ if
$\dim L=n$ and $i^{*}\theta=0$ , where $\theta=dy-\sum_{i=1}^{n}p_{i}dx_{i}$ . The image of $\pi oi$ is called a wave
front set of $i$ . We say that $q\in L$ is a Legendrian singular point if rank $d(\pi oi)_{q}<n$ .

We now describe the geometric structure connected with first order differential equations.
A first order differential equation is most naturally interpreted as being a closed subset of
$J^{1}(R^{n}, R)$ . Unless the contrary is specifically stated, we use the following definition.

A system offirst order differential equations (or, briefly an equation) is an r-dimensional
submanifold $E\subset J^{1}(R^{n}, R)$ , where $n+1\leq r\leq 2n$ . If $r<2n$ , then $E$ is said to be
overdetermined. We also say that $E$ is maximally overdetermined (or holonomic) if $r=$
$n+1$ .

By the philosophy of Lie, we may define the notion of solutions as follows. An (abstract)
solution of $E$ is a Legendrian immersion $i:Larrow J^{1}(R^{n}, R)$ such that $i(L)\subset E$ .

Let $f$ : $R^{n}arrow R$ be a smooth function. Then $j^{1}f$ : $R^{n}arrow J^{1}(R^{n}, R)$ is a Legendrian
embedding. Hence, in our terminology, the (classical) solution of $E$ is a smooth function
$f$ such that $j^{1}f(R^{n})\subset E$ .

On the other hand, we can show that an (abstract) solution $i$ : $Larrow J^{1}(R^{n}, R)$ is given
by (at least locally) a jet extension $j^{1}f$ of a smooth function $f$ if and only if $\pi oi$ is
a non-singular map. Thus the (abstract) solution has multi-valued near the Legendrian
singular point. We also define the notion of singularities of equations. Let $E^{r}\subset J^{1}(R^{n}, R)$

be an equation. Then $z\in E$ is said to be a contact singular point if $\theta(T_{z}E)=0$ . We also
say that $z\in E$ is a $\pi$ -singular point if rank $(d\pi|E)_{z}<n+1$ . We can easily show that
if $z$ is a contact singular point of $E$ , then it is a $\pi$-singular point of $E$ . Let $\Sigma(\pi|E)$ be
the set of $\pi$-singular points and $\Sigma_{c}(E)$ be the set of contact singular points. We say that
$D_{E}=\pi(\Sigma(\pi|E))$ is a discriminant set of the equation $E$ .

Our purpose in this section is to establish the notion of (abstract) complete solutions.
Let $y=$ $(t_{1}, \ldots , t_{r-n}, x_{1}, \ldots, x_{n})$ be the (classical) complete solution of $E$ , then we have a
jet extension

$j_{*}^{1}f$ : $R^{r-n}\cross R^{n}arrow J^{1}(R^{n}, R)$
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which is defined by $j_{*}^{1}f(t, x)=j^{1}f_{t}(x)$ , where $f_{t}(x)=f(t, x)$ . Then it is easy to show that
$j_{*}^{1}f$ is an immersion. Since $dimE=r$, then $j_{*}^{1}f$ gives (at least locally) a parametrization
of $E$ and $j_{*}^{1}f(t\cross R^{n})$ is a (classical) solution of $E$ for any $t\in R^{r-n}$ . Thus there exists a
foliation on $E$ whose leaves are (classical) solutions. Thus we can generalize this notion to
an abstract sense. We say that an equation $E\subset J^{1}(R^{n}, R)$ is completely integrable (or $E$

has an (abstract) complete solution) if there exists an n-dimensional completely integrable
distribution $\mathcal{D}$ on $E$ such that $\theta_{z}(\mathcal{D}_{z})=0$ for any $z\in E$ .

By the Frobenius’ theorem, we have the following proposition.

PROPOSITION 1.2 [8]. Let $E^{r}\subset J^{1}(R^{n}, R)$ be an equation. Then the following conditi$ons$

are equivalent.
(1) $E$ is completely integrable.
(2) For any $q\in E$ , there exist a neighbourhood $U$ of $q$ in $E$ and smooth functions

$\mu_{1},$ $\ldots,$ $\mu_{r-n}$ on $U$

such that
$d\mu_{1}\wedge\cdots$ A $d\mu_{r-n}\neq 0$ on $U$

and
$\langle d\mu_{1}, \ldots, d\mu_{r-n})_{C^{\infty}(U)}\supset\{\theta|U\rangle_{C^{\infty}(U)}$

as $C^{\infty}(U)$ -modules, where $C^{\infty}(U)$ denotes the ring of smooth functions on $U$.
(3) For any $q\in E$ , there exist a neighbourhood $V\cross W$ of $0$ in $R^{r-n}\cross R^{n}$ and an

embedding
$f$ : $V\cross Warrow J^{1}(R^{n}, R)$

such that
$f(0)=q,$ $f(V\cross W)\subset E$

and
$f|\{t\}\cross W$ : $\{t\}\cross Warrow J^{1}(R^{n}, R)$

is Legendrian embedding for any $t\in V$.
In this part an equation is defined to be an immersion $f$ : $Uarrow J^{1}(R^{n}, R)$ where $U$ is

an open subset of $R^{n}$ . By Proposition 1.2, we say that $f$ is completely integrable if there
exists a submersion

$\mu=(\mu_{1}, \ldots, \mu_{r-n})$ : $Uarrow R^{r-n}$

such that
$\{d\mu_{1}, \ldots, \mu_{r-n}\}_{C^{\infty}(U)}\supset.f^{*}\theta\}_{C^{\infty}(U)}$ .

We call $\mu=$ $(\mu_{1}, \ldots , \mu_{r-n})$ a complete integral of $f$ and the pair

$(\mu, f)$ : $Uarrow R^{r-n}\cross J^{1}(R^{n}, R)$

is called a first order differential equation with complete integral (or, briefly, an equation
with complete integral).
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We can also define the above notions in terms of map germs : An equation germ is
defined to be an immersion germ $f$ : $(R^{r}, 0)arrow J^{1}(R^{n}, R)$ . We say that $f$ is completely
integrable if there exists a submersion germ

$\mu=(\mu_{1}, \ldots, \mu_{r-n})$ : $(R^{r}, 0)arrow R^{r-n}$

such that
$\{d\mu_{1},$

$\ldots,$
$d\mu_{r-n}\rangle$ $\epsilon_{u}\supset(f^{*}\theta\rangle_{\mathcal{E}_{u}}$ ,

where $u=(u_{1}, \ldots, u_{r})$ is the canonical coordinate of $(R^{r}, 0)$ and $\mathcal{E}_{u}$ is the ring of function
germs of u-variables at the origin. Then $\mu$ is called a complete integral of $f$ and the pair

$(\mu, f)$ : $(R^{r}, 0)arrow R^{r-n}\cross J^{1}(R^{n}, R)$

is called an equation germ with complete integral. In order to understand the above notions,
we give two examples.

EXAMPLE 1.3. We consider the following equations of two independent variables.

(1) $\{\begin{array}{l}(\frac{\partial y}{\partial x_{1}})^{2}-x_{1}=0\frac{\partial y}{\partial x_{2}}=0\end{array}$

(2) $\{\begin{array}{l}y-(\frac{\partial y}{\partial x_{1}})^{2}=0\frac{\partial y}{\partial x_{2}}=0\end{array}$

We can exactly solve these equations, then complete solutions are

(1’) $y= \pm\frac{2}{3}x^{\frac{3}{1^{2}}}+t$

(2’) $y= \frac{1}{4}(x_{1}+t)^{2}$ ,

where $t$ is a parameter. The submanifold in $J^{1}(R^{n}, R)$ which is defined by (1) is the image
of the immersion $f$ : $R^{3}arrow J^{1}(R^{2}, R)$ defined by $f(u_{1}, u_{2}, u_{3})=(u_{1}^{2}, u_{2}, u_{3}, u_{1},0)$ . If we
consider a submersion $\mu$ : $R^{3}arrow R$ defined by $\mu(u_{1}, u_{2}, u_{3})=u_{3}-\frac{2}{3}u_{1}^{3}$ , we can easily check
that $d\mu=f^{*}\theta$ .

We also define $(\mu, f)$ by $f(u_{1}, u_{2}, u_{3})=(u_{1}, u_{2}, u_{3}^{2}, u_{3},0)$ and $\mu(u_{1}, u_{2}, u_{3})=u_{3}-\frac{1}{2}u_{1}$ ,
then the image of $f$ is the submanifold in $J^{1}(R^{n}, R)$ which is defined by the equation (2)
and we have $f^{*}\theta=2u_{3}d\mu$ .

In both cases, we can observe that $\pi of(\mu^{-1}(t))$ is the graph of the solution in $R^{2}\cross R$ .
LEMMA 1.4 [8]. Let $(\mu, f)$ be an equation germ with complete integral. Then there exisi
unique elements

$h_{1},$
$\ldots,$

$h_{r-n}\in C_{u_{0}}^{\infty}(R)$
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such that

$f^{*} \theta=\sum_{i=1}^{r-n}h_{i}\cdot d\mu_{i}$ ,

where $\mu(u)=(\mu_{1}(u), \ldots, \mu_{r-n}(u))$ and $C_{u}^{\infty_{0}}(R)$ is the ring of smooth function germs at $u_{0}$ .

We now consider the l-jet bundle $J^{1}(R^{r-n}\cross R^{n}, R)$ and the canonical l-form $\Theta$ on the
space. Let $(t_{1}, \ldots, t_{r-n}, x_{1}, \ldots, x_{n})$ be canoni $c$al coordinate system on $R^{r-n}\cross R^{n}$ and

$(t_{1}, \ldots, t_{r-n}, x_{1}, \ldots, x_{n}, y, q_{1}, \ldots, q_{r-n},p_{1}, \ldots,p_{n})$

be corresponding coordinate system on $J^{1}(R^{r-n}\cross R^{n}, R)$ . Then the canonical l-form is
given by

$\Theta=dy-\sum_{i=1}^{n}p_{i}\cdot dx_{i}-\sum_{i=1}^{r-n}q_{i}\cdot dt_{i}=\theta-\sum_{i=1}^{r-n}q_{i}\cdot dt_{i}$.

We define the natural projection

$\Pi$ : $J^{1}(R^{r-n}\cross R^{n}, R)arrow(R^{r-n}\cross R^{n})\cross R$

by $\Pi(t, x, y, q,p)=(t, x, y)$ We call the above l-jet bundle a unfolded l-jet bundle.
Define a map germ

$\mathcal{L}$ : $(R, u_{0})arrow J^{1}(R^{r-n}\cross R^{n}, R)$

by
$\mathcal{L}(u)=(\mu(u), xof(u),$ $yof(u),$ $h(u),pof(u))$ .

Then we can easily show that $\mathcal{L}$ is a Legendrian immersion germ. If we fix l-forms $\Theta$ and $\theta$ ,
the Legendrian immersion germ $\mathcal{L}$ is uniquely determined by the Legendrian family $(\mu, f)$ .
We call $\mathcal{L}$ a complete Legendrian unfolding associated with the Legendrian family $(\mu, f)$ .
We remark that even in the one parameter case the notion of the Legendrian unfoldings
is slightly different from the notion of extended Legendrian manifolds in the sense of
Zakalyukin[16]. For example, we now consider a Legendrian immersion germ $\mathcal{L}$ : $(R^{2},0)arrow$

$J^{1}(R\cross R, R)$ defined by $\mathcal{L}(u, v)=(u^{2}+3v^{2}, u, 2v^{3}, v, -2uv)$ , it is the extended Legendrian
immersion germ. But it is not a Legendrian unfolding because $u^{2}+3v^{2}$ is not a submersion.
Let $\mathcal{L}$ : $Uarrow J^{1}(R^{r-n}\cross R^{n}, R)$ be a complete Legendrian unfolding associated to the
Legendrian family $(\mu, f)$ . Since $\mathcal{L}$ is uniquely determined by $(\mu, f)$ , we denote $p_{(\mu,f)}$ instead
of $\mathcal{L}$ .

Conversely, let $\mathcal{L}$ : $Uarrow J^{1}(R^{r-n}\cross R^{n}, R)$ be a Legendrian immersion such that $f$ is an
immersion and $\mu$ is a submersion with $\Pi_{1}0\mathcal{L}=(\mu, f)$ , where $\Pi_{1}$ : $J^{1}(R^{r-n}\cross R^{n}, R)arrow$

$J^{1}(R^{n}, R)$ is the canonical projection. Then $(\mu, f)$ is an equation with complete integral
and $\mathcal{L}=p_{(\mu,f)}$ .

Some effects of the notion of Legendrian unfoldings on equations with complete integral
are given in the following propositions.
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PROPOSITION 1.5 [8]. Let $(\mu, f)$ : $Uarrow R^{r-n}\cross J^{1}(R^{n}, R)$ be an equation with complete
integral. Then $f(\mu^{-1}(t))$ is a (classical) solution for any $t\in R^{r-n}$ if and only if $\ell_{(\mu,f)}$ is
Legendrian non-singular.

We say that an equation germ with complete integral is regular if $p_{(\mu,f)}$ is Legendrian
non-singular.

PROPOSITION 1.6 [8]. Let $(\mu, f)$ : $Uarrow R^{r-n}\cross J^{1}(R^{n}, R)$ be an $eq$uation with complete
integral. For any $u\in U$, we denote

$l_{(\mu,f)}(u)=(\mu(u), xof(u),$ $yof(u),$ $h(u),pof(u))$

by the local coordinate of $J^{1}(R^{r-n}\cross R^{n}, R)$ . Then $f$ is contact singular at $u_{0}\in U$ if and
only if $h(u_{0})=0$ .

We now establish the notion of genericity of equation germs with complete integral. Let
$U\subset R^{r}$ be an open set. We denote by Int $(U, R^{r-n}\cross J^{1}(R^{n}, R))$ the set of equations with
complete integral $(\mu, f)$ : $Uarrow R^{t-n}\cross J^{1}(R^{n}, R)$ . We also define $L(U, J^{1}(R^{r-n}\cross R^{n}, R))$

to be the set of complete Legendrian unfoldings $p_{(\mu,f)}$ : $Uarrow J^{1}(R^{r-n}\cross R^{n}, R)$ .
These sets are topological spaces equipped with the Whitney $c\infty$-topology. A subset of

Int $(U, R^{r-n}\cross J^{1}(R^{n}, R))$ (respectively $L(U,$ $J^{1}(R^{r-n}\cross R^{n},$ $R))$ )

is said to be generic if it is an open dense subset in

Int $(U, R^{r-n}\cross J^{1}(R^{n}, R))$ (respectively $L(U,$ $J^{1}(R^{r-n}\cross R^{n},$ $R))$ ).

The genericity of a property of germs are defined as follows. Let $P$ be a property of
equation germs with complete integral

$(\mu, f)$ : $(R^{r}, 0)arrow R^{r-n}\cross J^{1}(R^{n}, R)$

(respectively, Legendrian unfoldings

$p_{(\mu,f)}$ : $(R^{r}, 0)arrow J^{1}(R^{r-n}\cross R^{n}, R))$ .
For an openset $U\subset R^{r}$ , we define $\mathcal{P}(U)$ to be the set of

$(\mu, f)\in Int(U, R^{r-n}\cross J^{1} (R^{n}, R))$

(respectively,
$p_{(\mu,f)}\in L(U, J^{1}(R^{r-n}\cross R^{n}, R)))$

such that the germ at $x$ whose representative is given by $(\mu, f)$ (respectively $l_{(\mu,f)}$ ) has
property $P$ for any $x\in U$.

The property $P$ is said to be generic if for some neighbourhood $U$ of $0$ in $R^{r}$ , the set
$\mathcal{P}(U)$ is a generic subset in Int $(U, R^{r-n}\cross J^{1}(R^{n}, R))$ (respectively $L(U, J^{1}(R^{r-n}\cross R^{n}, R))$ .

By the construction, we have a well-defined continuous mapping
$(\Pi_{1})_{*}:$ $L(U, J^{1}(R^{r-n}\cross R^{n}, R))arrow Int(U, R^{r-n}\cross J^{1}(R^{n}, R))$

defined by
$(\Pi_{1})_{*}(l_{(\mu,f)})=\Pi_{1}0\ell_{(\mu,f)}=(\mu, f)$ .

The following theorem is fundamental in our theory.
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THEOREM 1.7 [5,8,9]. The continuous map

$(\Pi_{1})_{*}:$ $L(U, J^{1}(R^{r-n}\cross R^{n}, R))arrow Int(U, R^{r-n}\cross J^{1}(R^{n}, R))$

is a homeomorphism.

This theorem asserts that the genericity of a property of equations with complete integral
can be interpreted by the genericity of the corresponding property of Legendrian unfoldings.
We now consider some generic properties as a consequence of the above theorem.

PROPOSITION 1.8 [8]. For generic equation germ with complete integral

$(\mu, f)$ : $(R^{r}, 0)arrow R^{r-n}\cross J^{1}(R^{n}, R)$ ,

the contact singular set $\Sigma(f_{c})$ is empty or an n-dimensional submanifold.

We remark that even for generic equation germs with complete integral $(\mu, f)$ , we cannot
expect that the $\pi$-singular set $\Sigma(\pi of)$ is an n-dimensional submanifold. In [5] we classified
generic equation germs with complete integral in the case of $n=1$ (i.e. ordinary differential
equations). One of the normal form is given by

$f(u, v)=(u, v^{3}+uv^{2}, v^{2}-3v-2u)$ ,

$\mu(u, v)=\frac{1}{2}v^{2}+u$ .

The $\pi$-singular set of this example is given by $\Sigma(\pi of)=\{(u, v)|3v^{2}+2uv\}$ and it is
not a smooth submanifold. We can calculate that $f^{*}\theta=(3v+2u)d\mu$ , then we have
$\Sigma(f_{c})=\{(u, v)|3v+2u=0\}$ . Hence $\Sigma(f_{c})$ is a smooth submanifold and it is a smooth
component of $\Sigma(\pi of)$ .

On the other hand, we appreciate another normal form given by

$f(u, v)=(u, v^{2}, v)$ ,

$\mu(u, v)=v-\frac{1}{2}u$ .

In this case we can easily show that $f^{*}\theta=2vd\mu$ , then the corresponding Legendrian
unfolding is given by $\ell_{(\mu,f)}(u, v)=(v-\frac{1}{2}u, u, v^{2},2v, v)$ . It is clear that $(\mu, f)$ is a regular
equation germ with complete integral. The $\pi$-singular set and the contact singular set of
this equation is given by $\{(u, v)|v=0\}$ , then it is a smooth submanifold and the singular
solution of $f$.

LEMMA 1.9 [8]. For regular equati$ons$ with complete integral $(\mu, f)$ , we have $\Sigma(\pi of)=$

$\Sigma(f_{c})$ .

The following theorem asserts that regular equation germs with complete integral are
$\pi$-regular or have singular solutions.
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THEOREM 1.10 [8]. For regular equation germs vvith complete integral

$(\mu, f)$ : $(R^{r}, 0)arrow R^{r-n}\cross J^{1}(R^{n}, R)$ ,

the $\pi$ -singular set $\Sigma(\pi of)$ is empty or an n-dimensional submanifold and the discriminant
set $D_{f}$ is an envelope of the family $\{\pi of(\mu^{-1}(t))\}_{t\in(R^{r-n},0)}$ consisting ofgraph of a classical
complete solution of $f$.

REMARK. Of course, the set of all regular equations with complete integral is an open set
in the space of equations with complete integral.

On the other hand, we can study generic properties of Legendrian unfoldings in terms
of generating families.

Since $\mathcal{L}$ is a Legendrian immersion germ, there exists a generating family of $\mathcal{L}$ by the
Arnol’d-Zakalyukin’s theory ([1,15,16]). In this case the generating family is naturally
constructed by the $(r-n)$-family of generating families associated with $(\mu, f)$ .

Let
$F$ : $((R^{7-n}\cross R^{n})\cross R^{k}, 0)arrow(R, 0)$

be a function germ such that $d_{2}F|0\cross R^{n}\cross R^{k}$ is non-singular, where

$d_{2}F(t, x, q)=( \frac{\partial F}{\partial q_{1}}(t, x, q), \ldots , \frac{\partial F}{\partial q_{k}}(t, x, q))$ .

It follows from the definition that $C(F)=d_{2}F^{-1}(0)$ is a smooth r-manifold germ and

$\pi_{F}$ : $(C(F),0)arrow R^{r-n}$

is a submersion germ, where
$\pi_{F}(t, x, q)=t$ .

Define map germs
$\tilde{\Phi}_{F}$ : $(C(F), 0)arrow J^{1}(R^{n}, R)$

by
$\tilde{\Phi}_{F}(t, x, q)=(x, F(t, x, q), \frac{\partial F}{\partial x}(t, x, q))$

and
$\Phi_{F}$ : $(C(F), 0)arrow J^{1}(R^{r-n}\cross R^{n}, R)$

by
$\Phi_{F}(t, x, q)=(t, x, F(t, x, q), \frac{\partial F}{\partial t}(t, x, q), \frac{\partial F}{\partial x}(t, x, q))$ .

Since $\frac{\partial F}{\partial qj}=0$ on $C(F)$ , we can easily show that

$( \tilde{\Phi}_{F})^{*}\theta=\sum^{\tau-n}\frac{\partial F}{\partial t_{i}}|C(F)\cdot dt_{i}|C(F)$ .
$i=1$

By the definition, $\Phi_{F}$ is a Legendrian unfolding associated with the Legendrian family
$(\pi_{F},\tilde{\Phi}_{F})$ . By the same method of the theory of Arnol’d-Zakalyukin ([1,15,16]), we can
show that the following proposition.
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PROPOSITION 1.11 [8]. All Legendrian unfolding germs are constructed by the above
method.

Then $F$ is called a generalized phase family of $\Phi_{F}$ . We now consider ambiguity of the
choice of generalized phase function germs. Let

$F,$ $G$ : $((R^{r-n}\cross R^{n})\cross R^{k}, 0)arrow(R,0)$

be generalized phase families. We say that $F$ and $G$ are strictly $\mathcal{R}$-equivalent if there exists
a diffeomorphism germ

$\Phi$ : $((R^{r-n}\cross R^{n})\cross R^{k}, 0)arrow((R^{r-n}\cross R^{n})\cross R^{k}, 0)$

of the form $\Phi(t, x, q)=(t, x, \phi(t, x, q))$ such that $Fo\Phi=G$ . If we carefully read proofs of
Lemmas 1 and 2 in (page 307 in [1]), we can find the following assertion.

PROPOSITION 1.12. Let $F,$ $G$ : $(R^{r-n}\cross R^{n})\cross R^{k},$ $0$ ) $arrow(R, 0)$ be generalized phase function
germs sucb that Image $\Phi_{F}=Image\Phi_{G}$ and

rank $H(F|0\cross R^{k})=rankH(G|0\cross R^{k})=0$ ,

where $H(f)$ is the Hessian matrix of $f$ at the origin. Then $F$ and $G$ are strictly $\mathcal{R}-$

equivalent.

In [6] it has been given an application of the theory of Legendrian unfoldings to the
Cauchy problem of Hamilton-Jacobi equations.

PART 2. SINGLE EQUATIONS

In this part we will consider completely integrable single equations. We can get detailed
informations about this subject. An equation is a submersion germ $F:(J^{1}(R^{n}, R),$ $z_{0}$ ) $arrow$

$(R,0)$ .
LEMMA 2.1 [7]. Let $F=0$ be an equation germ.
1) $z_{0}$ is a contact singular point of $F^{-1}(0)$ if and only if $F=F_{p_{i}}=F_{x}:+p_{i}F_{y}=0$ at $z_{0}$

for $i=1,$ $\ldots,$
$n$ .

2) $z_{0}$ is a $\pi$ -singular point if and only if $F=F_{p;}=0$ at $z_{0}$ for $i=1,$ $\ldots$ , $n$ .

In classical treatises on differential equations the notion of singular solutions is very
confused. Even in the case of ordinary differential equations, we cannot find rigorous
definitions of singular solutions since the first example was discovered (that is about 280
years ago). So, firstly, we must give a rigorous definition of singular solutions. A geometric
solution $i$ : $(L, q_{0})arrow(J^{1}(R^{n}, R),$ $z_{0}$ ) of $F=0$ is called a singular solution of $F=0$ if it
satisfies the following condition:
$(*)$ For any representative $\sim i$ : $Uarrow F^{-1}(0)$ of $i$ and any open subset $V\subset U,$ $\sim i(V)$ is not
contained in a leaf of any complete solutions of $F=0$ .

In classical treatises, the $\pi$-singular set $\Sigma_{\pi}(F)$ plays an important role. In some textbook
([2,3,4]), the singular solution is defined to be the $\pi$-singularset if it is a geometric solution.
However, this property does not characterize the singular solutions. The following theorem
indicates that the contact singular set $\Sigma_{c}(F)$ is much important.
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THEOREM 2.2 $[10,12]$ . For an $equ$ation $F:(J^{1}(R^{n}, R),$ $z_{0}$ ) $arrow(R, 0)$ and a geometric solu-
tion $i$ : $(L, q_{0})arrow(J^{1}(R^{n}, R),$ $(x_{0}, y_{0},p_{0}))$ of $F=0$ , the following conditions are $eq$uivalent.
(1) $i$ is a singular solution of $F=0$ .
(2) There exists a complete solution of $F=0$ such that each leaves are transverse to $i$ .
(3) Image $i\subseteq\Sigma_{c}(F)$ .

We $c$an also give a characterization of complete integrability as follows.

THEOREM 2.3 [10]. For an equation $F:(J^{1}(R^{n}, R),$ $z_{0}$ ) $arrow(R, 0)$ , th $e$ following are equiv-
alent.
(1) $F=0$ is completely integrable.
(2) $\Sigma_{c}(F)=\emptyset$ or $\Sigma_{c}(F)$ is an n-dimensional submanifold.

By the definition, if $\Sigma_{c}(F)$ is an n-dimensional submanifold, it is automatically a ge-
ometric solution of $F=0$ . Then we have the following corollary of Theorems 2.2 and
2.3.

COROLLARY 2.4 [10]. An equation $F$ : $(J^{1}(R^{n}, R),$ $z_{0}$ ) $arrow(R, 0)h$as a singular solution
if and only if $\Sigma_{c}(F)$ is an n-dimensional submanifold. Moreover, $\Sigma_{c}(F)$ is the singular
solution of $F=0$ .

We now give some examples to understand these situations.

EXAMPLES 2.5. $1$ ) $The$ Clairaut equation The following is the classical example of an
equation with singular solution : $y= \sum_{i=1}^{n}x_{i}p_{i}+f(p_{1}, \ldots,p_{n})$ , where $f$ is a smooth
function. The complete solution is given by $y= \sum_{i=1}^{n}x_{i}t_{i}+f(t_{1}, \ldots, t_{n})$ and the singular
solution is the envelope of graphs of complete solution.
2) The dual of the Clairaut equation Consider the equation : $y=f(x_{1}, \ldots , x_{n})$ . This equa-
tion is given by the Legendre transform (see [7]) of the Clairaut equation. The complete
solution is given by $\{(t, f(t), u)|(t, u)\in R^{n}\cross R^{n}\}$ , where $t=(t_{1}, \ldots, t_{n})$ is the parameter.

The singular solution is given by $\Sigma_{c}(F)=\{(x, f(x), f_{x}(x))|x\in R^{n}\}$ . We can observe
that $F^{-}$ (0) $=\Sigma_{\pi}(F)\supset\Sigma_{c}(F)$ .
3) Consider the following equation : $y-2p^{3}=0$ . We can show that $\Sigma_{\pi}(F)=\Sigma_{c}(F)=$

$\{(x, 0,0)|x\in R\}$ which is a singular solution. We also have a complete solution $s$ : $(R\cross$

$R,$ $0$ ) $arrow J^{1}(R, R)$ given by $s(u, t)=(3u^{2}+t, 2u^{3}, u)$ , where $t$ is the parameter. In this case
the singular solution is a locus of cusps of the complete solution (not an envelope!).
4) Consider the following equation : $y-p^{3}-xp^{2}=0$ . We can show that $\Sigma_{\pi}(F)=$

{ $(x,$ $y,p)|y-p^{3}-xp^{2}=0$ and $3p^{2}-2xp=0$} and $\Sigma_{c}(F)=\{(x, 0,0)\}$ . It follows that
$\Sigma_{c}(F)$ is the singular solution.

On the other hand, we also give a characterization of first order partial differential
equations (briefly, equations) with (classical) complete solutions. Roughly speaking, this
class of equations is equal to a class of equations with singular solutions which will be
called Clairaut type equations. In [7] it has been shown that equations with singular
solution are not generic in the space of single equations. However, this class of equations
is quite interesting. One of the typical examples of equations with singular solutions is
the (classical) Clairaut equation which has a (classical) complete solution consisting of
hyperplanes. Moreover, the graph of the singular solution is an envelope of the family of
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graphs of the complete solution. But, we have no reasons why the complete solution must
consist of hyperplanes.

An equation $F=0$ is said to be Clairaut type if there exist smooth function germs
$B_{ji},$ $A_{i}$ : ( $J^{1}(R^{n}, R, (x_{0}, y_{0},p_{0}))arrow R$ for $i,j=1,$ $\ldots,$

$n$ such that

$F_{x_{i}}+p_{i}F_{y}= \sum_{j=1}^{n}B_{ji}F_{p_{J}}+A_{i}F$ $(i=1, \ldots, n)$

and satisfy that

(1) $B_{ji}=B_{ij}$

(2) $\frac{\partial B_{jk}}{\partial x_{i}}+p_{i}\frac{\partial B_{jk}}{\partial y}+\sum_{I=1}^{n}B_{\ell i}\frac{\partial B_{jk}}{\partial p_{f}}=\frac{\partial B_{ji}}{\partial x_{k}}+p_{k}\frac{\partial B_{ji}}{\partial y}+\sum_{\ell=1}^{n}B_{tk}\frac{\partial B_{ji}}{\partial p_{f}}$

at any $(x, y,p)\in(F^{-1}(0), (x_{0}, y_{0},p_{0}))$ for $i,j,$ $k=1,$ $\ldots,$
$n$ .

THEOREM 2.6 [11]. For an equation germ $F=0$ , the following are $eq$uivalent.
(1) $F=0$ is th$e$ Clairaut type $eq$uation.
(2) $F=0h$as $a$ ($cl$assical) complete solution.

In this case, if $\Sigma_{\pi}(F)\neq\emptyset$ , then $\Sigma_{\pi}(F)$ is a geometric solution ($i.e$ . the singular solution)
of $F=0$ and the discriminant set $D_{F}$ is the envelope of the family of graphs of the
complete solution.

By the classical existence theorem, if $F=0$ is a $\pi$-regular equation, then there exists a
(classical) complete solution. Then we can assert that $\pi$-regular equation is Clairaut type
by the above theorem.

EXAMPLES 2.7. 1) Of course, one of examples of Clairaut type equations is the (classical)
Clairaut equation. The Clairaut equation is given by $y= \sum_{i1}^{n_{=}}x_{i}p_{i}+f(p_{1}, \ldots,p_{n})$ , where
$f$ is a smooth function. The complete solution is given by $y= \sum_{i1}^{n_{=}}x_{i}t_{i}+f(t_{1}, \ldots, t_{n})$

and we can easily verify that $F_{x_{i}}+p_{i}F_{y}=0$ for $i=1,$ $\ldots,$
$n$ .

2) The second example is an equation for “Free particle” in the n-dimensional space.
Consider the following equation ; $y^{2}+ \sum_{i1}^{n_{=}}p_{i}^{2}-1=0$ . Then we have

$\Sigma_{\pi}(F)=\{(x_{1}, \ldots, x_{n}, \pm 1,0, \ldots, 0)|(x_{1}, \ldots, x_{n})\in R^{n}\}$ .

We can calculate that $F_{x;}+p_{i}F_{y}=yF_{p;}$ for $i=1,$ $\ldots,$
$n$ . Then we have $B_{ij}=\pm(1-$

$\sum_{k=1}^{n}p_{k}^{2})^{\iota}2$ and $A_{i}= \frac{2\rho i}{y\pm(1-\sum_{k=1}^{n}p_{k})2\iota}$ where $\pm corresponds$ to the point $(0, \pm 1,0)$ . The

complete solution is given by
$y= \pm\cos(\frac{1}{(\sum_{:}^{n}=1(1+t_{1})^{2})^{\perp}2}\sum_{i=1}^{n}(x_{i}+t_{i}x_{i}))$

, which is defined

on $(R^{n}\cross R^{n}, (0,0))$ .
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PART 3. HOLONOMIC SYSTEMS

In this part we will give a generic classification of completely integrable holonomic sys-
tems of equations. by the equivalence relation under the group of point transformations
in the sense of Sophus Lie. A point transformation $\phi$ on $R^{n}\cross R$ is, by definition, a diffeo-
morphism of $R^{n}\cross R$ onto itself.

To define a lift of $\phi$ , we give a contact manifold which is a fiberwise compactification
of $J^{1}(R^{n}, R)$ . Let $\tilde{\pi}$ : $PT^{*}(R^{n}\cross R)arrow R^{n}\cross R$ be a projective cotangent bundle over
$R^{n}\cross R$ . There exists a canonical contact structure on $PT^{*}(R^{n}\cross R)$ and if we adopt the
homogeneous coordinate $(x_{1}, \ldots, x_{n}, y, [\xi_{1} ; \ldots ; \xi_{n};\eta])$ , the affine coordinate neighbourhood
which is defined by $\eta\neq 0$ is contact diffeomorphic to $J^{1}(R^{n}, R)$ . Since we only consider
local situations, we may regard point transformation as a diffeomorphism germ $\phi$ : $(R^{n}\cross$

$R,$ $(x_{0}, y_{0}))arrow(R^{n}\cross R, (x_{1}, y_{1}))$ . Then we have a canonical contact lift $\hat{\phi}$ : $(PT^{*}(R^{n}\cross$

R), $z_{0}$ ) $arrow(PT^{*}(R^{n}\cross R), z_{1})$ of $\phi$ .
Following Lie, the most natural equivalence relation among equation germs is given by

point transformations. Here a holonomic system is an immersion germ $f$ : $(R^{n+1},0)arrow$

$J^{1}(R^{n}R)$ . Let $f,$ $g$ : $(R^{n+1}, O)arrow J^{1}(R^{n}, R)$ be holonomic systems. We say that $f$ and $g$

are equivalent as equations if there exist a diffeomorphism germ $\psi$ : $(R^{n+1},0)arrow(R^{r}, 0)$

and a point transformation $\phi$ : $(R^{n}\cross R, \pi(z_{0}))arrow(R^{n}\cross R, \pi(z_{1}))$ such that the lift $\hat{\phi}$ of $\phi$

satisfies that $\hat{\phi}(z_{0})=z_{1}$ and $\hat{\phi}of=go\psi$ , where $z_{0}=f(0)$ and $z_{1}=g(0)$ .
We now consider a holonomic system with complete integral $(\mu, f)$ : $(R^{n+1},0)arrow R\cross$

$J^{1}(R^{n}, R)$ . This leads us to the following definition. Let $(\mu, g)$ be a pair of a map germ
$g$ : $(R^{n+1},0)arrow(R^{n}\cross R, 0)$ and a submersion germ $\mu$ : $(R^{n+1},0)arrow(R,0)$ . Then the
diagram

$(R, 0)arrow\mu(R^{n+1},0)arrow g(R^{n}\cross R, 0)$

or briefly $(\mu, g)$ , is called $a$ (holonomic) integral diagram if there exists a holonomic
systemf : $(R^{n+1},0)arrow J^{1}(R^{n}, R)$ such that $(\mu, f)$ is an equation germ with complete
integral and $\pi of=g$ , and we say that the integral diagram $(\mu, g)$ is induced by $f$ . Fur-
thermore we introduce an equivalence relation among integral diagrams. Let $(\mu,g)$ and
$(\mu’, g’)$ be integral diagrams. Then $(\mu, g)$ and $(\mu’, g’)$ are equivalent (respectively, strictly
equivalent) if the diagram

$(R, 0)arrow^{\mu}(R^{n+1},0)arrow^{g}(R^{n}\cross R, 0)$

$\kappa\downarrow$ $\psi\downarrow$ $\downarrow\phi$

$(R, 0)arrow^{\mu’}(R^{n+1},0)arrow^{g’}(R^{n}\cross R, 0)$

commutes for some diffeomorphism germs $\kappa,$
$\psi$ and $\phi$ (respectively, $\kappa=id_{R}$ ).

We can assert the following theorem which reduces the equivalence problem for com-
pletely integrable holonomic systems to that of for the corresponding induced integral
diagrams.

THEOREM 3.1 [9]. Let $(\mu, f)$ and $(\mu’, f’)$ : $(R^{n+1},0)arrow(R\cross J^{1}(R^{n}, R),$ $0\cross v$ ) be equations
with complete integral such that the set of critical points of $\pi of$ and $\pi of’$ are closed sets
without interior points. Then the followings are equivalent:
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(1) $f$ and $f’$ are equivalent as $eq$uations.
(2) $(\mu, \pi of)$ and $(\mu’, \pi of’)$ are equivalent as integral diagrams.

Our classifications are the following:

THEOREM 3.2 [9]. Suppose that $1\leq n\leq 3$ . For generic holonomic equation germ with
complete integral $(\mu, f)$ : $(R^{n+1},0)arrow R\cross J^{1}(R^{n}, R)$ , the integral diagram $(\mu, \pi of)$ is
strictly equivalent to one of germs in the following list :
$I)n=1$ ;

(1) $\mu=u_{2}$

$g=(u_{1}, u_{2})$

(2) $\mu=\frac{2}{3}u_{1}^{3}+u_{2}$

$g=(u_{1}^{2}, u_{2})$

(3) $\mu=u_{2}-\frac{1}{2}u_{1}$

$g=(u_{1}, u_{2}^{2})$

(4) $\mu=\frac{3}{4}u_{1}^{4}+\frac{1}{2}u_{1}^{2}u_{2}+u_{2}+\alpha og$

$g=(u_{1}^{3}+u_{2}u_{1}, u_{2})$

(5) $\mu=u_{2}+\alpha og$

$g=(u_{1}, u_{2}^{3}+u_{1}u_{2})$

(6) $\mu=-3u_{2}^{2}+4u_{1}u_{2}+u_{1}+\alpha og$

$g=(u_{1}, u_{2}^{3}+u_{1}u_{2}^{2})$ .

$\Pi)n=2$ ;

(1) $\mu=u_{3}$

$g=(u_{1}, u_{2}, u_{3})$

(2) $\mu=\frac{2}{3}u_{1}^{3}+u_{2}+u_{3}$

$g=(u_{1}^{2}, u_{2}, u_{3})$

(3) $\mu=u_{3}-\frac{1}{2}u_{1}$

$g=(u_{1}, u_{2}, u_{3}^{2})$

(4) $\mu=\frac{3}{4}u_{1}^{4}+\frac{1}{2}u_{1}^{2}u_{2}+u_{3}$

$g=(u_{1}^{3}+u_{2}u_{1}, u_{2}, u_{3})$

(5) $\mu=u_{3}$

$g=(u_{1}, u_{2}, u_{3}^{3}+u_{1}u_{3})$
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(6) $\mu=-3u_{3}^{2}+4u_{1}u_{3}+u_{2}$

$g=(u_{1}, u_{2}, u_{3}^{3}+u_{1}u_{3}^{2})$

(7) $\mu=\frac{4}{5}u_{1}^{5}+\frac{1}{2}u_{2}u_{1}^{2}+\frac{2}{3}u_{3}u_{1}^{3}+u_{3}+\alpha og$

$g=(u_{1}^{4}+u_{2}u_{1}+u_{3}u_{1}^{2}, u_{2}, u_{3})$

(8) $\mu=2u_{2}^{3}\pm 2u_{1}^{2}u_{2}+u_{3}+\alpha og$

$g=(u_{1}u_{2}+u_{1}u_{3}, u_{1}^{2}\pm 3u_{2}^{2}, u_{3})$

(9) $\mu=u_{3}+\alpha og$

$g=(3u_{1}^{2}+u_{2}u_{3}, u_{2}, \pm u_{3}^{2}+2u_{1}^{3}+u_{3}u_{2})$

(10) $\mu=u_{3}+\alpha og$

$g=(u_{1}, u_{2}, \pm u_{3}^{4}+u_{1}u_{3}+u_{2}u_{3}^{2})$

(11) $\mu=-4u_{3}^{3}+\frac{9}{2}u_{1}u_{3}^{2}+6u_{2}u_{3}+u_{1}+\alpha og$

$g=(u_{1}, u_{2}, u_{3}^{4}+u_{1}u_{3}^{3}+u_{2}u_{3}^{2})$ .

III) $n=3$ ;

(1) $\mu=u_{4}$

$g=(u_{1}, u_{2}, u_{3}, u_{4})$

(2) $\mu=\frac{2}{3}u_{1}^{3}+u_{2}+u_{3}+u_{4}$

$g=(u_{1}^{2}, u_{2}, u_{3}, u_{4})$

(3) $\mu=u_{4}-\frac{1}{2}u_{1}$

$g=(u_{1}, u_{2}, u_{3}, u_{4}^{2})$

(4) $\mu=\frac{3}{4}u_{1}^{4}+\frac{1}{2}u_{1}^{2}u_{2}+u_{3}+u_{4}$

$g=(u_{1}^{3}+u_{2}u_{1}, u_{2}, u_{3}, u_{4})$

(5) $\mu=u_{3}$

$g=(u_{1}, u_{2}, u_{3}, u_{4}^{3}+u_{1}u_{4}+u_{2}+u_{3})$

(6) $\mu=-3u_{4}^{2}+4u_{1}u_{4}+u_{2}$

$g=(u_{1}, u_{2}, u_{3}, u_{4}^{3}+u_{1}u_{4}^{2})$

(7) $\mu=\frac{4}{5}u_{1}^{5}+\frac{1}{2}u_{2}u_{1}^{2}+\frac{2}{3}u_{3}u_{1}^{3}+u_{4}$

$g=(u_{1}^{4}+u_{2}u_{1}+u_{3}u_{1}^{2}, u_{2}, u_{3}, u_{4})$

(8) $\mu=2u_{2}^{3}\pm 2u_{1}^{2}u_{2}+u_{3}u_{1}^{2}+u_{4}$

$g=(u_{1}u_{2}+u_{1}u_{3}, u_{1}^{2}\pm 3u_{2}^{2}, u_{3}, u_{4})$

(9) $\mu=u_{4}$

$g=(3u_{1}^{2}+u_{3}u_{4}, u_{2}, u_{3},2u_{1}^{3}+u_{4}^{2}+u_{2}u_{4})$
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(10) $\mu=u_{4}$

$g=(u_{1}, u_{2}, u_{3}, u_{4}^{4}+u_{1}u_{4}+u_{2}u_{4}^{2})$

(11) $\mu=-4u_{4}^{3}+\frac{9}{2}u_{1}u_{4}^{2}+6u_{2}u_{4}+u_{3}$

$g=(u_{1}, u_{2}, u_{3}, u_{4}^{4}+u_{1}u_{4}^{3}+u_{1}u_{4}^{2})$

(12) $\mu=\frac{5}{6}u_{1}^{6}+\frac{1}{2}u_{2}u_{1}^{2}+\frac{2}{3}u_{3}u_{1}^{3}+\frac{3}{4}u_{4}u_{1}^{4}+u_{4}+\alpha og$

$g=(u_{1}^{5}+u_{2}u_{1}+u_{3}u_{1}^{2}+u_{4}u_{1}^{3}, u_{2}, u_{3}, u_{4})$

(13) $\mu=3u_{2}^{4}\pm 2u_{1}^{2}u_{2}+u_{4}u_{2}^{2}+u_{4}+\alpha og$

$g=(u_{1}u_{2}+u_{1}u_{3}, u_{1}^{2}\pm 4u_{2}^{3}+2u_{4}u_{2}, u_{3}, u_{4})$

(14) $\mu=u_{4}+\alpha og$

$g=(u_{1}, u_{2}, u_{3}, u_{4}^{5}+u_{1}u_{4}+u_{2}u_{4}^{2}+u_{3}u_{4}^{3})$

(15) $\mu=-5u_{4}^{4}+\frac{16}{3}u_{1}u_{4}^{3}+6u_{2}u_{4}^{2}+8u_{3}u_{4}+u_{1}+\alpha og$

$g=(u_{1}, u_{2}, u_{3}, u_{4}^{5}+u_{1}u_{4}^{4}+u_{2}u_{4}^{3}+u_{3}u_{4}^{2})$ .

Here, $\alpha$ are $c\infty$ -function germs and the notion of genericity of germs with complete
integral will be defined in \S 3.

Since diagrams $(\mu, g)$ are integral diagrams, then $\alpha$ must satisfy some conditions, how-
ever, we do not argue about such conditions here.

One of the advantages of our theory is to draw the phase portraits of equations even if
we cannot solve exactly. For example, in the case $n=2$ ; (4) in the above list, we have

$g=(u_{1}, u_{2}, u_{3}^{2})$

$\mu=\frac{3}{4}u_{1}^{4}+\frac{1}{2}u_{1}^{2}u_{2}+u_{3}$ .

We can easily get

$g( \mu^{-1}(c))=(u_{1}^{3}+u_{2}u_{1}, u_{2}, c-(\frac{3}{4}u_{1}^{4}+\frac{1}{2}u_{1}^{2}u_{2}+u_{3}))$

for any $c\in$ R. This is a family of swallowtail. Furthermore, the discriminant set is the
critical value set of $g$ in this case, so that, it is the image of $G(v_{1}, v_{2})=(-2v_{1}^{3}, -3v_{1}^{2}, v_{3}))$

which is the cuspidal edge. If we can draw both pictures on the same screen by a computer,
we can draw in Fig.1.

The family of swallowtail should be moved along the cuspidal edge if we change the
parameter. In fact, I asked to Dr. Richard Morris in Liverpool University to draw the
picture by IRIS computer, then we could get the animation which describe this situation.
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Fig.1

The pictures of other type perestroikas of the graph of solutions is in the appendix.

REFERENCES

1. V. I. Arnol d, S. M. Gusein-Zade and A. N. Varchenko, “Singularities of Differentiable Maps vol. I,)
Birkh\"auser, 1986.

2. C. Carath\‘eodory, “Calculus of Variations and Partial Differential Equations of First Order, Part I,
Partial Differential Equations of First Order, ) Holden-Day, 1965.

3. R.Courant and D. Hilbert, “Methods of mathematical physics I, II,“ Wiley, 1962.
4. A. R. Forsyth, “Theory of differential equations, Part $I\Pi$ partial differential $equati_{onS},$

)) Cambridge
Univ. Press, London, 1906.

5. A. Hayakawa, G. Ishikawa, S. Izumiya and K. Yamaguchi, Classification of generic integral diagram
and first order ordinary differential equations, preprint.

6. S. Izumiya, Geometric singularities for Hamilton-Jacobi equation, Advanced Studies in Pure Math.
(1991) (to appear).

7. S. Izumiya, Generic properties of first order partial differential equations, Proceedings of Topology
conference in Hawaii, Birkh\"auser. (to appear)

8. S. Izumiya, The theory of Legendrian unfoldings and first order differential equations, preprint.
9. S. Izumiya, Completely integrable holonomic systems of first order differential equations, preprint.

10. S. Izumiya, Singular solutions of first order differential equations, preprint.
11. S. Izumiya, The Clairaut type equation, preprint.
12. S. Izumiya, What is the Clairaut euqation ?, preprint.
13. M. Kossowski, First order partial differential equations with singular solution, Indiana Univ. Math.

Jour. 35 (1986), 209-223.
14. V. V. Lychagin, Local classification of non-linear first order partial differential equations, Russian

Math. Surveys 30 (1975), 105-175.
15. V. M. Zakalyukin, Lagrangian and Legendrian singularities, Funct. Anal. Appl. 10 (1976), 23-31.
16. V. M. Zakalyukin, Reconstructions of fronts and caustics depending on a parameter and versality of

mappings, Journal of Soviet Math. 27 (1983), 2713-2735.



28

Appendix : Pictures of the perestroikas of graphs of solutions
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