
43

A characterization of $\log$ terminal normal graded rings
in terms of Pinkham-Demazure’s construction.

金沢大学 理 泊 昌孝 (Masataka TOMARI)

This is the note for the former half part of Tomari-Watanabe’s talk at RIMS sym-

posium in March 1992. Our theme is “finite cyclic cover and rational singularity -

characteristic $0$ and $p$ ”. Our note is the part for characteristic $0$ . In the later half of

RIMS talk, K.-i. Watanabe studied the characteristic positive analogy for $\log$ terminal

singularity and $\log$ canonical singularity by F-regular singularity and F-pure singularity

in some sense.

The purpose of this note is to give some criterion for the normal graded singularity
to be $\log$ terminal singularity which includes the Gorenstein rational singularity as the

case of index one. We also discuss the $\log$ canonical condition. Our main result (3.2)

is a natural continuation of the \S 4 of [14], where we characterized the normal graded

isolated singularity in terms of Pinkham-Demazure’s construction. $LetR=h\geq 0\oplus R_{k}$
be a

normal graded ring which is a finitely generated algebra over a field $k$ . As a geometric
representation for such $R$ , the following theorem due to M. Demazure is fundamental.

THEOREM ( DEMAZURE [1]). Let the situation be as above. Let $\prime r$ be a $homo-$

geneous elemen$t$ of $d$egre$e$ one of the quotient field $Q(R)$ of R. Then there exists
$an$ am$ple$ Q-Cartier $di$visor $D$ on $X=Proj(R)$ which satisfies the relations $R_{n}=$

$H^{0}(X, O_{X}(n.D)).T^{n}$ for $n\in Z$ . $PbrtAer$ this $D$ is uniquely determined by the choic$e$ of
$T$ .

For 2-dimensional case, H. Pinkham characterize the rational singularity in terms

of (X, $D$ ) $[9]$ . Later, Flenner and K.-i. Watanabe gave some criterion for the higher
dimensional case [18,3,19] (cf.Theorem (3.2.1) of the present paper. ). In their the-

orems, the condition that Sp$ec(R)-V(R_{+})$ has only rational singularity was a major
assumption. In the present paper we study this condition in terms of (X, $D$ ) in the same

line as in [14], [20] and \S 5 of [13]. In \S 1 we first recall the correspondence of the canonical

module of the cyclic cover and the base ring after [14]. Then the remaining argument
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using the $\log$ ramification formula would be rather familiar for the specialists. In \S 2 a

formula for Goto-Watanabe’s invariant $a(\tilde{R})$ is reviewed. This is a key for the reduction

of the proof in \S 3 to the case of index 1.

For the basic terminologies about $\log$ terminal singularity, rational singularity

, canonical singularity, ... etc ”, we refer to [10,11,8,7]. We will employ the same

notation of [14] about ring theoretic objects. Throughout this note, we assume that all

singularities are defined over $C$ , and all rings contains $\mathbb{C}$ .

\S 1. Finite cyclic cover and $\log$ terminal (and $\log$ canonical) condition.

(1.1) First we recall the description of finite cyclic covers of normal domains from

[14]. Let $S= \bigoplus_{i=0}^{r-1}S_{i}$ be a Noetherian normal $z_{r}$ -graded domain. That is, $S$ is the direct

sum of subgroups $S_{i}(i=0,1, \ldots, r-1)$ satisfying $S_{i}\cdot S_{j}\subset S_{k}$ with $i+j\equiv k(mod r$

$)$ and $1\in S_{0}$ . We $wiU$ denote $R=S_{0}$ . Then by our condition, each $S_{i}$ is an $R$ -module.

For simplicity, we assume $S;\neq 0$ for every $i$ . Let $K=Q(R)$ and we fix $u\in S_{1}\otimes K$ ,
$u\neq 0$ . Then $a_{i}=$ $\{ \frac{a_{i}}{u^{i}}\in K|a_{i}\in s_{:} \}$ is a firactional divisorial ideal of $R$ and

$S_{i}=a_{i}\cdot u^{i}$ . Let $f=u’\in K$ and $(f)=P_{1}^{(a_{1})}\cap\ldots\cap P^{(a.)}$ , where $P_{1},$
$\ldots$ , P. are prime

ideals of height one of $R$ . Then for each $i$ , we have

$a_{i}=\{x\in K|v_{j}(z)\geq-\frac{i\cdot a_{i}}{r}(j=1, \ldots, s)$ and $v(z)\geq 0$ for every valuation $v$

of $K$ such that $v(R)\geq 0$ and $v\neq v_{j},$ $j=1,$ $\ldots s$ , }.

We have associated the triple $(R, \sum_{*=1}\frac{a_{i}}{\prime r}\cdot V_{i}, f)$ to the pair $(S, u)$ , where the fractional

divisor $D= \sum_{:=1}\frac{a_{*}}{\gamma}\cdot V_{i}(V_{i}=Spec(R/P_{i}))$ satisfies the condition

(1.1.1) $r \cdot D=\sum_{i=1}^{\cdot}a:\cdot V_{i}=div_{R}(f)$.

We will always write

(1.1.2) $D= \sum_{i=1}^{l}\frac{p_{i}}{q_{i}}V_{i}$ , where $q$: and $p_{i}$ are

relatively prime integers with $q;>0(i=1, \ldots, s)$ .
For this description, we attach the divisor $D^{t}$ as

(1.1.3) $D’= \sum_{i=1}^{l}\frac{q:-1}{q_{i}}V_{1}$ .
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Conversely, from the triple $(R, D, f)$ which satisfies (1.1.1), we can recover $S$ by $S=$

$\bigoplus_{i=0}^{\tau-1}a_{i}\cdot u^{i}$ , where $z\in a_{i}$ if and only if $div_{R}(z)+i\cdot D\geq 0$ in $Div(R)\otimes_{Z}Q$ for $z\in K$ . We

sometimes denote

$R(D)=$ {$x\in K|div_{R}(x)+D\geq 0$ in $Div(R)\otimes_{Z}Q$}

for $D\in Div(R)\otimes z$ Q.

In this terminology we can denote $S(R, D, f)=\tau-1\oplus R(i\cdot D)\cdot u^{*}$ and call such $S$ a
$i=0$

cyclic r-cover of R. lf $D$ is an integral divisor of $R$ (that is, if $D\in Div(R)$ ), we say

that $S$ is an integral cyclic r-cover of $R$ .

In this note, we always assume that

(1.1.4) $r= \min${$i\in Z|i>0$ and $i\cdot D$ is a principal divisor}.

By [14], the cyclic cover $S$ is also a normal d-dimensional normal domain.

We will study the criterion for $S$ to be a Gorenstein rational singularity.

LEMMA (1.2). Let $t$ be a positive integer. $S$ is a log-termin$aJ$ (resp. log-canonical)

singularity of index $t$ if and only if the following two conditions hold.

(i) There is an integer $a^{l}$ such that $t(K_{R}+D’)-a’D$ is a principal $di$visor of $R$ .

$(\ddot{u})$ (SpecR, $D’$ ) is a log-terminal (resp. log-canonical) singularity of $(K_{R}+D’)-$

index $t\cdot u$ where $u$ is the $t$orsion index of $a’$ in $Z/rZ$ .

Proof. First of all, we recall the following correspondence of the pluricanonical

modules of $S$ and $R$ .

In \S 2 of [14], the structure of the homogeneous divisor class group $HCl(S)$ is

studied. $HCl(S)$ is a subgroup of $Cl(S)$ and we have the relation

$HCl(S)= \frac{Div(R,D)}{P(R)\oplus Z/rZ\cdot D}$

where $Div(R, D)=$ { $E \in Div(R)\otimes Q|E=\sum_{V\in Ir\tau^{1}(R)}r_{V}\cdot V$
with $r_{V}q_{V}\in Z$ } and

$P(R)$ is the group of principal divisors of $R$ . For the element $m(K_{R}+D’)\in Div(R, D)$

, we can control the corresponding element of $Cl(S)$ as : For $m\in \mathbb{N}$

$K_{S}^{[m]}= \bigoplus_{k=0}^{\tau-1}R(m(K_{R}+D’)+kD)T^{k}$ .
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Further $K_{S}^{[m]}\cong S$ if and only if there exists an integer $\alpha\in Z$ such that $m(K_{R}+D’)-$

$\alpha D\in P(R)$ .

In the below we alway$s$ assume the equivalent these conditions and $t|m$ .

There exi$s$ts an integer $N$ such that $Nm(K_{R}+D’)$ is a Cartier divisor on $R$ . Hence

there exists $\varphi\in R(Nm(K_{R}+D‘))=K_{R}^{[mN]}(mN(D’))$ where $K_{R}^{[Nm]}(NmD’)=\varphi\cdot R$ .

We obtain the relation

$\varphi\cdot S=\bigoplus_{h=0}^{\tau-1}R(Nm(K_{R}+D’)+kD)T^{k}$

$=K_{S}^{[Nm]}$ .

Let us take resolution of singularities of $Spec(R)$ and $Spec(S)$ in the following.
$\tilde{W}$

$arrow$ $SpecS=W$
$\eta$

$\tilde{\pi}\downarrow$ $\pi$ I
$\tilde{V}$

$arrow^{\xi}$

$SpecR=V$

where $\eta$ : $\tilde{W}arrow W$ is a good resolution and $\xi$ : $\tilde{V}arrow V$ is a good resolution such that

the total transform of $Supp(D-[D])$ is normal crossing. $\tilde{\pi}$ : $\tilde{W}arrow\tilde{V}$ is a map which

is naturally induced and is surjective morphism.

Here we recall the following log-ramification formula.

LEMMA (1.2.1) (IITAKA [5, THEOREM 11.5]). Let $f$ : $Yarrow X$ be a genericaJly

finite and generically surjective morphism of non-singular algebr$aic$ varieties, and let $L$

$be$ a reduced $di$visor on $X$ with only normal $cr$ossings. $Assu$me that $f$ is \’etale ou tside

of $M=def(f^{*}L),ed$ .

Then the following logarithmic ramification formula obtains:

$K_{Y}+M=f^{*}(K_{X}+L)+R$ ,

where $R$ is an effective divisor on $Y$ whose $irred$ucible components are all $m$apped to

lower dimensional $sub$varieties by $f,$ $i.e.$ , we have $f.R=0$ .

Now $\xi^{*}(\varphi)$ is a meromorphic Nm-ple d-form on $\tilde{V}$ , and we have the relations

$(^{*})$ $\xi^{*}(K_{R}^{[Nm]}(NmD’))=\xi^{*}(\varphi)\cdot O_{\tilde{V}}$

$=O_{\tilde{V}}(Nm(K_{\tilde{V}}+\tilde{D}’)-div_{\tilde{V}}(\xi^{*}(\varphi))|_{E})$

$=O_{\tilde{V}}(Nm(K_{\tilde{V}}+E+\tilde{D}’)-div_{\tilde{V}}(\xi^{*}(\varphi))|_{E}-NmE)$
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where $E= \xi^{-1}(p)_{\tau ed}=m\bigcup_{j=0}E_{j}$ is the decomposition of the exceptional locus into the

irreducible components and $\tilde{D}’$ is the strict transform of $D^{l}$ , and $div_{\tilde{V}}(\xi^{*}(\varphi))|_{E}$ is the
part over $E$ of the divisor $div_{\tilde{V}}(\xi^{*}(\varphi))$ .

By definition (V, $D’$ ) is log-terminal (resp. log-canonical) when $div(\varphi)|_{E}+NmE$

is an effective divisor whose support coincides with $E$ (resp. is an effective.

Next $\tilde{\pi}^{*}(\xi^{*}(\varphi))=\eta^{*}(\pi^{*}(\varphi))$ is a meromorphic $N$m-ple d-form on $\tilde{W}$ , and we have
the relation$s$ .

$(^{**})$ $\eta^{*}(K_{S}^{[Nm]})=\eta^{*}(\pi^{*}(\varphi))\cdot O_{\tilde{W}}$

$=O_{W’}(Nm(K_{\tilde{W}})-div_{\tilde{W}}(\eta^{*}(\pi^{*}(\varphi))))$

$=O_{W’}(Nm(K_{\tilde{W}}+F)-div_{W’}(\eta^{*}(\pi^{*}(\varphi)))-NmF)$

where $F= \eta^{-1}(\tilde{p})_{\tau ed}=m\bigcup_{j=0}F_{j}$ is the decomposition of the exceptional locus into the
irreducible components.

By definition $W$ is log-terminal (resp. log-canonical) when $div(\varphi)+NmF$ is an

effective divisor whose support coincides with $F$ (resp. an effective divisor).

By $(^{*})$ and $(^{**})$ , we obtain the relation

$\tilde{\pi}^{*}\{Nm(K_{\tilde{V}}+E+\tilde{D}^{l})-div_{\tilde{V}}(\xi^{*}(\varphi))|_{E}-NmE\}$
$(^{***})$

$=Nm(K_{\tilde{W}}+F)-div_{\dot{W}}(\eta^{*}(\pi^{*}(\varphi)))-NmF$

Let $\tilde{D}$ be the support of the strict transformnof $D^{l}$ . Since $\tilde{\pi}$ : $\tilde{W}arrow\tilde{V}$ is \’etale outside
$E\cup\tilde{D}$ , we have the relation

$K_{\tilde{W}}+F+\tilde{\pi}^{*}(\tilde{D})_{red}l$

$=\tilde{\pi}^{*}(K_{V}’+E+\tilde{D})+R$

where $R$ is an effective divisor whose irreducible components are all mapped to lower
dimensional subvarieties by $\tilde{\pi}$ , in particular $Supp(R)\subset F$. We have

$Nm(K_{\tilde{W}}+F+\tilde{\pi}^{*}(\tilde{D}),ed)$

$=\tilde{\pi}^{*}(Nm(K_{\tilde{V}}+E+\tilde{D}))+NmR$ .
$Nm(K_{\tilde{W}}+F)+Nm\tilde{\pi}^{*}(\tilde{D})_{ed}$

$=\tilde{\pi}^{*}(Nm(K_{\tilde{V}}+E+\tilde{D}’))+NmR+\tilde{\pi}^{*}(Nm(\tilde{D}-\tilde{D}^{l}))$ .
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By $(^{***})$ ,

$\tilde{\pi}$
“ $\{div_{\tilde{V}}(\xi^{*}(\varphi))|_{E}+NmE\}+NmR$

$=div_{\tilde{W}}(\eta^{*}(\pi"(\varphi)))+NmF+\{Nm\tilde{\pi}^{*}(\tilde{D}),ed-\tilde{\pi}^{*}(Nm(\tilde{D}-\tilde{D}^{l}))\}$ .

Suppose (V, $D’$ ) is log-terminal (resp. log-canonical), then $div_{\tilde{V}}(\xi^{*}(\varphi))|_{E}+$

$NmE$ is an effective divisor whose support is $E$ (resp. effective). Since $R\geq 0$ ,

$div_{\tilde{W}}(\eta^{*}(\pi^{*}(\varphi)))+NmF$ is an effective divisor whose support is $F$ (resp. effective).

Converse implications are also clear, because $\tilde{\pi}_{*}(R)=0$ .

Finally we discuss the index of $K_{R}+D’$ more closely. Let us consider the following

two integers.

$H= \min${$\alpha\in Z|\alpha>0$ , and $\alpha\cdot(K_{R}+D^{l})-0\cdot D\in P(R)$},

$t= \min${ $\alpha\in Z|\alpha>0$ , and there exists $\beta$ such that $\alpha\cdot(K_{R}+D^{l})-\beta\cdot D\in P(R)$ }.

There exists $u\geq 1$ with $H=ut$ and

$u= \min\{\gamma\in Z|\gamma\cdot a’=0inZ/lrZ\}$ .

This completes the proof.

\S 2. The canonical cover of normal graded rings ([15,16]).

We recall the description of the canonical covers in terms of Demazure’s construc-

tion.

THEOREM (2.1). Suppose the canonic$al$ module $K_{R}$ of$R(X, D)$ is $Q$ -Cartier ofindex
$r$ . Let the integer $a^{l}$ satisfy th $e$ condition that $r.(K_{X}+D’)-a^{l}.D$ is an in tegral principal

divisor on $X$ ; where $D’= \sum_{V\in I\tau r^{1}(X)}\frac{q_{V}-1}{q_{V}}.V$ as in [18]. Then the canonical cover $\tilde{R}$ is

isomorphic to th $e$ graded ring $R(Y,\tilde{D})$ as follows ;

(i) the $n$ormal projecti$ve$ variety $Y$ is defined by the finite $co$vering

$\rho$ : $Y=Spec_{X}(\bigoplus_{l=0}^{-1}O_{X}(l(\frac{r}{s}(K_{X}+D^{l})-\frac{a^{l}}{s}D)))arrow X$,
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where $s=(r, a^{l})$ ,

(ii) th $e$ ample $Q$ -Cartier $di$visor $\tilde{D}$ on $Y$ is defined by $\tilde{D}=\rho^{*}\{\alpha(K_{X}+D’)+\beta D\}$

, where $\alpha$ and $\beta$ are integers with $\alpha a’+\beta r=s$ .

(iii) Further we obtain the relation $K_{\tilde{R}}= \tilde{R}(\frac{a^{l}}{s})$ .

One can find the proof of this in $[15,16]$ .

REMARK (2.2). In the situation of $(2.I)$ , we lnave the following relation

$K_{Y}+(\tilde{D})^{l}=\rho^{-1}(K_{X}+D^{l})$ in $Div(Y)\otimes Q$ .

$B ytAiswecanconcludetAatK_{Y}+(\tilde{D})_{=^{-}}’\frac{a’}{s}\cdot\tilde{D}isanintegralprincipaldiT\Lambda isfactalsoprovidestlnerelationa(\tilde{R})\frac{a}{s}(cf.[18,I9],(1.6)of[15])$

.

visor on Y.

Proof. We have

$\frac{\prime r}{s}(K_{X}+D^{l})-\frac{a’}{s}D=\frac{\gamma}{\epsilon}K_{X}+\sum_{1V\in Ir(X)}\frac{\frac{r}{\epsilon}(q_{V}-1)-\frac{a^{l}}{s}p_{V}}{q_{V}}\cdot V$

and $\frac{\prime r(q_{V}-1)-a’p_{V}}{q_{V}}\in Z$ . We represent

$\frac{\frac{r}{s}(q\gamma-1)-\frac{a’}{s}p_{V}}{q_{V}}=\frac{t_{V}}{s_{V}}$

$t_{V}\in Z,$ $s_{V}\in \mathbb{N}$ with $(t_{V}, s_{V})=1$

where $s_{V}$ is the ramification index of $\rho$ at $V^{l}\in I\prime rr^{1}(Y)$ which dominates V. we have

$\rho^{-1}(V)=s_{V}\cdot\rho^{-1}(V)_{\tau\epsilon d}$

and

$K_{Y}= \rho^{-1}(K_{X})+\sum_{1V\in I\tau r(X)}(s_{V}-1)\cdot\rho^{-1}(V)_{r\epsilon d}$
.

Hence

$\tilde{D}=\rho^{-1}(\alpha\cdot K_{X})+\sum_{1V\in I_{f\prime}(X)}\frac{s_{V}\{\alpha(q_{V}-1)+\beta\cdot p_{V}\}}{q_{V}}\cdot\rho^{-1}(V)_{ed}$ .

From the equality

$1= \frac{a’}{s}(\alpha(1-q_{Y})-\beta\cdot p_{V})+\{\frac{a^{l}}{s}\cdot s_{V}\alpha+\beta(s_{V}\cdot\frac{r}{s}-t_{V})\}\frac{q_{V}}{s_{V}}$ ,
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$q_{V}$

we see that
$\overline{s_{V}}$

and $\alpha.(q_{V}-1)+\beta\cdot p_{V}$ are relatively prime. Hence

$( \tilde{D})’=\sum_{V\in Irr^{1}(X)}\frac{\frac{q_{V}}{s_{V}}-1}{\frac{q_{V}}{s_{V}}}\cdot\rho^{-1}(V)_{r\epsilon d}$ .

Therefore

$K_{Y}+( \tilde{D})^{l}=\rho^{-1}(K_{X})+\sum_{\prime V\in I^{1}(X)}\frac{(q_{V}-1)s_{V}}{q_{V}}\cdot\rho^{-1}(V)_{red}=\rho^{-1}(K_{X}+D’)$ .

Now $K_{Y}+( \tilde{D})’-\frac{a’}{s}\cdot\tilde{D}=\beta\cdot\rho^{-1}(\frac{r}{s}(K_{X}+D^{l})-\frac{a^{l}}{s}D)$ and this is an integral principal

divisor on Y.

\S 3. ${\rm Log}$ termminal graded singularity and $\log$ canonical graded singularity.

As same as Theorem (3.12) of [14] we can show the following.

PROPOSITION (3.1). Let $R(X, D)$ be a normal d-dimensional graded ring over a field
$k$ with $char(k)=0$ . Then $U(X, D)\cong Spec(R(X, D)-V(R_{+})\Lambda$ as $log$ terminal (resp.

$log$ canonical) $sin$gularity at any poin$tx\in X$ , if and only if the following two conditions

hold.

(i) At any point $x$ , there are integers $a_{x}’$ and $tae(\geq 1)$ such that

$t_{x}(K_{X}+D’)-a_{x}’D$

$is$ a principal $di$visor at $x$ .

(ii) At any point $z,$ $(X, x)$ has $log$ terminal (resp. $logc$anonical) singularity with

respect to $K_{X,x}+D^{l}$ .

Proof. Let $V(P)=x\in Spec(R)\subset X$ be a closed point of $X$ and set $U(X, D)_{x}=$

$U(Rp, D_{P})$ be the fiber over $x\in X$ with respect to $U(X, D)arrow X$ . Here we denote

$U(R, D)=Spec_{R}(A(R, D))$

by

$A(R, D)=\oplus_{k\in Z}R(kD)T^{k}\subset Q(R)[T,T^{-1}]$
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(cf. Watanabe [20]). We have the $k^{*}- fiber$ structure $U(R, D)arrow Spec(R)$ . We will discuss
the $\log$ terminal property (resp. the $\log$ canonical property) of Z-graded singularity

$U(R_{P}, D_{P})=Spec_{R}(A(R_{P}, D_{P}))$ .

We choose $f,$ $r$ as $div_{R}(f)=rD$ in $Div(R_{P})$ and $r$ is the minimal at $R_{P}$ . Then $f^{-1}T^{r}\in$

$R(rD)_{P}T$‘ is a unit of $A(R_{P}, D)$ . We obtain

$A(R_{P}, D)/(f^{-1}T^{r}-1)A(R_{P}, D)\cong S(Rx, D, f)\cong S\cong\oplus_{k=0}^{\tau-1}R_{P}(kD)T^{k}$.

Following Flenner [3], we define $\alpha$ : $A(R_{P}, D)arrow S[U, U^{-1}]$ with
$\alpha(g)=\{gmod (f^{-1}T’-1)A(R_{P}, D)\}\cdot U^{m}$ for $g\in R_{P}(mD)T^{m}$ . Since the characteristic
of the base field is zero, $\alpha$ is \’etale ([3, \S 2]). Hence $S$ is $\log$ terminal (resp. $\log$ canonical
$)$ of index $t$ if and only if so is $U(R_{P}, D)$ . So the assertion follow from Lemma (1.2).

As an application , we will show the following.

THEOREM (3.2). Let $R=R(X, D)$ be a normal d-dimension$al$ graded singularity
represented by Demazure’s construction. Let $t\geq 1$ be an integer. Then $R(X, D)$ is $a$

$log$ terminal singularity of index $t$ if and only if th$e$ foUowing two $con$ditions hold.

(i) There is an integer $a’\in Z$ with $a’\leq-1$ such that $t(K_{X}+D’)-a’D$ is an

integral divisor which is a principal divisor on X. Further $t\in \mathbb{N}$ is the minimal integer
such that there exists $a^{l}$ as above.

$(\ddot{u})$ At each point $x$ of $X,$ $(X, x)$ has $log$ terminal singularity with respect to
$K_{X}+D^{l}$ .

Proof. First we prove the assertion in the case $t=1$ .

We recall the result of Watanabe [18,19, cf. 3]

THEOREM (3.2.1). Let $R=R(X, D)=\oplus_{k\geq 0}R_{k}$ be a normal graded ring over th $e$

field $R_{0}$ with $c\Lambda arR_{0}=0$ . Then $R(X, D)h$as canonical singularity of $index1$ if and
only if th $e$ following two conditions hold.

(3.2.1) There is an integer $a$ with $a\leq-1$ ; such that $K_{X}+D’-aD\in P(X)$ . Here
$P(X)$ is the set ofprincipal divisor of $X$ .

(3.2.2) $U(X, D)=SpecR-V(R_{+})$ has only rational singularity.



52

Now the two conditions of (3.2) with $t=1$ imply the $\log$ terminal condition of

$U(X, D)$ by Proposition (3.1). Further, by Theorem (3.2.1), $R$ has only canonical sin-

gularity of index 1.

Here recall canonical singularity of index 1 is nothing but Gorenstein rational sin-

gularity (Elkik-Flenner [2,3]).

So the sufficiency are proved. The converse implication also followed by (2.3.1)

and (2.2). The proof of the case of $t=1$ is finished.

Assume $R$ is a $\log$ terminal singularity of index $t$ . Here we recall $R(X, D)$ has $\log$

terminal singularity if and only if the canonical module of $R(X, D)$ is Q-Cartier and the

canonical cover of $R(X, D)$ is canonical singularity of index 1.

Then (i) follows from [18, (1.6), (2.8)]. Since $U(X, D)$ is $\log$ terminal singularity,

(ii) follows from Proposition (3.1).

Next assume the conditions (i) and (ii) hold. By [18, (1.6) and (2.8)], the canonical

module $K_{R}$ of $R$ is Q-Cartier of index $t$ . Let $\tilde{R}$ be the canonical cover of $R$ and $\tilde{R}=$

$R(Y,\tilde{D})$ be the representation by Demazure’s construction. By Theorem (2.1), we have
$a(R(Y,\tilde{D}))=a^{l}/s<0$ with $s=(t, a’)$ . Since $U(Y,\tilde{D})arrow U(X, D)$ is \’etale in codimension

one and $U(X, D)$ has $\log$ terminal $s$ingularity by (3.1), $U(Y,\tilde{D})$ has also $\log$ terminal

singularity. (cf. [8,7]) Since the canonical module of $R(Y,\tilde{D})$ has the index 1, $U(Y,\tilde{D})$

has $\log$ terminal singularity of index 1, that is Gorenstein rational singularity. Hence

, by [3,18,19], $R(Y,\tilde{D})$ has Gorenstein rational singularity. Therefore $R(X, D)$ is a $\log$

terminal singularity.

Next we will consider the condition of $R$ to have $\log$ canonical singularity. The

following follows easily &om (3.1).

PROPOSITION (3.3). Let $R=R(X, D)$ be a $normaI$ d-dimension$d$ graded singularity
$r$epresented by Demaz$ures$ construction. Let $t\geq 1$ be an integer and assume that $R$ is
a $log$ canonical singularity of index $t$ . Then the following two condition$s$ hold.

(i) There is an integer $a’\in Z$ with $a’\leq 0$ such that $t(K_{X}+D^{l})-a’D$ is an integral
divisor which is a princip$aI$ divisor on X.And $t\in \mathbb{N}$ is the ;minimaI integer $such$ that

there exists $a^{l}$ as above.

$(\ddot{u})$ At $each$ point $x$ of $X,$ $(X, z)h$as $logc$anonical singularity with $r$espect to
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$K_{X}+D^{l}$ .

Proof. As in the same way of the proof of Theorem (3.2), we will discuss the $\log$

canonical condition for the canonical cover $\tilde{R}=R(Y,\tilde{D})$ . Let $C=Proj(\oplus_{0}\tilde{R}|_{k}\cdot U^{k})$

$arrow^{\pi}Spec\tilde{R}$ be the filtered blowing up with respect to the grading R. $C$ is normal and

we have the relation

$\omega_{C}\cong O_{C}(-(a(R)+1)\cdot Y)\cong$ $\oplus$ $O_{Y}(k\tilde{D})T^{h}$ .
$k\geq a(R)+1$

By the $\log$ canonical condition for the partial resolution $Carrow Spec\tilde{R}$ , we obtain the

condition $a( \tilde{R})=\frac{a^{l}}{s}\leq 0$

We will discuss the sufficient condition for $R(X, D)$ to have $\log$ canonical condition.

We will prove the following.

THEOREM (3.4) (CF. (4.8) OF [12]). Let $R=R(X, D)$ be a normal d-dimensional

graded singularity represented by Demazure’s construction. Let $t\geq 1$ be an integer.
Supp$ose$ the folJowing condition$s$ hold.

(i) There is an integer $a’\in Z$ with $a’\leq 0$ such that $t(K_{X}+D’)-a’D$ is an integral

divisor which is a princip$aI$ divisor on X.And $t\in \mathbb{N}$ is the minimal integer such that

there exists a‘ as above.

(ii) At each point $x$ of $X,$ $(X, x)$ has $log$ terminal singularity with $r$espect to

$K_{X}+D’$ .

Then $R(X, D)$ is a $log$ canonical singularity of index $t$ .

Proof. (One can find a similar argument in [6]. See also \S 4 of [12]. ) We assume
$t=1$ . By (3.1), $U(X, D)$ has only $\log$ terminal singularity. If $a^{l}<0$ , then we had already

seen that $R$ has only $\log$ terminal singularity (3.2). Hence we $wiU$ assume $a’=0$ .

By $[3, 18]$ , $C=Proj(\oplus_{0}R|_{k}\cdot T^{k})\cong Spec_{X}(\oplus O_{X}(kD)T^{k})$ has only rational

singularity. Let $\varphi$ : $\tilde{C}arrow C$ be a morphism induced from resolution of singularity of
$C$ and we assume that $\varphi^{-1}(X)\subset\tilde{C}$ is a simple normal crossing divisor. We denote

the proper transform of $X\subset C$ as $\tilde{X}\subset\tilde{C}$ . Since the canonical module of $R$ is locally

principal, we can represent the canonical divisor of $\tilde{C}$ as follows:

$K_{\tilde{C}}=-E_{J}+E_{I}$
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where $E_{J}$ and $E_{I}$ are effective divisors on $\tilde{C}$ whose supports have no common irreducible

component. Further, since $Spec(R)-V(R_{+})$ has only rational singularity, the support

of $E_{J}$ is contained in $\varphi^{-1}(X)$ . Clearly we have $E_{J}\geq\tilde{X}$ .

We will show the relation $E_{J}=\tilde{X}$ by a contradiction method. Assume $E_{J}\neq\tilde{X}$ .
Then $E_{J}-\tilde{X}$ is an non-zero effective divisor. Hence

$0\neq O_{E_{J}-\tilde{X}}\subset O_{E_{J}-\tilde{X}}(E_{I})$.

We have the natural inclusion relations

$H^{0}(O_{\uparrow}\tilde{c}(E_{I}))$

$arrow^{\xi}$

$H^{0}(O_{E_{J}}(E_{I}))\uparrow^{-\tilde{X}}$

$H^{0}(O_{\tilde{c}})$
$arrow^{\tau}$

$H^{0}(O_{E_{J}-\tilde{X}})$ .

Since $\tau(1)\neq 0,$ $\xi$ is not the zero-map. We have the commutative diagram of exact

sequences:

$0$ $0$

$\downarrow$ $\downarrow$

$\omega_{1^{\tilde{c}}}$

$=$

$\omega_{1^{\tilde{c}}}$

$0$ $arrow$

$\omega_{\dot{c}_{\downarrow}^{(\tilde{X})}}$

$arrow$

$\omega_{\overline{C}}(E_{J})\cong O_{\tilde{C}}(E_{I})\downarrow$

$arrow$

$O_{E_{J}-\dot{X}}(E_{I})\downarrow\cong$

$arrow$ $0$

$\omega_{1^{\tilde{X}}}$ $\omega_{E_{J},\downarrow}$

$0$ $arrow$ $arrow$ $arrow$ $\omega_{E_{J}}/\omega_{\tilde{X}}$ $arrow$ $0$

$0$ $0$

and we have

$0$ $arrow$

$H^{0}(\omega_{\tilde{C},\downarrow}(\tilde{X}))$

$arrow$

$H^{0}(O_{\downarrow}\tilde{c}(E_{I}))$

$arrow\xi$

$H^{0}(O_{E_{J}-\overline{X}}(E_{I}))$ $arrow$

$0$ $arrow$ $H^{0}(\omega_{\tilde{X}})$

$arrow\alpha$

$H^{0}(\omega_{E_{J}})$

$arrow\beta$

$H^{0}(\omega_{E_{J}}/\omega_{\tilde{X}})$ $arrow$

Hence $\beta$ is not the zero-map and $\alpha$ is not an isomorphism.

In the resolution of singularity $\varphi|_{\tilde{X}}$ : $\tilde{X}arrow X,$ $X$ has only rational singularity.
Hence we have the relation

$H^{0}(\omega_{\tilde{X}})\cong H^{0}(\omega_{X})$ .

By the Grauert-Riemenshneider vanishing theorem $H^{1}(\tilde{C}, \omega_{\tilde{C}})=0$ , we have the
exact sequence

$0arrow H^{0}(\tilde{C}, \omega_{\tilde{C}})arrow H^{0}(\tilde{C}, \omega_{\tilde{C}}(E_{J}))arrow H^{0}(\omega_{E_{J}})arrow 0$.
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We have a natural isomorphism

$H^{0}(\tilde{C},\omega_{\dot{C}}(E_{J}))\cong H^{0}(\tilde{C}-\varphi^{-1}(X), \omega_{\tilde{C}})$ .

For, $s$ince the support of $E_{J}$ is contained in $\varphi^{-1}(X)$ , the relation $\subset$ is obvious. We

will show the converse inclusion relation. Since $Spec(R)-V(R_{+})$ has only rational

singularity,

$H^{0}(\tilde{C}-\varphi^{-1}(X), \omega_{\tilde{C}})\cong H^{0}(Spec(R)-V(R_{+}), \omega_{R})=H^{0}(Spec(R), \omega_{R})$

$\cong H^{0}(\tilde{C}, \omega_{\tilde{C}}(E_{J}-E_{I}))\subset H^{0}(\tilde{C}, \omega_{\tilde{C}}(E_{J}))$ .

Since $C$ has only rational singularity, we obtain

$H^{0}(\tilde{C}, \omega_{\tilde{C}})\cong H^{0}(C, \omega_{C})$ and $H^{0}(\tilde{C}-\varphi^{-1}(X), \omega_{\tilde{C}})\cong H^{0}(C-X,\omega_{C})$ .

Hence
$H^{0}( \omega_{E_{J}})\cong\frac{H^{0}(C-X,\omega_{C})}{H^{0}(C,\omega_{C})}\cong\oplus H^{0}(O_{X}(K_{X}h\leq 0+D^{l}+kD)T^{k}$ .

Since $a(R)=0$ , we have $H^{0}(\omega_{E_{J}})\cong H^{0}(O_{X}(K_{X}))$ .

But this contradicts to the fact that $\alpha$ is not an isomorphism.

PROBLEM (3.5). Do the two conditions of (3.3) imply th$elog$ canonical condition of

$R(X, D)?$. $Ob$viously the conditions of (3.4) are too strong.
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