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I. Introduction

Organizations are consisted of interacted nultiple agents who have
their own goals, tastes, values, properties and/or technologies. Profi-
le of these members’ properties is usually called a characteristic or
environment in Economic Theory. Organization members interact with each
other cooperatively or non-cooperatively. As a result of interaction,
some social state is attained as an equilibrium point. Organization may
or may not have its objectives. If it has a clear goal in advance, orga-
nization menbers will try to attain its goal as an equilibrium point co-
operatively or non-cooperatively. However, even if it has no goals, we
nmay suppose there’s a mild agreement which social states are much better
than others. Pareto-optimality is such an example of social agreement or
criterion.So we can always assume that there are some criteria or systen
requirements to achieve for any organization. The set of deirable social
states,we can assume its existence conceptualy, are given in advance for
any profile. If we adopt Pareto-optimality as a system requirement, the
set of desirable social states becomes the set of Pareto-optimal social
states for a given profile. Assuming the existence of the set is diffe-
rent from getting it concretely by some methods. So to find a solution
we need to construct a device,i.e. a decentralized mechanism. This is
Inplementation problen.

This paper presents several results for Nash-Implementability. Imple-
mentation Theory was started at the end of 1870°s in the areas of Mathe-
matical Economics and Social Choice Theory. Traditionally, competitive
mechanism has been well studied in General Equilibrium Theory and ¥el-
fare Economnics. It has been showed that the mechanism has many nice pro-
perties such as pareto-efficiency, informational efficiency and unbias-
edness etc.

However,in those theories the agents of the mechanism have been assuned
to be price-takers and to behave honestly. The agents in the real econo-
mic markets usually behave strategically as we can suppose easily.Recent
main interests in Mathematical Economics and Social Choice Theory are
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Incentive-Compatibility and Implementability.

Incentive-Compatibility means that the agent who makes an unhonest dec-
ision in the incentive compatible mechanism looses his payoffs. That is,
only the agents who behave honestly can get success in the incentive
compatible mechanisnm.

On the other hand, the aim of Implementation Theory is to design a
mechanisn which realizes the given desirable requirements such as pareto
-optimality, individual rationality and others.

To design a Nash-Implementable mechanism which satsifies some proper-
ties means the followings:

{Problem] Can we construct a game form just like as pure competitive
market mechanism such that the Nash-equilibrium solution of the gane
should satisfy the given properties when the game is played non-cooperat
ively? .

It is well known that the competitive mechanism is neither Nash-Imple-
mentable nor Incentive-Compatible in spite of having other nice proper-
ties[B]. So the researchers started to search for another mechanisms
which are Nash-Inplementable or‘Incentive-Compatible.Kany able research-
ers have participated in studying this areas and produced many results.

In this paper,we discuss mainly around Nash-implementability condition.
At first Nash-implementation theory started in private and public econo-
mic theory. Later the concepts and frameworks were extended to include
Voting Theory. So in this paper we discuss the problems with a nmind to
involve both cases of Voting Theory and Economic Problen.

In Section I, we give preliminary notations and definitions. Several
results are given in Section Il .The conclusions are given in Section IV.

H. Symbols, Notations and Definitions
As we stated at the end of the above introduction, we adopt the franme-
work which can represent Social Chice Theory and Economic Theory.

Let A be an arbitrary set of alternatives or economic states(allocati
ons). The cardinality of A may be finite or infinite. In Section I, we
suppose A be a finite set with cardinality |A |=n basically.And we will
suppose A be a subset of finite dimensional Euclid Space in Sec. 3.2.

N is the set of agents who are the members of an organization. Every
agent i< N has a preference ordering R: on A. The set of possible pre
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ference order R for member i is denoted by Ri. Set R=Ri1 X+ XR..
We call R =(Ri,*,Rn)E R profile of preference or environment.

In economic framework, agent’s characteristic include other than prefe
rence relation, i.e. initial endowment as well as utility function. In
those case, we may use notations ®; in stead of R in order to show
generality.0f cource, main component of 0 :€ ®; is preference relation.
Similarly, we set @ =0® ;XX ®,. We can use R and ©® interchangeably
depending on the context.

We call any map f :R->P (A) {¢ ) Social Choice Correspondence(SCC)
or System Requirement, where P (A) is the set of all subsets of A. To
show explicitly f is correspondence,we denote this f iR =A instead of
fi:RoP(A){¢). Especially, if f:R=A is a mapping then we denote
it as f:R—> A, and we call it Social Choice Function(SCF). For a given
profile R =(R1,*,Rn), f (R ) is the set of desirable alternatives in
some sense under the profile R . We can also say f (R ) the solution
set for R~ instead. How f should be given is the problem of selection
of social value criterion, so we do not pursuit this problem anymore.

Before giving important definitions, we introduce several preliminary
definitions.

Definition 1 :Reflexivity, Antisymmetricity, Transitivity, Comparability
Preference ordering RC A X A is reflexive & (¥ x€ A)[(x,x)€ R].
Preference ordering R A X A 1is antisymmetric

= (Vx,y€ A)I(x,y) € R& (y,x) € R = x=y].
Preference ordering RC A X A is transitive

& (¥x,y,z€ A)I(x,9) € R&(y,z2) € R = (x,z)€ R1].
Preference ordering RC A X A is comparable

& (vx,ye A)[(x,y)€ R or (y,x) € R].

Definition 2 :Weak Order and Strong Order
Preference ordering R A XA is weak order
< R 1is reflexive, transitive and comparative.
Preference ordering R A X A is strong order
<~ R 1is antisymmetric, transitive and comparative.

Notationl :

For a given profile R =(R1,*,Rn)€ R and an alternative a< A, the
set L(a,Ri) is defined as {a’€ A| aRia’}. When we consider the case
of economics, we may also use the notation L (a, § ) similarly.
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L(a,Ri) is the set of alternatives which are not prefered to a5 A

w.r.t. preference Ri.

By using these symbols and notations, important concepts for SCC, mono
tonicity, Non-veto power and Unanimity are defined as follows.

Definition 3 :Monotonicity
SCC f:R=A is monotonic iff (Y R ,R "€ R)(vVaé€ A)[a€ f(R ) &
(¢vi¢ N)(L(a,R:\)CL(a,Ri’)) = a¢€ £ (R ")].
Where R "=(R1’,,R.").

Simply the above definition says that the alternative a€ f (R ) which
is ranked up by someone by changing order from R: to Ri’,i.e.L{(a,R )
CL(a,Ri’) for all i€ N,is also included in the solution setf (R ’).

Definition 4 :Dictatorship
SCC f:R=A is dictatorial
o (FJENI(YVR € R)(va€ A)Y[a¢ f(R) = L(a,Ri)=A].

Definition 5 :Veto Power, No-Veto Power(NVP)
Agent 1€ N has veto power with respect to SCC f:R=A
© (Ja€ A)(IR €RI(Vvi#1)(L{a,Ri)=A & a¢ f (R )].
Agent 1< N has no-veto power with respect to SCC f:R=A
= (va€ AY(VR €R)(vj#1)(L(a,R;j)=A = a€ f(R)].
SCC f :R=A has no-veto power iff (vi€ N){(va€ A)J(YR € R)
[(vj#i)(L(a,Ri)=A = a€ f (R )].

Veto-power means that no person can reject the alternative which all
the members except for him rank on the top. So no-veto power means that
the alternative which is top-ranked by all the members exept for one per
son cannot be rejected by hin.

Definition 6 tUnanimity
SCC f :R=A is unaninmous
< (VR €R)vVvac¢ A)[I(Vi€¢ N)(L(a,Ri)=A) = a¢ f(R7)].

Unanimity means that the alternative which all the members rank on the
top should be selected.
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Definition 7 :Largeness of ©;
®; is large © (Va€ A)(V 8. €0:)(J8.7€0,)
[Gi’¢83 & L(a,ﬂ&)g—.L(a,Bi’)]-

Definition 8 :Game Form(Mechanism), Direct Mechanism, Outcome function
Let S be strategy set for member i€ N .We call a map hiS:X-+X S,
- A outcome function. The triple M={(S,h,A) is called game form or
mechanism, where S=S:1X++X S, and A is a set of alternatives. We nay
call h itself mechanism instead of M. When S coincides with R or ®,
M=(R,h,A) or M=(®,h ,A) is called a direct mechanisn.

Usually, SCC f and mechanism h are different from each other. f can
be interpreted as a social requirement or criterion which should satisfy
some given desired properties. For example, f (R )Z A is a set of Pare
to-optimal alternatives w.r.t. a given profile R .

On the other hand,h is a function which maps joint strategy s=(si,-,
sn) into some outcome h (s)€ A. In other words, h is an abstruction of
message exchange processes between members.Each member i will choose his
strategy si € S which attains most desirable outcome a=h (s)€ A for
his own preference Ri,i.e. which satisfies h (s)Rih (s’) for all s’€ S
if it exists. However the outcome which occurs actually depends on other
nenmbers’ strategies, so he cannot control the outcome completely.This is
a non-cooperative game situation. There are many solution concepts for
non-cooperative game.

We introduce several notations as follows before giving solution conce
pts.

Notation 2:

S-i=8{XXSi-1XSi+1XXS§,.

S—i=(Sl,"',Si~1,Si+1,"‘,Sn)é S-i.

Ye often write (si,s-:) instead of s=(si,**,sn) for simplicity.
For a mechanism h:S—=A,h (S ,s-:) is defined as the set {a€ A |h (s,
»Si)=a for some s; € Si}.

Definition 9 :Dominant Strategy Solution, Nash-Equilibrium Solution
Let a profile R ¢ R and a mechanism M=(S,h,A) be given. Then
si € 8 is dominant strategy for i with respect to M and R~

& (¥s-i"€8-)(¢¥s:’€ S ) h(si,s-i:")Rih{s:i’,s-:")].
s=(s1,**,sn)€ S is dominant strategy for M and R
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= for any 1€ N s: is dominant strategy w.r.t. M and R .
s=(s1,,80) € S is Nash-Equilibrium strategy for M and R
= (i€ N)(vsi'€ S)[h(s)Rih(si’,s-1)],
ie.(¢i€ N)[h(Si,s-i)ZL(h(s),Ri)].
Where h(Si,s-i)={a€ Ala=h (si,s-i),si & Si}.

Notation 3:D(R ,M),N(R ,M)

We denote the set of dominant strategies for 1€ N w.r.t. M and R~
as Di(R ;M). Similarly we denote the set of dominant strategies and
the set of Nash-Equilibrium strategies w.r.t. M and R as D(R ;M)
and N(R ;M) respectively.

Definition 10:Strategy Choice Function

Let the set R of profiles of possible preference orderings on A and
a mechanism M=(S,h,A) be given. Any correspondence R =S8 is cal
led strategy choice function, where p=(g 1, ,4n) and g :R=>S . Esp
ecially, if u: is determined depending only on R i,we call such g sel
fish and denote it as g i;Ri= S8 in that case.

If we adopt dominant strategy or Nash-Equilibrium strategy as a soluti
on concept of a mechanism M, g (R ) is D(R ;M) or N(R ;M) for any
R € R, respectly.

Definition 11:Implimentability, Weak-Implementability
Truthful-Implementability
Let a SCC f:R=A and a mechanism M=(S,h,A) be given. Then
M 1is weakly u -implementable for f
< (VR €R)h(x(R NCf(R].
M is @ -implementable for f
© (VR €R)h (s (R ))=1f(R )].
If M is direct mechanism,i.e., S = R ,then
M is truthfully g -implementable for f
= (R €ER)IR £ u(R )I&Kh(R )€ £f(R)].

Specifically,if we adopt dominant strategy or Nash-Equilibrium strategy
as a strategy choice function u for the mechanism M,we say it dominant
implementable or Nash-implementable for f ,respectively.

As for dominant-implementability, many results are given already(see
[1,71).In the follpowing sections,we discuss only Nash-implemenrability.
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Here let’s give an example of a mechanism in order give an understand-
ing for the importance of Nash-implementability.

Illustrative Example of mechanisnm:

Consider the pure exchange economy 8 ={(X i,ui,%i)ien},where 8 :=(X,,
UisWi). A=X 1 XX X,. This economy consists of individual households
(agents) i€ N={1,+«-,n}. They have their own utility functions ui:X =R

and initial endowments wi € Xi. For a given profile of all members’ cha
racteristics 6 =(81,*, 8.), we can define the set f (6) of allocatio
ns which are Pareto-optimal and individually-rational. Of course, we can
not list up the elements of f (8 ) explicitly and concretely.

("1, yx"n)€ A is Pareto-optimal © X Lxi"=2 Lwi and (¥ x=(x1,,

)EAMZ Lz =2 Lwi & (VI€ N)(ui(xi)2ui(x:i")) = x"=x] hold.

(x*1,*yx"n) € A is individually-rational

S (Vié N)[ui(x*i)Z2ui(wi)] holds.

To find an element x* € £ (6) we need to solve a multi-objective probl
en. However we cannot solve it centrally because of the too bhig size of
the problem and the social necessity of keeping the freedom and privacy.

Problem:Can we find Pareto-optimal and individually-rational alleocation
x*, that is x*€ £ (8 ), without solving the above nmuti-objective
optimization problem centrally?

To solve this problenm noncentrally means that we nust design some kind
of game or rule, which we call mechanism in this paper,and that we solve
it decentrally or competitively, i.e. we must find Nash-equilibrium solu
tion non-cooperatively.

Competitive mechanism is one of the most famous mechanisms as such. ¥e
can interpret the competitive mechanism as a game. The competitive equil
ibrium solution x*€ A of it can be considered as Nash-equilibrium solut
ion of the game which is attained as a result of free competition. The
problem is whether x*€ f (8 ) holds. In precise, the competitive mechan-
ism can be interpreted as n+l players ganme,one of which is Walrasian auc
tioner,i.e. price setter. (In precise, competitive equilibrium solution
is defined as (p",x"), where p* is equilibrium price.)

However the rule of the game is; the players should play truthfully as

a price-taker.

As you can imagine easily, the real economic agents manipulate their
supplies and demands strategicaly. Agents may not reveal their demands
unhonestly. If we permit the agents to play unhonestly, the competitive
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nechanism, unfortunately, fails to give a Pareto-optimal allocation[6].
We can call this situation a kind of market-falure. That is, saying corr
ectly with using our framework, competitive mechanism does not Nash-impl
enment f under the condition of privacy-respecting. The importance of Na
sh-implementability problem lies here.

M. Results

3.1 Condition for Nash-implementability
First, we give a necessary condition for Nash-inmplementability.

Theorem 1 :
If SCC f:R=A is Nash-inplementable, then it is monotonic.

Proof: Let M=(S,h,A) be Nash-inplementable for f . Let’s pick R
and R € R arbitrarily and fix them. Suppose that for an arbitrary
fixed a€ f(R) L(a,R:i)ZL(a,R:’)] holds for any i€ N. By defini-
tion of Nash-implementability, we have h (N(R ;M))=f (R ). Thus we
get a€ h (N(R ;M)).Consequently, h (s)=a holds for some s€ N(R ;M).
From this we have h(Si,s-{)C L (a,R:) for any i€ N. Thus by assump-
tion we have h (S i,s-:)CL{a,R:’) for any i€ N.So we get s€ N(R ’,
M). Consequently, a€ h (N(R ’;M))=f (R ’) holds. Thus f is mono-
tonic. Q.E.D.

The above theorem tells us that monotonicity of SCC f is neccesary
condition for Nash-implementability. Next we consider sufficiency condi-

tion. Maskin gave first a sufficient condition for Nash-implementability
for f.

Theorem 2 :
SCC f :R=>A satisfies monotonicity and NVP, then it is Nash-implemen
table.

Proof:0Omitted. See Maskin[1985].

Maskin gave a constructive proof for Theorem 2 by constructing a mech
anism concretely. ¥e give Maskin’s mechanism below.
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[Maskin’s Mechanisn]
OStrategy set for i€« N; S, =RXA.
OO0utcome Function h:S—=>A;
@h(s)=a if a€¢ f(R ) and si=(R ,a) holds.
@h(Si,s-i)=L(a,R )
if (VieN)I(Vi#i1)(a€ £(R7) and s;=(R ,a))] holds.
@h(Si,s-i)=A if (Vi€N)(Tj k€ N)[j#i#k & [s;#s« or
(s;=(R ,a)& a¢ £ (R7))]] holds.
Where R =(Ri,,R.)ER.

The above theorem is a sufficient condition. However,NVP is not necces
ary condition for Nash-implementability unfortunately. We haven’t know
yet the neccesary and sufficient condition of Nash-implementability for
f.

In the above mechanism S is RX A and R=Ras", thus Si is a very
large set. So each member i must not only reveal his own alternative ac
A and his own preference R but also must forecast all the other nmen-
bers’ preferences R ;. It is too heavy work for organization members to
forecast them. However, what is important of this theorem is that a suff
icient condition for Nash-implementability was given first anyway.

Then several researchers endeavoured to reduce the size of strategy
set S (Saijho[2], McKelvy[3]). We also discovered another mechanisnm
which has smaller size of strategy set than Mackelvy and others’ and
which also Nash-inplements SCC f .This result is one of the main results
of this report. Before introducing our mechanism, we must give another
two definitions.

Definition 12; Bottom alternative
as € A is bottom alternative for SCC f:R=A
© (YR €R)ae?d f(RD&(¥ 1 €N)(L(ag,Ri)=1{as})]

In the above definition, you may think that the condition SCC fIR=A
has a bottom alternative is too restricted.However it is not so.If there
does not exist a bottom alternative in A, we can add a special alterna-
tive as to A so that it becomes bottom alternative for SCC f in AU
{ag}. We can regard AU {as} as the set of alternatives which are given
in advance.

Definition 13;Anonynity
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SCC f:R=A is anonymous iff f(Rnitr,*,Rrcmy)=f (R ) holds for
any R € B and any bijective map = :N->N.

This definition means that f is symmetric w.r.t. members. Before giv-
ing Theorem 3, we introduce next assumption.

Assumption 1 ¢
For all members, Ri=--=R. holds.

Theorem 3:
Suppose n=3, and SCC f :R = A has the bottom alternative and satis-
fies anonymity, momotonicity and NVP, then f is Nash-implementable.

Before giving a proof for the above theorem, we introduce a mechanisn
My which Nash-implements f .

[Mechanism My
Let ag be bottom alternative for f. My=(S,h,A) is defined as
followus.
Si={(ai,Ri,mi)|lai ¢ A,R{€ Ri,mi € N} for all i¢ N.
D h (s)=a" if (Fa* € A)(Yi€ N)[ai=a~ & a € f(R!,,R1)] holds.
@ h (s)=ag if (Fa~€ A) (Vi€ N)[ai=a~ & a ¢ f (R}, ,R1)] holds.
@ When there exist a"€ A and j€ N such that for all i€ N\{j}
a;=a” #a; holds, we set :
h (s)=a; if a; € L{a",R 1) {as} or a"=as,
=a" otherwise.
@ When the above cases L@@ do not hold, we set
h (s)=at, where t=(Z 2ni )man, n+1=1(mod n).

In this mechanism, each organizational member must send a message(stra
tegy) si=(ai,Ri,ni) to other members. @ says that if the opinion of
nembers differ from each other a: is selected according to this game’s
rule. However t is calculated by t=(Z Zmi)wen which depends on the nunm-
bers {mi} L selected by all members, so each member cannot control the
selection of an alternative which he desires. We will prove the above
nechanism My Nash-implements f .

Proof of Theorem 3:
To prove Nash-implementability for f, we must prove that f {E J)=h (N
(R ;My)) for all R € R.
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[1]:First, we show f (R )T h{(N(R ;M;)): Choose R =(R1,, R R
and a€ f (R ) arbitrarily. Choose s=(si,**,s:)€ S as si=(a,Ri+1,1)
for all i€ N. From assumption 1 and anonimity condition, we have R+
€ R, and a¢ f(R2,Rz,*,Ra,R1)=f (R ). By applying rule @ of mech
anism My, we have h (s)=a.

Next we will show this s is a Nash equilibrium solution for My. Fix
member i arbitrarily. Choose an arbitrary strategy si’=(ai,R{,mni). Then

@ 1If ai=a, then by rule @ or @ we have h(si’,s-i)€ {a,as}.

® If ai #a, then from a#ae and rule @ we have

h (si’,s-i)=a; if a; € L (a,R)\{as}
=a otherwvise.

Thus we get h(si’,s-i)¢€ L{a,R:). Consequently we have h{(Si,s-:)CL
(a,Ri). So s€ N(R ;My). Thus a=h ()€ h (N (R ;My)) holds.
[2]:Next, we will show the converse inclusion relation h (N(R ;M))C
f (R ):Choose R =(Ri1,*y,Ra)€ R and a€ h (N(R ;My)) arbitrarily.
Then there exists s£ N(R ;My) such that h (s)=a. Where s=(s1,**,8n)
and si=(ai,Ri,mi) for all i. We will show a¢ f (R ). We can consider
next four cases.
1 )Case-1 ;There exists a“ € A such that ai=a" for all i€ A.
2 )Case-2 ;There exist a* € A and i€ N such that ai=a"#a; for all

J#1i.
3 )Case-3 ;There exist j,k< N and a~ € A such that j#k and

ai=a”~#aj,ax for all i# j,k.
4 YCase-4 ;Except for the above three cases.

We will show case-1 only. We omit the proof of other cases.For we can
show exactly and similiarly, and we need many spaces for it.

Proof for case-1 ;When there exists a* € A such that ai=a” for all i, we
can divide this case into two subcases.
Case-1 -1 ;%hen 2 € £ (R!,,R1}) holds;

From h (s)=a and rule @, we have a"=a. Choose i€ N arbitrarily and
fix it. Choose a’ € L (a,R 1) \{as} arbitralily.

@If a’=a, we have a’ € h(Si,s-:) by h(s)=a=a’.

®If a’#a, we define s;’€ S as s;’=(a’,Ri,ni).

By rule @, we have h(si’,s-i)=a’. Thus a’€ h (S ,s-i).
Consequently, we have L (a,R™)\{ae}C h (S i,s-:).

On the other hand, by assumption s N(R ,My) we have h (S i,s-)CL
(a,Ri). Thus we get L (a,RM)\{as}C L (a,R:i). HMHoreover we have
L(a,R BYCL(a,R:) for all i, since az € L (a,R:) for all i.

Since a€ f (RI,R i, ,R¥) holds by the assumption of anonimity, we
have a¢ f (R") from monotonicity.
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Case-1 -2 ;When a"¢ £f (R{,--,R1) holds;

From rule @, a=h (s)=ag holds. Suppose s;’=(a’,R{,mni) for i,where a’
is an arbitrary element in A%{a"}. By rule @, h(si’,s-i)# as holds.
Thus h(si’,s-i)¢ {ae}=L(as,Ri)=L (a,R).Consequently,s¢ N(R ,My).
This contradicts with the assumption. So we don’t need consider Case-1 -
2.

Other cases can also be proved similarly. See [4] in detail. Q.E.D.

3.2 Public Good Economy Case

We don’t have yet the necessary and sufficient condition for Nash-impl
ementability for f . However, in a simple public goods economy model we
can find the necessary and sufficient condition as shown later. Before

giving the result, we must give several notations and definitions for
public good model.

Notation 4:
R ithe set of real numbers
Y :the set of provision level of public good. We assume YCR.
X i tthe set of member i’s private good consumption level.

We assume X R.
X=X1 XX Xn
w; &€ Xi:Initial endowment for i.
T:€ X3 tax imposed on i. We asuume TiSw;. If T:<0,T: means subsidy.
A={(Tiy,,Tayy)Iy€ Y,Z LTi2y}: the set of allocations.

We may write T instaed of (Ti,-,Ta).
ui {30 i )IA->Re; utility function for member i under 6.
6 i=(Xi,ui,ui)€ ®;; We call the triple & member i’s characteristic.
6=(61,--,8:): profile of member’s characteristics.
O@=0:X-X0,
L((T,y), 8:)={(T",y") € Alui(T,y)2ui(T’,y")}.

Where 8 i =(Xi,ui,wi), T=(T1,,Tn) and T’=(T1",,T") . M

24T 2y means that public good cannot be provided greater than accu-
nulated total tax.Most important component of characreristic 8 is util
ity function ui(+} 8 i).%e may simply write this ui instead of ui(-; 8 ).
Compared with the former Social Choice Theory, ®; corresponds to R .

So we can apply the same concepts to public good model as to Social Cho-
ice Theory.
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Assumption 2:
Ve assume ®;=-=0.

Definition 14;Public Good Econonmy
We call (81,,8n,Y) public good economy.

Definition 15;Selfishness
In the above public good economy model, 6 :i=(Xi,ui,w:i) is selfish
& (Yye Y)(VT,T’ € X)
(T, y),(T’,y) €A & T >Ti = ui(T’,y)>ui (T,y)].
Where T=(T1,+,Ta) and T’=(T1’,+,Ta’). |

Under this model, we have next theoren.

Theorem 4 :

In the above public good model, suppose n23 and 8 =(Xi,ui,w) is
selfish for all i. Then, f:®=A is monotonic iff f is Nash-implemen-
table.

Proofi;¥e have already proved if-part in Theorem 1 without condition. So
we only need to prove only-if part. Suppose f is monotonic.

We introduce the following mechanism M=(S, h,A). Then we will show
the mechanism M Nash-implements f.

[Mechanism M]
OStrategy space S :

Let A (T,y)={L{{(T,y),0:)|8:€0®;} and B i (T,y)={L ({T,y), 8 i+1)]|
6i+1€0®+1}U{¢}.S is defined as the set {{({T',y' ),A:, Bi)|(T,y!)
CAAICA(T ,y),Bi€Bi(T,y)}.

OOutcome function h:S—-A:

For the sake of defining outcome function h, we introduce next defi-

nition.

[Definition]; f -consistency

Suppose s=(s1,*,8n)€ S and j€ N be given.

s-; is f -consistent iff there exist (T’,y’)€ A and 9’€ ® such that
O(T’,y’")e £(67)
@(Ti,y' )=(T’,y") for all i# j and
@A =L{T?,y’),08:’) & Bi=L{{T’,y’),0:+1’) for all i#j hold.
WYhere si=((Ti,y" ),A:,B:) for all i. B
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h:S—A is defined as follows:
DWhen for some j s-; is f -consistent for s,
h (s)=(T/,y) if (T',y')< B ;-1 holds
=(Ti"t',yi ') otherwise.
{Z'¥hen we cannot apply @,
h (s)=(T",y").
Where T =(T"1,,T"n), T"i={ZkenT*i-r' )/ n, y'=Z reny“/ n-nax r +max
{r\(maxr)}), r={r',,r"} and r'=ZvenT"i-y" for all i.
Since n23 and X ienT i-y"=[naxr -nax{r “(maxr)]20 from assumption,
h is well defined. End of definition of mechanism M.

We will show this mechanism M Nash-implements f .
[1]:First, we show that f (6)C h(N(6;M)) holds for all 68 £ ©.

Choose 8 € ® and (T,y)€ £ (8 ) arbitrarily. Choose s: € S for all i
as s;=((T,y),Ai,Bi). Where A€ L ((T,y),0) and Bi€ L ((T,y), 8i+1).
Then we have h (s)=(T,y).

For an arbitrary j, if we choose s;’=((T/,y'),A;,B;), then s-; is
f -consistent. By definition of h, we have

h (sj”,s-;)=(Ti,y)) if (T9,y/)€ L ((T,y), 8 ;)

=(T,y) otherwise.

Consequently,we get u;(h(s); 0 ;)=2u;(h(s;’,s-;);0;) for all j€ N and
s;’€ S ;.Thus s€ N(9;M) holds.Thus we have (T,y)=h (s)=h (N(68:;M)).
[2]:Next, we show that h (N(8;:M))C f (8) holds for all 6 € ©.

First we show

P1:L ((T,y), 8;)# A for all € ®, (T,y)€ A and j€ N.

[Proof of P1]: Set 08 € ®,(T,y)€ A and j€ N arbtrarily. If we set T’=
(Ti-€,T;+1+€,T-¢j,;+11) for some & >0, then we have u; ((T,y); 8 ;) <u;
((T’,y)5 8 ).

Thus L ({T,y), 8 ;) # A was proved. End of proof of Pl.

Choose and fix 8 € ® and (T,y)€ h(N(6;M)) arbitrarily(where T=(T:,
*,Tn)).Then there exists some s€ N (9 ;M) such that h (s)=(T,y) holds.
Where s={(s1,**ys8n), si={{T',y),A:i,Bi) and Ti=(T'1,-,Ttn). We will
show the following PZ and P3 hold for this s€ S.

P2:s-; is f -consistent for all j.
P3:B,;-+C L ({T,y), 08;) for all j.
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[Proof of P2]:Suppose s-; is not f -consistent. Set (T’,y’) <€ A arbitr-
arily. Where T’=(T"1,,T’0)).
Set s;’=((T"’,y""),A;’,B;’) as follows (where Ti’=(Ti!’1,-,Ti"0n));
Ti?i=2 i T* ;40 =0T’ if i#]
=% T +q-nT’; if i=j.
Where q=r’+max(r\{ri}), r’=% iexnT’i-y’, r'=Z caenT*i-y'.
yi'zn X ienT’ i =2 wiy¥.
A’ is arbitrary element in A;(T!,y’).
B;’=¢.
In order to show s;”€ S;, it is sufficient to show (Ti’,yi’)<€ A.
ZienTi 7 i=yi 7= i en D i T i+ 2 ik +q=nZ (enT’i-(n2 ienT’ i = Z i ¥%)
=2 i (k-2 i enTki ) +q
=q (because of r'=2 venT*i-y' for all i)
=0
Thus s;’€ S ;. Set s’=(s;’,s-;).From the above relation q=2 enT!’i-y!’,
we can write q=ri’. Moreover, gq=max{r’’,r ¢}. Since s-i’ is not f -consi
stent for all i, we can apply rule @. If we set h(s’)=(T",y"), we have
sfor all i#j, T i=(Z T +T1 7 - )/ n=(2 T #0T’ -2 i T¢i#r' -r') /n
=T’;,
for j, T"i=(Z T i+4Ti’i-q)/n=(Z ;T +nT’ i - Z ,; T¢ i +q=-q) /n=T" ;.
¥ 2 (2 iy +ys 7Y n=max{ri’,r i }+max({r'’,r i }7\{ri’})=y’. Thus we have
h (s’)=(T",y*)=(T’,y’).0n the other hand, since s€ h (N(8;M)) we have
wi ((T,y)3 8 )2uwi ((T’,y’);08:). Thus (T’,y’)€ L ({T,y), 6 i) holds. Con-
sequently, we have L ((T,y), 8 :)=A. This contradicts with P1. Thus P2
is proved. End of proof of P2.

[Proof of P3]:

Choose j€ N arbitrarily. From P2 s-; is f -consistent. We set s;’=
((Ti’yi’),A;,B;) against an arbitrary (T’,y’)€ B;-1 as (Ti’,yi?)=(T’,
y’). Where A; and B, are arbitrary element of A;(Ti’,y!’) and B ; (T’
,¥’) respectively. Since s-; is f -consistent, there exists (T*,y" )€ A
such that (T',y " )=(T*,y*) fo all i#j. Since (Ti’,yi’)=(T",y’)€ B ;-1
from rule ©®, h(s;’,s-;)=(T’,y’). Thus we have (T’,y’)€ h(S;,s-;).
Thus B;-1Ch(S;,s;-1). From s€ N(8;M) h(S;,s-;)CL{(T,y),8;)
holds. Consequently we have B;-+C L ((T,y), 8;). End of proof of P3.

Using P2 and P3 we show the assertion of this theoren.
From P2, it is sufficient to consider the case s-; is f -consistent for
all j. Since h (s)=(T,y), there exists i€ N such that (T/,y’)=(T,y).
Since s-; is f -consistent,there exist (T",y*)€ A and 6 *<€ ® such that
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cD(T,y)E £(0°),D(T!,y )=(T",y") for all i#j and @A=L ((T",y")
, 0 )& Bi=L({(T",y),60"i+1).Thus we’ve (Ti,y")=(T,y) and Ai+1=B;.
Consequently we have O(T,y)€ £(8°), @(T',y )=(T",y") for all i and ®
A =L{(T,y), 8" )& B =L ((T,y), 98 i+1) hold. From P3 L ((T,y);8":)=
B:-1CL({(T,y),8:). Since f is monotonic, we have (T,y)&€ £ (6).
Q.E.D. of Theorem 4.

3.3 Difficulty of Nash-implementability

We tried to construct a mechanism concretely which Nash-implements SCC
that is monotonic and NVP. However it’s very difficult to find a mecha-
nism.So we guessed that the class of Nash-implementable SCCs may be very
small. Thus in this section we consider about the difficulties for Nash-
implementability.

First, we consider the case the set of alternatives A is finite,i.e.
|Al=n. Suppose T:R=A be a SCF. Let’s write f tR—> A instead of
f:R=A as mentioned in Section O when f is SCF.

Theorem 5
Suppose A be a finite set with cardinality greater than 3 and R=Ra".
Then we have
f:R>A is onto mapping and Nash-implementable & f 1is dictatorial.
Where Rn is the set of all weak order on set A.

Proof:Onitted. (see[4])

This theorem tells us that if SCC is onto mapping then Nash-implementa
blity has almost the same meaning with dictatorship. This situation is
very similar to the famous Arrow’s Impossibility Theorem of Social Wel-
fare Function(SWF). One of causes of Arrow’s Impossibility was that the
domain of SWF R«" is too wide(we call this domain as universal domain).

The situation is similar to Arrow’s Impossibility for Nash-implementabi
lity. If we restrict the domain of f, we may have more affirmative res-
ults.

Next, we consider the case A is infinite set and is equipped with net
ric d, i.e. A is metric space whose metric function is d tAXA->R.
We often write this (A,d ) to indicate that A is metric space. Here we
also give another necessary definitions and notation.
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Definition 16:Metric on P (A)\{¢}
For arbitrary sets B and C in P(A) \{¢ ) we define o and 8§ as
follows: p (B,C)=supyesinfzecd (y,2z)
$(B,Cl=nax{p (B,C),p (C,B)}.

Notation 5
F(R,A)={f |f:R=A} F(O,A)={f|f:®=A)
Me(F(R,A))={f €F(R,A)|f is monotonic}.
For simplicity, we may write F and Mo instead of F(R,A) and
Mo (F(R,A)) respectively, if there is no confusion from the context.

Definition 17:Distance and Open sphere
For arbitrary f and f’£€F(R,A) and ¢ >0, we define D and B as
follows: D(f,f " )=sup{d (f(R),fT’(R))IRE R}
B(f,e)={f’€F(R,A)ID(f,f")<e}.

The metric defined above satisfies the following properties:
OD(f,f")ED(f,f’)+D(f’,f") for any £f,f’ and f"€F(R,A)
@D(f,f’)=D(f’,f) for any f and f’€F(R,A) and
@D(f,f)=0 for any f €F(R,A).

¥e can check easily these properties. This type of metric is often
called extended pseudometric(Klein & Thompson[5]). ¥We introduce topology
to set F(R,A) by using this pseudometric function D.

Definition 18:0pen set
GCF(R,A) isopen ©® (VI E€G)(Te>0NIB(f,e)TG].
We denote the set of open sets T.

The space (F(R,A), T) defined above becomes topologixal space(Klein
& Thompson[5]).

With these definitions we can give next theoren.

Theorem 6 :
Suppose (A,d) is a dense metric space and ® is large for some i.
Then Mo (F (®,A))°® is everywhere dense in (F{(R,A),T).

Where H° is the complement of set H.

Proofi:We show the Closure of Ma° coincides with F . Since Closure of Mg°®
is{fe€F|¥ve>0,B(f,e)NMe#¢ )}, it is enough to show the follo-
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wing.
(Y f EMI(Y e >N(F £ EHe)IDE, )< ],
Choose f £ Mo and € >0 arbitrarily. Choose any 6 € ® and fix it. Since
f(0)# ¢, there exists some x< £ (8). Since ® is large,there exists
0 .’# 0. such that L{(x,8:)ZL(x,8:’). Moreover by the assumption of
denseness of A there exists some y£ A such that y#x and d (x,y)<e .
Let define f’€ F as follows:
f'(8)=f(06) if 9#(8,:°,0-:)
=f (6 1\ {x}U {y) otherwise.
From D(f ,f’)<e¢, we have f’€ B(f,¢ ). And clealy f '€ Ma° holds.
Q.E.D.

By combining Theorem 1 with Theorem 6, we have next corollarly.

Corollarly.

Suppose (A ,d ) be a dense metric space and ® is large for some i.
Then {f £ F|f is Nash-implementable}® is everywhere dense in (F (®,A)
,T)o

Proof:From Theorem 6 we have {f € F|f is Nash-implementable}TMe.
Thus we get Mo {f € F\f is Nash-implementable}°. Consequently, Clos-

ure of Mo® is included in Closure of {f € F|f is Nash-implementable}°®.
Thus we have Closure of {f € F|f is Nash-implementable}°=F . Q.E.D.

Theorem © and the above Corollarly are easily understandable and nat-

ural results. In precise they don’t say that Nash-implementable SCCs are
very scarce.

IV. Conclusions

Ye gave several new results on Nash-implementability in this paper.
First, a necessry condition for Nash-implementability for general level
was given in Section 3.1. We developed a smaller size mechanism than
Maskin and others,i.e. we gave an alternative proof for it. We also gave
a necessary and sufficient condition for Nash-implementability against a
simple public good model in Section 3.2. The condition was monotonicity.

In Section 3.3,we discussed how is the size of Nash-implementable class
is, and almost all of SCC are not Nash-implementable. The last result is
natural one. For the case the set of alternatives are finite set,we dis-
cussed that the class of Nash-implementable SCC is almost the same to
that of dictatorial ones.
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