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Algebraic Models of Organizations
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1. Introduction

H.A.Simon[3] has suggested a framework that permits a
comparison of the economist’s theory of the firm and the theory
of organizational equilibrium. In his paper, the former theory is
defined as "F-theory” and the latter as "0-theory”. He obtained a
result that the F-theory solution, in the case of perfect
competetion, is identical with the particular O-theory solution
that is optimal to the entrepreneur.

In this paper we will induce a corresponding result in an
algebraic framework on contrast to Simon’s analytical framework.
Qur Framework is more general in the meanings that Simon’s is one

of special cases of ours.

2. Models of Participants

Definition 1 Behavior Selection Model

A five-tuple (U;Y,H,g,H’) is called a "behavior selection
nodel”™, if the following conditions hold.
1) U, Y, and H are sets. They are called an inducement set, a

contribution set and an altenative set, respectively. MCUXY is
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supposed.

2) g is a funcition from M to the set of real numbers. It is call-
ed an objective funciton. The pair (M,g) is called decision
problen.

3)¥ is a symbol of a particular operator which defines a subset
W (M,g)CM for a given decision problem (M,g). ¥ is called a

desicion principle. Details will be defined in Definition 3.

)
(M,g) - VY (M,g)CH

Figure 1 decision princile

In this paper, the inducement set U and the contribution
set Y are fixed. So a behavior selection model will be denoted

briefly by § = ¥ (M,g)

Assumption 1
1) Objective function
The reverse funciton g 1(r):U—Y are "one to one” and
"onto” for all real number r.
2) Alternative sets with parameter p
There exists a class of functions {M(p):U—Y) such that

H=UMN(p) and (Vp)(Vq)( p#Eq = H(p)NH(q)=9¢ ).

Definition 2 Operators ( Sat, Max )
For any decision problem (M,g), we can define the follow-
ing two shsets of M.
me Sat(M,g) «—- g(n)=20,

ne Hax(M,g) <= (VYn')( gm)Zg(n’) ).
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Definition 3 Decision Principles

1) If ¥ (M,g)=Sat(M,g), ¥ is called a "satisfactory principle”.
2) If ¥ (M,g)=Max(M,g), W is called an "optimazing principle”.
3) If w(M,g)=UMNax(M(p),g), ¥ is called an "optimizing

principle with parameter p "

Lemma 1 Properties of Operators

For any decision problem (M,g), the followings hold.
1) Sat(M,g)=USat(M(p),g) , where U is a union in terms of
parameters p.

2) If Sat(M,g)+# ¢, then Max(Sat(M,g),g)=Max(M,g) where ¢ is a

symbol of empty set.

3. Complete Competetion

Definition 4 (g,r)-completeness
1) If there exists an parameter g such that
M(q) if p=q
¢ if p#g4q

Max (M(p),g)=¢

holds, an objective function g is called "complete”.
2) If g is complete, then there exists an real number r such that

M(q)=g-1(r) . Hence the objective function g can be called "(gq,r)

-complete”.

Definition 5 Restricted Set

For any set SCUXY, a "restricted set” S[g(m)=r]CS is

defined as follows.

SCg(m)=r)={me S! g(m)=r }.



Lemma 2 Property of Completeness
Let an objective funciton g be (q,r)-complete and r20.
Then , |
M(q) if p=q
# if p#q .
holds for S(p)=Sat(M(p),g).

S(p)Lg(m)=rl={

Proposition 3

Let an objective funcition g be (g,r)-complete and r=20.

And let S=Sat(M,g) and S"=UMax(M(p),g). Then S{g(m)=r1=S"=H(q).

4. Models of Organizations

Definition 6 Organization (R,{Si})
An "organization with n participants” is defined by a
pair (R,{Si}) such that
Si=¥i(Mi,gi) (i=1,2,...,n)

U=U1X - XUn
Y=Y1X - XYn
RCUXY

where Si, R and S= RN (S1XS2X--X3n) is called a "participant”,
an “organizational restriction” and an "organizational behavior”,

respectively.

S1 S 2
) 17
R

Figure 2 Structure of an organization
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Assumption 2

1) We assume projl(R)=M1 and proj2(R)=M2 where proj1:U><Y—*U1)<Y1
is a projection function.

2) From now on, we will focus on the case n=2,

i.e., two-participants organizations.

Definition 7 Internal Model
If the alternative set of participant 1 satisfies
Ml={ml | IAn2eS2, (nl,m2)eR },

then parcipant 1 is called to "have an internal model of partici=-

pant 27.

Proposition 4
Let (R,{S1, S2}) be an organization.
If participant 1 have a internal model of participant 2, then

S#¢ &> Sl#¢.

5. Comparison of Organizations

Definition 8 Optimum Set of Organization
For any organizational behavior S of any organization (R,
{S1, S2)) , the following set
OPT1(S)=Max(projl(S),gl)

is called an "optimum set” of the organization (R,{S1, S2}).

Proposition b
Assume that W1=Sat in an organization (R,{S1,S2}).
If S# ¢, then
OPTI(RMN (S1XS2))=0PTI(RN (K1 X S2))



Let us consider two organizations such that organization-
al restriction R and objective functions gi are common. It means
that decision principles Wi and alternative sets Mi might be
differnt. The optimum sets of those organizations below will be
compared. Those organizations correspond to "0-theory” and

"F-theory”, respectively.

Organization 1

S1=Sat(M1l,gl), S2=Sat(M2,g2), S=RN (S1XS2).

Organization 2
S"1=Max(M1",gl), S"2=UMax(M2(p),g2), S"=RN(S"1X5"2).
where H*1 ={(ml | In2eS2, (nl,n2)eR }
(i.e. internal model of participant 2)

UMZ2(p)=M2

Theorenm 6

Assume that the common objective function g2 is (q,r)-
complete in the above two organizations. If S[g2(m2)=r]l# ¢ , then
0PT1(S{g2(m2)=r])=S1"

6. Discussion

Theorem 6 is the main result of this paper. The set
S[g2(mZ)=r] in the left hand side is an organizational behavior
under the condition that the utility value of the participant 2
is restricted to a fixed r. Then, the optimum set

OPT1(S[g2(m2)=r])
of Organization 1 corresponds to the optimum solution to

entrepreneur in "0O-theory”. On the other hand, the participant 1
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of Organization 2 have an internal model of participant 2. Then
S1" corresponds to the optimum solution of "F-theory” in the case
of complete competetion. Theorem 6 shows that both are identical.
As mentioned in Introduction, our framework is algebraic
and including Simon’s framework as a special case. Indeed, we can

get the complete competition condition (¢ (u)=qu) with additional

properties. Let us assume that U = Y (the set of positive real
numbers) and that M(p) = { (u,y) | y = pu }. Then H=UMK(p)=UXY.
And let us define g:M— (real numbers) by

glu,y) = ¢ (u) -y
such that ¢ (u) is an utility function of inducemeht u and that ¢
(u) is differntiable. If g(0,0) = 0, then we have ¢ {u)=qu from

(g,r)-completeness of g. Therfore S1° of Organization 2 is the

optimum solution of the entrepreneur.

References

[1] P.A.Samuelson, Economics (7th.ed.), McGraw-hill (1980)

[2] M.D.Mesarovic & Y.Takahara, Abstract Systems Theory,
Springer-Verlag (1989)

[3] H.A:Simon, Models of Man , John Wiley & Sons (1957)

[4] T.Asahi,”A Comparison of Administrative Systems and Econonmic
Systems . Reformulation of Simon’s framework”™, in Proceedings of
15th. Systems Symposium, SICE (in Japanese) (1989)

[51 T.Asahi,”Structural Analysis of Consumer Supplier Systems by
Two-level Hierarchical Systems™, Toyo Univ. Keiei kenkyu-sho

Ronshu (in. Japanese) Vol.13 (1880)



Appendices

Proof of Lemma 1

1) Since »
me USat(M(p),g)

- Jp , ne Sat(H(p),g)

<- dp, me M(p), g(n)=0

<= ne UN(p)=M, g(n)=0

<> me Sat(M,g)
hold, we have USat(M(p),g)=Sat(M,g).
2) Since Sat(M,g)# ¢ ,Imxe M, g(nx)=0 . Then

me Hax(M,g) = g(n)Zg(n*)=20 > ne Sat(M,g).
That is,. Max(M,g)CSat(M,g) . Then we have
Max(Sat(M,g),g) = Sat(M,g) . W

Proof of Lemma 2

Let an objective function g be (q,r)-complete.
From Definition 4, we have M(q)=g~1(r). Then the condition r=0
inplies S(p)Lg(m)=r] = M(p)NMK(q). Indeed,

me S(p)Lg(m)=r]

«- meS(p)=Sat(H(p),g), gln)=r

< ne M(p), gn)=r20

<> mneMp)Ng Lir)=H(p) NK(q)
Hence Assumption 1 (2) implies the result which is to be proved.
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Proof of Proposition 3

Firstly, let an objective function g be (gq,r)-complete.

From Definition 4, we have

Hax(M(p),g)={ Hlal it eme
if p#4q
Then S"=UMax(M(p),g)=M(q).
Secondly, let S(p)=Sat(M(p),g). Lemma. 1 (1) implies
S=Sat(H,g)=USat (H(p),£)=US(p).
Then we will have S[g(m)=rl=U (S(p)Lg(m)=r]). Indeed,
me S[g(m)=r]
- mneS , gln)=r
- 3p ,mne S(p) ,gln)=r
- p ,me S(p)lg(n)=r]

<= ne US(p)lglm)=r]
Hence Lmma 2 implies S[g(m)=rl=M(q) . W

Proof of Proposition 4

(nessesity)

It is trivial since S=RN(S1XS2)# ¢ - S1# ¢
(sufficiency)

mle Sl

= nleMl={ml | In2eS2, (nl,n2)eR )

- 3n2eS2, (nl,m2) e R

- (nl,n2) e RN(S1XS2)=S . [
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Proof of Proposition 5
Let S=RM (S1XSZ) and S*=RN (K1 X S2).
Then, projl(S)=Sat(projl(S*),gl). Indeed,

ml e projl(s)

- InZ, (nl,m2) € S

- Fn2eS2, (nl,n2) e R,ml e S1

&= nleprojl(Sx),gl(nl)=0

- nleSat(projl(S%),gl)
Since S# ¢ from assumption, we have
Sat(projl(S*),gl)=projl(S)# ¢ . Therefore Lemma 1 (2) implies
OPT1(S) = Max( projl(S),gl) = Max( Sat(projl(Sx),gl), gl )

= Max( projl(S*), gl ) = OPT1(Sx) . u

Proof of Theorem 6

Firstly, from the definition of organizational

restriction, we have |
SCg2(m2)=r]=RN (S1X (S2[g2(m2)=r]) )

And from assumption S[gZ(m2)=r]¢ ¢ , we have $2[g2(m2)=r])# ¢ .

Then r=g2(m2)Z0 .

Secondly, Proposition 5 implies
OPT1(SCgZ(m2)=r])=0PTL(RN (M1 X (S2[g2(n2)=r]) ).

Thirdly, from the definition of participant 2 in Organization 2,

we have

S1"=0PT1( RN (M1XS2") )

On the other hand, since r20 and g2 is (q,r)-complete,
Proposition 3 implies |
$2°=S2[g2(m2)=r] .
Therefore OPT1(S[g2(n2)=r])=S1". [



