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1. Introduction

In this paper we introduce a knowledge representation as the set of
locally formulated logical systems which are connected each other by
the symbolic relations. For this purpose we regard our knowledge as
the logical systems characterized by axioms and introduce the symbolic
correspondence between them. We also introduce modal operators to
discuss the semantics for natural language. For the purpose we construct
Kripke model from the knowledge networks. The interpretation of the
meaning of modal operators such as ¢ (may) and O (must) are given on
the model. We also discuss maintenances of knowledge network and
problems of default reasoning by using the modal operators. Furthermore
we construct three valued model which become equivalent to data
semantics introduced by F. Veltman. The model gives another aspect of
the interpretation of knowledge network.

As a result we have introduced non transcendental foundation for
semantics. These approach aims opposite direction of realist theory of
meanings. Meaning should be given not by transcendental real worid but
by our own restricted knowledge.

2. Knowledge Unit and Network
In this section we give basic formulations and some propositions.

We use the usual first order predicate calculus. As a rule of inference
we use the Modus-Ponens and the Generalization -7,
Def.2.1 Vocabulary and Type

The set of constants of a language L is denoted by V., the set of
m-variable functional symbols by Vi™ and the set of n-variable predicate
symbols by V" We call m,n the type of functional symbols and the type
of predicate symbols respectively.
Let V,=U{V/IiIEN},V={V] ljEN}, V=V.UV,UV,, where V is called the vocabulary
of language L. '
The language L is defined by using vocabulary. The theory on the
language is defined by determining the set of axioms which represent
some local knowledge. Then the theory is called a knowledge unit and
denoted by an ordered pair <V, I'> or simply I' , where I' denote the set
of axioms. We recognize our local knowledge as a knowledge unit. Now
we assume the consistency of the axioms. Next we introduce relations
between units.
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Def.2.2 Simple Interpretation
We introduce the one to one functions between vocabularies of

knowledge units <V,, T[>, <V,, I'> such as (1) I:V,—=V,. (2) I: V.=V,
(3) V=V, i, jeN. :
Detf.2.3 Interpretation v

The interpretation between formulas is defined as follows, where J
denote the interpretation.
(A) Interpretation of Term
(1) Let x be a variable then J(X)=x
(2) Let term be a constant ¢ then J(c)=l(c).
(3) Let f be a m-variable function symbol and t,,...,t be terms, then
JE(t, . t))=IR(0) (), d (1)
(B) Interpretation of Atomic Formula
(1) Let t,t, be terms and t,=t, then J(t,=t)="J(1,)=J(L)"
(2) Let P be a n-variable predicate symbol and t,,...,t be terms, then
JP(t,..., )= (P)(J(),....d (1))
(C) Interpretation of Formula
(1) Let @, ¥ be formulas, then J(®AW)=J(D)Ad (¥), J(~®)=~J(D)
(2) Let x be a variable and F be a formula, then J(VxF)=VxJ(F)
Symbol "I" is commonly used for denoting any types of interpretation.
Def.2.4 Extension of Vocabulary

The simple extension of vocabulary V is defined as follows, where V'
denote the extension.
(1) v'=V'uv,uVv/
(2) V2V, V/'2V, V'2V,
(3) The constant, function and predicate symbols, which belong toV ',
V! .V, and which do not belong to V_V, and V.respectively, must be
introduced as follows.
(3a) Let ¥ be the formula of a theory I' which include only one free
variable y. If T'l- 3ly W(y) holds then we can add the new constant
symbol ¢ which satisfy W(c).
(3b) Let ¥ be the formula of a theory I' which include n+1 variables
Xy Xy I T 1=V, x 3y W(X,,...,X,,y) holds then we can add the new
function symbol f which satisfy such condition as
"y=f(x,,....X))=W(X,,....X,,¥)".
(3c) Let ¥ be the formula of a theory I' which include n free variables.
Then we can add the new predicate symbol P which satisfy such
condition as "r(x,,...,x)=¥(X,,...,X)".

We can get further extension by using these new symbols. Thus we
define extension by definition as a result of finite simple extension
and denote it by V,,

Def.2.5 Extension of Theory

Let <V,I'> be a theory and V, be a extension by definition of V. Then
the extension by definition of the theory is defined by introducing
following axioms according to the new symbols ,where <V_,I' > denote
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the extended theory.

(A) ¥(c)

(B) Vx,,....x3ly y=f(x,,...,x)=¥(X,,....,X,,Y)
(C) Vx,,....x.3ly r(x,,...,x,)=¥(X,,...,X,)

We often omit suffix "ex" without confusion.

Def.2.6 Comprehension _

Let "I" be an interpretation between <V,,I' >and<V,,I',>. The interpretation
“I" is called comprehension if 1(®) become a theorem of I', for any
axiom ®€rI',. Then we call that the theory I', is comprehended by I', or T,
comprehend I', and it is denoted by I',=T, If a comprehension is an
identity map then it is called trivial.

The notion of comprehension include the notion of satisfy as a
special case if we treat the theory with the complete axioms as the
structure.

Prop.2.1

Let "I" be a comprehension from theory I', to ', or T,
(1) If @ is a theory of T, then |(®) become a theory of T,.
(2) If I(®) is shown to be a theory of I, for a sentence ® of I', then @
can not be shown to be a theorem of T,.
Proof 2.1 (1) (A) If ® is an axiom of ', then ', | - |(®) hold because of
the definition of the comprehension. (B) If ® is not an axiom then there
exist the sequence of the proof on I',. Corresponding to the sequence we
can construct the sequence of proof on T',. For this purpose the
following commutative diagram of proof must be shown for the schema
of Modus-Ponens and Generalization.
(D), (O—-W) =1 (¥) |(®) = VxI(D)

f ] f f

D, = Y ® = VX
It is shown from such properties of property of comprehension as
(@) {o—=¥)="1(?)—I(¥)",

(b) H{VxD)="VxI(D)".

Prop.2.2

(1) Composition of interpretations also become interpretation.
(2) Composition of comprehensions also become comprehension.

In the previous definition knowledge unit is defined by first order
Language. Next we introduce set theoretical language for extending its
ability of description.

Def.2.7 Set Theoretical Language

The language of set theory with urelement is a special type of the
first order language with equality and defined as follows!2¢. (1) the set
of predicate symbols R={€}. (2) the set of functional symbols F={pr,ap}.
(3) the set of constant symbols C.

The symbol € pr and ap are commonly used in any set theoretical
languages. Thus the vocabulary is characterized only by the set of



constant symbols. The function pr and ap denote an ordered pair and a
value of function respectively.

Set theoretical knowledge unit are also defined as an ordered pair of
the set of vocabulary and Axioms, where every set theoretical theory
have common axioms for describing set theoretical operation. We adopt
the axioms of the set theory with urelement 5. The knowledge unit can
be characterized by the set of its constant symbols.

Def.2.8 Set Theoretical Structure

Set theoretical structure is also introduced as a model of set
theoretical theory as follows.

U=<V,_{€},{pr,ap},C> where V, is the superstructure on the set of
urelements S 'l The structure can also be characterized by C.
Def.2.9 Interpretation

Simple interpretation between set theoretical language is also
defined as a function between vocabularies of the knowledge units <V,,
Ir'>and <V,, I'>where V,=R,UF,UC, ,V,=R,UF,UC, and R,=R,, F,=F, Thus
the symbol € ap and pr are always interpreted to the same symbols as
follows. (1) (&)=€ (2) l(ap)=ap (3) I(pr)=pr. Therefore the
interpretation between constant symbols is essential in the
interpretation.
Def2.10 Concept

Let ¥(x,,...,X,) be a formula which include n free variables then we
call ¥ a n-variable concept or simply a concept. Where a sentence is
regarded as O-variable concept.

Def.2.11 Equivalence of concepts

If ¥(x,,...,x) and ®(x,,...,x,) are concepts on a knowledge unit I'. Then
¥ and ® are called equivalent on T if and only if Vx,,....x ¥(X,,...,X) =
d(X,,...,X,) holds in T'.

Concepts which are equivalent with each other on some unit might be
not equivalent on the other unit.
Def.2.12 Concrete and Abstract

If "I" is a comprehension from <V,,[',> to <V,,I',>, then <V,,I‘ > is called
an abstract knowledge and <V, I',> is called a concrete knowledge. The
notions are relative. If "I." and "L," are comprehensions from <V,,T',> to
<V,,I')> and from <V,,I',> to <V,,I',> respectively. Then <V, I',> is more
abstract than <V,,I',> and more concrete than <V,,T' >
Def.2.13 Retraction

Let "I'" be a comprehension from <V, I''> to <V, I',> If there exist the
concept W and the term s of <V,,I',> according to a concept ® and a term
t of <V, I',> and I(¥)=® and I(s)=t hold, then the concept ¥ and the term
s are called the retracted concept and term respectively. There do not
always exist retracted concepts and terms. Then W and s are called
abstract concept and term respectively and ® and t are called concrete
ones.

Def.2.14 Strategy for Inference

161
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If "I." and "I, are comprehensions from <V,,I'> to <V,I',> and from
<V, I'’> to <V,,I',> respectively. Then the strategy to prove a sentence ¥
of <V,,I',)> is classified into next three types.

(1) If ¥ is directly proved in <V,,I',> then the inference is called the
standard one or inner theory inference.

(2) If W can be retracted into the sentence |,(¥) of <V,,I',> and

I,77(¥) is proved in <V,,I',> then the inference is called abstract one. If
the retraction of W exist then the abstract inference is always proper
because of the proposition 2.1

(3) If I(¥) is proved in I, then the inference is called concrete one.
Concrete inference is always applicable but not always proper because
it only assure that -¥ does not hold in T,.

Def2.15 knowledge Network

Let TS be a set of theories and IS be a set of comprehension among
the theories. Then KN=<TS,IS> is called knowledge network if IS include
identity interpretation and IS include any composition of comprehension.
Example. 2.1 Mathematical Knowledge

The following diagram shows the knowledge network among
mathematical theories.

Real Space

. | hN
Field Totally
l Metric Ordere

Space
Ring | \
| Tooological

Space Partially
Group Ordere

Where the upper theories of the lines in the diagram is comprehend
by the lower theories of the lines. For example Field is comprehended
by Ring naturally. But Metric space is required to be extended by definition
for being comprehended by Topological space in a strict sense. Let
<Q_ p,R> be a metric space where p:Q2—R is a metric function and <Q,,6,>
be a topological space. Then it is required to extend such symbol @,
that 1(8,)=0, hold to the metric space by definition Where O, is defined
as the set of union of elements of the open base which is introduced by
using metric function. Then <Q,0,> comprehend < ,0 ,p,R> under the
such interpretation that 1(©,)=6, and [(Q,)=Q,. For a working
mathematician this symbolic interpretation is trivial and intuitive
process and that <Q_,p,R> and <Q_,0_,p,R> are regarded as the same
system. We distinguish them in our framework.

3.Application



163

3.1 Application for meta systems model
We formulate some Meta systemic properties by using our notation.
The system which have common properties among systems is defined
as follows.
Def. 3.1 Common System
Let = I',....,I', be knowledge units. Then X is called the common
system among {l,,...,['.} if there exist comprehensions 1,...,1 from X to
Irespectively.
In the following cases we assume that n=2.
Def.3.2 Direct Analogy
LetZ, T, and I', be knowledge units. If £ is a common system between
I andT,, = is a subset of axioms of T, and |, 2—T, is identity symbol
map, then X is called a direct analogy from I', to T,
Def.3.3 Abductive Analogy
LetZ, I', and I', be knowledge units. If 2 is a common system between
I, and I, and that |, 2—T, and |,=—T, are not identity symbol maps, then
T is called an abductive analogy.
Def.34COMMONIT, T, ]
COMMONIT,, T, ] denote the set of all common systems between I', and T,
in which I'=l1", and I?=11% hold, where I' and I?, are comprehension
from common systems Z to I', and I, respectively and |, denote a
comprehension from common system X to X if the comprehension exist
between them.
Prop.3.1 Maximal Common System
COMMONIT,, T, ] has a maximal common system.
Proof 3.1 (sketch) (1) We introduce symbol _which denote the mutual
comprehension between systems. (2) COMMONIT,, T, ]/ is introduced and
shown to be a partially ordered set. Let CH be the index set of a chain
in COMMONI[T',, T, ]/.. (3) Direct limit of language L, of system
ZeCOMMONIT,, T, 1/, i€CH, is defined as follows. Let C=U{C| i€CH},
V =U{V,| i€CH}, V=U{V,l ieCH}. Let c,€C , c,€C. Then c,~c,is defined as
3I: comprehension |:Z=ZX or I.Z=Z and l(c,)=c, or l(c,)=c,.V /~and V/=~
are defined as the same way. Let L= <C,V,,V> and L'=<C/~,V,/=,V/~>.
Then L' become a direct limit. W is defined as a formula of L'. (4)
Direct limit of theories is defined by the similar way and denoted by X
It is also shown that = belong to COMMONIT,, T, ]. Then = become the
maximal system.
Def. 3.5 Reduction and Emergency
Let Q and I' be systems and I’ be the system which has the same
vocabulary of the one of I' and has more axioms which express
specialized boundary conditions. TI'_ denote its extension and I',/ denote
an specialization of T,
If @ comprehend I''_ or T, then it is called that the system Qis
reduced to I''_ or ', respectively as an extension and specialization of
I'. It is shown in the following diagram.
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extension specialization

r'ex c r' FGX‘ e rex
ft ft specialization  {} ft extension
Q r Q r

In the diagram we call that the extension has information emergency
and the specialization has boundary emergency. I'" or I',' is called a
realization of Q based on T.
Ex. 3.1

Let Q be a digital system and I' be the electronic circuit system.
Then the digital system is realized through specializing the electronic
circuit by giving the boundary condition and through extending the
system by defining new symbols. For example the symbols "1"and "0" of
digital system are defined as "1" = 5 volt and "0" = 0 volt and any
digital system is realized by specialized electronic circuit. In other
word the digital system is reduced to the electronic circuit. It is also
possible to reduce the digital system to another concrete system such
as hydrodynamic system.
Ex. 3.2 Systems Recognition

An example of metamodel of systems recognition is shown in the

following diagram by using our formulation.

t,

t,
' B/ \C

A A
DT
N/

In the diagram t, and t, denote real objects, A, B and C denote the
structured constructed by the experiment and observation of real
objects, which are called observational structure and A denotes the
structure constructed by imaginative experiment, which is called
imaginative structure. The system I' comprehend different objects
through two observational structure A and B. T and X, comprehend the
same observational structure from different point of view. Z,
comprehend both the observational structure and the imaginative one. Q
is a common system between E and I' and it offers an analogy for two
different systems.

3.2 Application for natural language

Example 3.1

(A) Names of knowledge units

We introduce a knowledge network consist of next five knowledge
units.

(1) Bird (2) Swallow (3) Penguin (4) Living creature (5) Insect
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(B) Contents of knowledge units

(1) Bird

V ={Have(x,y), Numbers-of-leg(x,y), Bird(x), Can_fly(x)}, V={Wing,2}
Bird={v¥x Bird(x) — Have(x,Wing), V¥x Bird(x) — Can_fly(x), ¥x Bird(x) —
Numbers-of-leg(x,2)}

(2) Swallow

V={Have(x,y), Numbers-of-leg(x,y), Swallow(x), Migratory_bird(x),
Can_fly(x)}, V={Wing,2}

Swallow={Vx Swallow(x) — Have(x,Wing), Vx Swallow(x) — Can_fly(x),
Vx Swallow(x) — Migratory_bird(x) ,¥x Swallow(x) — Numbers-of-
leg(x,2)}

(3) Penguin

V ={Have(x,y), Numbers-of-leg(x,y), Penguin(x), Fly(x)}, V={Wing,2}
Penguin={Vx Penguin(x) — Have(x,Wing), Vx Penguin(x) — -=Can_fly(x),
Vx Penguin(x) — Numbers-of-leg(x,2)}

(4) Living creature

V ={Breathe(x,y), Living creature(x) }, V={ Air}

Living creature={Vx Living creature(x) — Breathe(x,Air)}

(5) Insect

V ={Breathe(x,y), Numbers-of-ieg(x,y), Insect(x)}, V.={Air, 6}
Insect={Vx Insect(x)(x) — Breathe(x,Air), Vx Insect(x) — Numbers-of-

leg(x,6)}
(C) Figure of comprehension relations
Penguin

A I

Bird = Swallow

l, # 1,

Living creature = Insect

(D) Interpretations

Interpretation of predicate and constant symbols between the
knowledge units are given as follows.

(1) 1:Bird = Penguin |.(Bird(x))=Penguin(x)

(2) 1,:Bird =Swallow I,(Bird(x))=Swallow(x)

(3) l,:Living creature = Birdl,(Living creature(x))=Bird(x)

(4) 1,:Living creature = Insect I (Living creature(x))=Insect(x)
The other symbols are interpreted to the same name of predicate and
constant symbols respectively in this example.

It is more natural for describing natural language to construct
knowledge unit by using urelement set theory. This is now under
construction.

In this example the interpretation |, and |, are comprehension. But
I,and I, are not comprehension. Nevertheless |, should be recognized as
comprehension. In the knowledge representation of natural Janguage in
our framework interpretations might be declared to be comprehension
without checking the necessary conditions for comprehension. On the
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contrary the pre declaration allow to convert the knowledge from abstract
units to more concrete units. In the previous example we do not want
to describe such knowledge as " A Bird breathes air" in the unit of bird
explicitly. If we have to describe these kinds of knowledge in every
more concrete knowledge units than living creature then knowledge of
concrete units become too big. It is more natural to consider that there
is a knowledge inheritance between the units after the pre declaration
of comprehension . In other word the pre declaration is a kind of
methods of knowledge representations in the knowledge network. But
these pre declaration might cause inconsistency and we need maintenance
of knowledge. On the other hand [, is not a comprehension. Because
Penguin can not fly. The maintenance of knowledge is required to recognize
I, as a comprehension. In the next section we introduce the concept of
modality for giving a formal base of the pre declaration and the
maintenance of knowledge.

4. Knowledge network and possible world

In this section we construct possible world from a knowledge
network to give a interpretation of modal operators such as ¢ and O.
The construction shows that we do not use possible world from
transcendental point of view but construct it depending on our restricted
knowledge which are expressed by a knowledge network.

Def.4.1 =, CompHE(Z), BA(Z), CanoBA(Z),CanoST(3)

Let KN=<TS, IS> be a knowledge network and I=TS be a theory.
Then X denotes the Henkin extension of Z. X, include the special
axioms such as "IxP(x) — P(cAxP(x)])". LIZ] denotes the language of
2 Which includes such constant symbols as "c[AxP(x)]". The set of
complete extensions of = _ is expressed by CompHE(Z) and X, denotes
its element. CanoST(X) denotes canonical structure which is constructed
by .

B(Z) denote the set of closed terms of X and CanoBA(X) denote the
base set of canonical structure of X which is constructed from the
equivalence classes on closed terms. We assume that every theory
include at least one constant symbol to construct canonical structure.
Def4.2 W, [I' KN], W [ZKN], W,[Z] KN,,, TH[o], HTH[w]

W, [Z,KN]=U{CompHE(T)!l I T<=X, £ IeTS, IS}

W [Z,KN]={w! o=CanoST(A), A EW,[Z,KN]}

W . [Z]={ol ®=CanoST(\), AecCompHE(Z) }

We identify W, [ KN] with W_.[Z,KN] in the case of no confusion.
KN,,=<TS,,., IS,,> where KN, is a knowledge network and TS_ DTS,
IS, 21S and VZEKN_ 3 r'ekKN 31€lS_, | Z<T hold.

Let 0€EW,[Z,KN] or oEW, [Z,KN] then TH[w] denotes the theory from
which o is constructed and HTH[w] denotes its Henkin extension.
Cor.4.1

(1) it A, A€CompHE(Z) then CanoBA(HTHI[A,])=CanoBA(HTHIA,])



Cor4.2
There is a suitable embedding mapping by which B(X) D CanoBA(Z) D
CanoBA(Z,) hold.
Def43 |

Let IIT<X . We define the function I' from CanoBA(Z,) to CanoBA(T,.) as
follows.
(1) Let c be a constant of L(Z) then I'(c)=l(c)
(2) For a new constant c[3xP(x)] which is introduced by Henkin
extension, I'(c[AxP(x)])=I(c[AxP(x)])=c[3xI(P)(x)].
(3) For functional symbols and predicate symbols I' is the same to |

I” is also extended naturally on the mapping from CanoBA(Z..) to
CanoBA(l',) We use the same symbol "I without confusion.
Cor4.3 I" is a comprehension from X, to T
Proof The interpretation of the special axioms for constants also
become the special axioms for constants. For other axioms | is a
comprehension. Thus I become comprehension.
Cor4.4 Let = be a consistent theory, =, be its Henkin extension and
Z.ex De a its complete Henkin extension then canonical structure of =,
is a model of Zand %,. '
Proof See reference [7].
Our constructions are shown as follows.

= lovexs — &
D=L T—Torexs — &,

I 1= =

=% S CHEx2 — w3

Def 4.4 ML[Z], SML[Z]

ML[Z] denotes the language which is the extension of L[Z] by adding
modality symbols such as ¢ and 0. SML[Z] denote the simple modal
extension of L[Z] which consist of ¢¢ or O¢ where ¢ belong to L[Z].

Next we construct Kripke model from our knowledge network.
Def 4.5 KNMM[Z KN]

KNMM[Z,KN]=<W R,D,Q,V>
Let KN=<TS,IS> be a knowledge network then the model
KNMM[Z, KN]=<W,R,D,Q,V> is constructed as follows.
(1) W=W[E KN]=W__[Z,KN] (2) YVo,EEW oRE < 31€S |'TH[E]«<=TH|[w]
(3) D=U{CanoBA(I'p) | IT<Z, I'eTS, 1€lS}
(4) VoEW D[w]=Q(w)=CanoBA(HTH[n])
(5) Valuation function V (¢) which assign 1 or 0 to a sentence
[1] Let ¢€ML[Z] be a sentence .
V (¢)=1 if and only if o I= [{¢) where |X
V. (¢)=0 if and only if o I= I(¢)

167
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V. (o(@))=1 if and only if o I=1(¢)(*a) V (¢(a))=0 if and only if o I=
I(-¢)(*a)
Where a€D[w] and *a is its a natural mapping to dom(w).
[2]
V.(-¢)=1 if and only if V (¢)=0, V (-~¢)=0 if and only if V (¢)=1
V (evy)=1 if and only if V (¢)=1 or V (¢)=1.
V. (ovy)=0 if and only if V (¢)=0 and V (¢)=0.
V.(oay)=1 if and only if V (¢)=1 and V (¢)=1.
V (eay)=0 if and only if V (¢)=0 or V (¢)=0.
V. (Vxo(x))=1 if and only if V (¢(a))=1 for any a€D[w]
V (Vx¢o(x))=0 if and only there exist a€D[w] V (¢(a))=0.
V. (O¢)=1 if and only if VEEW wRE —V (¢)=1.
V (%¢)=1 if and only if 3EeEW wREand V (¢)=1.

Where ¢¢ is defined as - O -¢.
Theorem 4.1 KNMMIT',KN] is a Kripke S4 model.
Proof We have to show following four conditions for <W,R,D,Q,V>
(1) R is a transitive and reflective relation on W., (2) D=U{D[w]loEW},
(3) Dlo]=Q(w) and if ©oRw, then Qw)2l'(Q(w)), (4) valuation function
satisfy the condition for Kripke model. Condition (1) is clear from the
definition of |. (2), (3),(4) are also clear from the definition.
Cor.4.5 Let KN=<TS, IS> be a knowledge network. Then there exist
accompanied knowledge network denoted by HeEx[KN] or KN, which
consist of Henkin extension of knowledge units of KN.
Proof We construct the network. Let HeEX[KN]=<TS’, IS>, where
TS'={Z | Z€TS}, IS={I" ll€lS }. Then HeEx[KN] also become a knowledge
network.

We use HeEX[KN] instead of KN if necessary and there is no confusion.
Then we can use such sentence as Bird(c[IxBird(x)]) without referring
the extension in the previous example.

5. Default reasoning and maintenance of knowledge network

In this section we study how maintenances of knowledge are
described by using the concept of modality which was introduced in the
previous section. For this purpose we at first show the relation between
Kripke model on a knowledge network and proof of a sentence ¢ on a
knowledge unit.
Prop. 5.1 Let KN=<TS, IS> be a knowledge network ,2ETS and o€W_[Z].
If ¢ &[Z] is a closed sentence and modality symbols are not used in
it.Then
(VO 9)=1 =32k ¢ (2)V,(0 ¢)=1 <=3l -0
Proof. (1) V(O ¢)=1 <, VEEW ([Z,KN] wRE — V (¢)=1

« VEEW_[Z,KN] €S |:Thlw] = Thig] —El=l(¢p)

< VI'eTS &S 1T« VEEW [Tl = El=i(0)

« VIeTS 31aS IT<ZX I'-¢

I ¢



Def.5.1 Modal extension of knowledge unit <%, =, >

Let £ be a knowledge unit. Then <%, X,> is called the modal
extension of knowledge unit X where ZX,, denotes the finite set of
axioms which consist of sentences of SML[Z]. Then ¢&X is called main
axiom and $€ZX,, is called sub axiom of the unit.

Def.5.2 Meta rules for inference

(1) Let 09X, . If TEST and A &lS |:T'<== then we can add l(¢) to T for
‘inference by default depending on prop.5.1 (2). If there happen
inconsistency on I' then I(¢) must be eliminated.

(2) Let O¢€EZ,,, . O¢ means the declaration that |IT<3ZU{¢} is a
comprehension without checking the necessary conditions for any T
which is comprehended by Z,i.e., AI€IS IT<«X. Then we must add I(¢) and
necessary vocabularies of ¢ to I' for inference by default depending on
prop.5.1 (1). If there happen inconsistency on I' then maintenance is not
simple. In that case we must reconsider the contents of unit I' or <%,
2>

In the example 3.1 we can introduce new knowledge units as
follows by using our new modal notation and meta rules.

(1) <Bird,Bird,>=<{Vx Bird(x) — Have(x,Wing), ¥x Bird(x) — Numbers-
of-leg(x,2)}, {Q (Vx Bird(x) — Can_fly(x)) }>

(2) <Living creature, Living creature, >=<{}{00 ¥x Living creature(x) —
Breathe(x,Air)}>, where {} is the empty set.

Then I(Vx Living creature(x) — Breathe(x,Air)) must be added to
Insect, Bird, Penguin and Swallow for inference by default. I(¥x Bird(x)
— Can_fly(x)) must be also added to Penguin and Swallow for inference
by default. But this cause inconsistency in the unit of Penguin. One way
for maintenance is to use "¢" and to change <Bird, Bird, > to <{V¥x
Bird(x) — Have(x,Wing), ¥x Bird(x) - Numbers-of-leg(x,2)}, {¢ (Vx Bird(x)
— Can_fly(x)) }>. Then Penguin can be comprehended by Bird. If
inconsistency happened by adding the sentence to Penguin then it must
be eliminated by the meta rule. The other method for the maintenance
is to divide the unit into two different units such as Bird andCan_fly_Bird
which are shown as follows.

Penguin

N l,

Bird = Can_fly_Bird = Swallow
I 1 I,

Living creature = Insect

Where <Bird,Bird, >=<{Vx Bird(x) — Have(x, ng) Vx Bird(x) —
Numbers-of-leg(x,2)}, {}> and <Can_fly_Bird, Can_fly_Bird, > = <{VX
Bird(x) — Have(x,Wing), V¥x Bird(x) — Numbers-of-leg(x,2)}, {O (Vx
Bird(x) — Can_fly(x) )}>

We can also apply our framework to other types of default
reasoning.
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6. Data Semantics and Knowledge Network

In this section we will give a relation between data semantics and
our framework. As a result we construct a information model of data
semantics from a knowledge network without changing classical
inference rules. Data semantics was introduced by F. Veltman!®®' '3,
The similarity between data semantics and knowledge network is pointed
out by Nagao'''!.

Next we give a information model from knowledge network. In
the following definition the formulas are limited in the set of closed
sentences.

Def. 6.1 Comparison between data semantics and knowledge network
Let M=<S, =, V> be an information model and KN=<TS, IS> be a knowledge
network. Then M, denotes the information model constructed from
knowledge network and is defined as M, =<TS, <, V> where < denotes
the comprehension relation and V, is defined as follows compared with
the definitions of Veltman, where [V i] shows the definitions of Veltman
and [DO i} shows ones of mine.

(1) Atomic formula

V1] J=¢ <, V(0)=1=l¢ <, V(6)=0

[DO1] Vi(¢9)=1 <, VOEW ([Z] ol=0

V:(9)=0 <, YoEW[Z] wl=-¢

V,(¢)=U <=, otherwise
Notice:V(¢) and V,(¢) are three valued function.

(2)

V2] =9 <, =l¢ Sl <=, =0

[DO2] Vi(~¢)=1 <, V,i(¢)=0 V,(~9)=0 <, V,(9)=1

(3)

[V3] [=¢ay < l=¢0and =y  =loay <, =l¢ or =ly
[DOB}V(oay)=1 <, V. (¢)=1and V,(y)=1

Vi (oAry)=0 <=, V,(¢)=00r V,(y)=0
Cor.6.1 Vi (¢Ary)=0 < YoEW_[Z] ol=~(pAryp)

Proof. V. (¢ay)=0 <V (¢)=00r V/(y)=0 <

VoeEW, [Z] ol==¢ or VoEW ([3] o=y

VoW (2] ol=¢ v o=y

VoEW [Z] ol=—(¢Ayp)

(4)
[V4] = ovy =9 OF = =lovy <, =l¢ and =1y
[DO4]V(ovy)=1 <, V,(¢)=10r V, (y)=1

Vi(ovy)=0 <, V,(¢)=0and V,(y)=0
Cor6.2 V,(¢vy)=0 < YOEW [Z] ol=~(¢vy)

Vi(ovy)=1 < VoEW ,[Z] ol=¢vy
(5)

[VE] | J=¢——y <, ~{3s'2s .I=¢ and .=l ¢}
-« Vs'2s l=¢p = =ly¢
=l ¢—=—y < 3Is'zs I=¢ and .=y
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Where "—=—" denotes the special inference symbol by Veltman.

[DO5] V,(¢—>—)=1

< o {FEEW [Z,KN]INEISI:ThE]«<=Z and V., ,(¢)=1and V;,,(¢)=0}

« VEEW [Z KN]VIEIS(I:Th[E]«=Z and V;,,(¢)=1) = V() 20
Vy(¢—>—y)=0

> JEEW [Z,KN]INE SI:Thlg]<=Z and V,, ,(¢)=1and V.. (y)=0

(6)

[V6] .= 90 ¢ <«  3s'=s =0 =l 9 ¢ <, ~{3s'=s 1=}

[DOB] V,( ¢, 9)=1 &, TEEW [Z,KN] I EISI:Th[E]<=Z and V,,,(¢)=1
V(9 ¢)=0 < ~{FEEW[ZKN] A EISI:Th[E]<=Z and V,,,(¢)=1}

< VEEW [EKN] VIEIS ITh[E]l«<=Z — V. (¢)=1

(7)

V71 =g, ¢ <, ~{3s'=s =9} =10, ¢ <, ~{3s'=s .=lo}

[DO7]V,(O,, ¢)=1 <, HIEEW [ZKN] I SI:Th[E]«<=Z and V;,4(9)=0)
< VEEW [Z,KN] VIEIS | Th[E]«<=Z — V., ,($)%0
Vi(Og. 9)=0 <>, JEEW [Z,KN] FIEISI:Th[E]«<=Z and V;,,(¢)=0

Prop6.1 -, "¢ < 0, ¢

Proof (1) =V,(O,, "¢)=1 < JFEEW [Z,KN] V;,,(-9)=0
hig HEGWCST[E’KN] VTh[§1(¢)=1 hid Vz( oao ¢)=1
(2) -'Vz(Ddo _'¢)=O - "{HEEWCST[EJ(N] VTh(g](—'(p):O}
< VEEW [Z,KN] VTh[{](q))*-l < V,(9,,¢)=0

Prop.6.2

(1) Vi(¢—=—y)=1 < V (O, {-¢vy}D=1

(2) Vy(~{o—>—yP)=1 < V,(9,{ rp}

Proof.

(M Vie—=—y)=1

<> ={FEEW,[Z KN]IE SI:Th[E]«<=Z and V,,,(¢)=1and V,, ,(y)=0}

V(0o vyh)=1 < ~{FEEW [ZKN] A& SI:Th[E]<=X and V;,,(-¢v)=0)
< +{FEEW [Z KN] IEISI:Th[E]l<=Z and V,,,(—¢)=0and V;, . (v)=0}
< ~{3EEW[ZKN] IEISI:Th[E]«<=Z and V;, ,(¢)=1and V,, ,(y)=0

(2)  Vi(~{o—=—yD=1 < V (¢——y)=0
< JEEW [Z KN]3IEISI:Th[E]<=Z and V,, ,(¢)=1and V,,,(y)=0
V(0, {0 Ap})=1 « FEeW [ KN] A&l SI:Th[E]<=Z and V;, (¢ amp)=1
< JEEW [Z,KN] & SI:Th[E]«<=X and V., (¢)=1and V. (~p)=1
« JEEW, [Z KN] A1 €lSI:Th[E]«<=X and V, ,(¢)=1and V;, ,(y)=0

Cor.6.3 If modality symbols.are not used in ¢. Then

(1)  Zl-¢ < YVoEW 3] ol=¢

(2) = Z ¢ < JoEW L[Z] ol=¢

(3a) {VreTs,, vids,, II'<X — - Tl--l(¢) for any KN, } < ZI- ¢,

(3b) {vrets,, vids,, IIT'<2 —Tl-l(¢p) for any KN, } < ZI- ¢

(4) {3reTs, 3JlE€lS,, IT<==and I'l-1(¢) for some KN, } <= =3l ¢

Proof Omitted

Prop.6.3 If modality symbols.are not used in ¢ and KN Then

(1) vZ(Ddo ¢)=1for any KNext < Zl-¢

(2) VO, ¢)=0for some KN,,

ext ext

ext
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< JreTS, 36lS,, IT<Z and T'}- -l(¢) for some KN,
3l ¢

(3) Vy(9,, ¢)=1for some KN,
« JAreTS,  3€1S,,, IT'<=X and T'l-1(¢) for some KN,
« 13- ¢

(4) V,(9,, ¢)=0 for any KN
< VIreTS, A viasS

ext ext

ext

|Te<=X — - Tl-I(¢p) for any KN,

< Zl- ¢
Proof.
(1) Vi(g. ¢)=1 for any KN,
< for any KN,,, VEEW ([ZKN,] VIES I'Th[E]«<=Z — V,,,(¢)%0
<« for any KN,,, VEEW_[ZKN, ] VIEIS |:Th[E]<=X — (V€W [ThI[E]]
wl==l(¢))
<« for any KN, VEEW [Z KN, ] VIEIS I:Th[E]«<=Z — ~(Th[E] |- -l(¢) )
<« for any KN,,, VI'ETS,, VIEIS,, IT<Z — - Tl-l(¢)
<3 ¢

(2) VZ(Ddo ¢)=0
< for some KN
< for some KN
ol=-1(¢)

< for some KN
<> for some KN
- Y -q)
(S)Vz( odo ¢)=1
<« for some KN
< for some KN
ol=H¢)

<> for some KN

FEEW,[ZKN, ] FIElS,, I ThiE]<X and V,,,($)=0
JeeW,_ [ZKN, ] AIElS,, |:ThE]l«<S and VoW, [ThiE]]

ext

ext

FeeW, [EZKN, ] IS
IreTs,, 36iS

o | Th[E]l<=Z and Th[g] I- -l(¢)
I'T<= and Tl-~1(¢)

ext

ext ext

FEEW, . [LKN,,] €IS, I:ThiE]«=Z and V,, ,(¢)=1
FEEW,_[SKN, ] 31€lS, I Th[E]«<S and YoEW, [ThiE]]

ext

ext ext:

JEEW,[EKN, ] ElS, I ThiEl<=E and Thg] |- I(¢)

ext

« for some KN_, IretrS,_ 3l€lS,, 1T« and I'l-1(¢)

« =1 Zl- ¢

(4)V>:( odo ¢)=0

< for any KN,,, {3EeW [ZKN, ] IS, . ThlE]<== and V,, . (¢)=1}
« for any KN, , -{(3ret1S_,31€S,, I.I'<Zand I'l-1(¢)}

< for any KN,, V['ETS_, VI€lS,, I T<X — -Il-1(¢)}

< 3l -¢

Thus the modal operators 3, and ¢, on data model become equivalent
to the modal operators ,, and ¢, defined on the data model which is
constructed from knowledge networks. It is also easy to compare our
model with Veltman's model about other properties such as T-stable
and F-stable. As a result we have constructed a data model without
changing classical logic of inference by using the knowledge network.
We have already introduced the other modal operators g and ¢ on
KNMM[Z,KN] which is also constructed from knowledge networks. We
have discussed about the maintenance of knowledge on the model. We
can also discuss the problem depending on our new modal operators on



the data model.

7. Conclusion :

In this short paper we have presented only the part of our frameworkis.
it is possible to apply our theory more concrete problems and more
philosophical problems as well.

Our semantics is based on conceptualism view of the world. Meaning
should be given by our own knowledge itself. This is our thesis. Thus
we call these types of semantics conceptual semantics. Of course our
knowledge depend on the real world. However meaning should be primarily
concerned with not a reference to the real world but a concept of the
real world . Thus we insist that possible world should be treated
depending on not a transcendental real worlds but a constructed ones
from our own knowledge. We have introduced the concept of knowledge
network for these purpose. The knowledge network express not only the
hierarchical structure of knowledge itself but also the extension of the
information about the world, which is treated mainly in the data
semantics. OQOur philosophical stand point is not so popular in these
days[13]. Nevertheless we need conceptual semantics for a base of our
epistemology as well as of computer science.
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