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1. Introduction

In the theory of general systems, input-output systems and goal-seeking
systems are the two primary subjects of the research. This report is to present
a new approach for the research of the systems of the vformer type.

As a generalized model of input—output systems, the concept of an abstract
time system was proposed in an attempt to study various systems properties in a
generalized framework[l]. Though the enterprise may have been successful in the
original design, it can be pointed out that it has been lacking in geometric or,
more precisely, topological notion. When one sees that some systems
theoretically important concepts such as stadbility and approximation are
essentially topological ones, it is clear that some appropriate topological
notions are indispensable for the full. development of the systems theory. In
this report, as one trial, we will define a metric for abstract time systems and

present some results obtained by a topological approach based on 'the metric.
2. Non—Archimedean Systems and Statle Spaces[Z]

To put an emphasis on the geometrical aspects of abstract time systems, we
take an axiomatic way. Firstly, the concept of a non-Archimedean system is
defined, and abstract time systems are then considered to be instances of non-
Archimedean systems; by doing so, an abstract time system can be thought of as

an geometrical object.

Definition 1.
A metric space (X,d) is said to be non-Archimedean if the distance function d:
XxX-R satisfies, for all x,y,z€R,

d(x,y)smax{d(x,2),d(z,y)}.
Let (X,d) and (Y,d) be non-Archimedean complete metric spaces, then a subset S
of XxY is called a non-Archimedean system or simply a system while X and Y are

called base spaces of S. For a system S<XxY and xeX, S(x) denotes the wvertical
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section of S at x, which is S(x)={yeY|(x,y)€S}; and the domain of S is defined
by D(S)={xeX| S(x)+ @). For the sake of convenience, we consider only systems
whose domains are X unless otherwise mentioned. If a system fcXxY defines a
function of X to Y, f is said to be functional, or a functional system.[]

Notice that the base spaces of a non-Archimedean system is complete melric

space.

Definition 2.

A system SchY is said to be pre-L-continuous if for any x,% €X and for any
yeS(x) there exists some ¥y €S(x’) such that d(y,¥ )<d(x,x¥ ). It should be noted
that this condition is an analogy of Lipschitz’s condition.

For any system ScXxY, Cs denote the set

Cs={f<S| f is a pre-L-continuous functional subsystem),
vhere a subsystem of S is a system that is contained in S. [J

Definition 3.
A system ScXxY is said to be L-continuous if wCs =S. [J
It should be noted that for a functional system, the concept of pre-L-

continuily is equivalent to that of L—cont.irruity.

As will be stated precisely later, the concept of L-continuity is deeply
related to that of causalily of time systems; hence the class of L-continuous
systems is one of the most important classes of systems, theoretically and

practically.

Definition 4.

A metric space (X,d) is said to be strongly-complete if for any linearly
ordered non-empty set A, and for any sequence {X,},., in X with A being itls
indexing set, there exists some xeX such that for all AeA

(2) d(x,x)< .Aszﬂd(xy,x,\),

A subset K of (X,d) is said to be strongly-complete if K is a strongly-
complete space as a subspace of (X,d). Furthermore, a system ScXxY is said to be
strongly-complete if S(x) is strongly-complete for all xeX. [
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It is easy to see that strongly-completeness implies completeness;
furthermore, it can be shown that the converse implication does not generally
hold.

Definition S.

Let €>0 be given. Then, a subset K of a metric space (X,d) is said to be g
isolated if any two distinct elementls x and ¥ of K satisfy d(x,x )>&. Notice
that a singleton set is e-isolated. Furthermore, a system ScXxY is e-isolated if
S(x) is e—isolated for all xeX.[]

Definition 6. ‘

Let ScXxY be a system. If there exist a set C and mapping p:CxX=Y such that
{(x,p(c,x))1ceC,xeX} =S, then p is called a (an initial)state space
representation of S and C a state space. A state space representation p:CxX-Y is
called reduced if the following holds only when ¢ = ¢ :

plc,x)y=p{c’ ,x) for all xeX;
and it is called L-continuous if il satisfies:

d{p(c,x),p(c,x' )< d(x, ) for all ceC and all x,¥ €X.(]

Notice that if a mapping p:CsxX-Y is defined by p(f.,x)= f(x), one can easily
show that this mapping is an L-continuous state space representation of a system

S if S is L-continuous.

Definition 7.
Let ScXxY be a system and (Y,d) be bounded, then define

Fe (S)={f<S|f is a continuous mapping f.X-Y},
and a distance function d,:Fc(S)xFc(S)— R defined by

du(f,9)= sup{d(f(x).g(x)) |%eX}.
It should be noted that CscFc(S). (Cs,d.) denotes the metiric space as a subspace
of the metric space (Fc(S),ds) .

In the rest of this section, X and Y denote non-Archimedean complete metric

spaces and S a non-Archimedean system defined over X and Y.

The following theorem shows a relationship between pe-L-continuity and L-

continuily under the condition of strongly-completeness.
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Theorem 1. (1]
A system SeXxY is L-continuous if it is pre-L-continuous and strongly-

complete. [

Theorem 2.
Let ScXxY be a system, and X, Y be compact. Then Cs is a compact subset of
Fc(S) if S(x) is closed in'Y for each xeX. (O

Corollary 2.1.
Let ScXxY be a system, and X, Y be compact. If S is strongly-complete, then
Cs is compact. [

It is easy to see that the e-isolatedness of a system S is inherited to Cs,
and hence it is also easy to see that the following proposition holds.

Proposition 3.
Let ScXxY, and X,Y be compact. If S is e-isolated for some e>0, then Cs is
finite set.

The following proposition gives a criterion against which the e-isolatedness

of a system, or moreover of ils state spaces can be tested.

Proposition 4.
Let ScXxY, and X,Y be compact. If S is pre-L-continuous and satisfies the
condition (1) given below, then S is e-isolated for some £>0.
(1) 3N>0 such that |S(x)| = N for all xeX. [J

The test, of course, is not perfect one: there are many e-isolated systems
that do not meet the criterion; in other words, the criterion is not strict
enough to sift out the e-isolated systems from others, and therefore a better
one is yet to be proposed.

The following proposition states that Cs is, in a sense, essentially the

greatest state space associated with a L-continuous system S.
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Proposition S.
Let ScXxY be an L-continuous system. Then, the state space of any reduced L-

continuous state space representation of S can be mapped into Cs by an

injection. [

Proposition 6. ,

Let Sc<XxY, and X,Y be compact. If S is pre-L-conlinuous and satisfies the
condition (1) given below, then any state space of L-continuous state
representation of S is finite.

(1) 3N>0 such that |S(x)| = N for all xeX. O

3. Time System and Its Applications[1], [2], [3]

Non-Archimedean system has been introduced as a generalization of abstract
time systems with emphasis on their geometric aspect. In this section an
abstract time system will be defined, and it is shown thalt an abstract time
system is a model of non—-Archimedean systems; by so doing, the meaning of L-
continuity and e-isolatedness will become clear. Finally, as an example of an

abstract time system, a time system associated with an automaton will be

discussed.

To define an abstract time system, we must first define what time is, or in
practice what we expect time to be. The most conspicuous characteristic we have
in mind when we think of time is an order il seems inherently to posses; and
another notion of continuous flow of time with a constant speed also seems to be
prevalent among us. In consideration of these seemingly natural properties we
find in time, the following enumerated three conditions are very natural as

characterization of time for our present purpose:

(1) T* is an ordered additive group; that is, T* is an additive group with
a linear order defined on it and satisfies the following property:
For all x,y,2eT*, x<y implies x+z <y+z.

(2) T* is Archimedean; that is, for any u,veT* with O<u there exists a

positive integer n such that nwv.
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(3) Every non-empty upper bounded subset of T* has a least-upper-bound in T*.

For the sake of convenience, we assume lime has its initial point, thus we
define a time set T as the non-negative part of T* which satisfies above
enumerated three conditions. Fortunately, it can be proved that any set
satisfying these three conditions is isomorphic to R or Z, and therefore we can
take the sets R*={xeR|x20} or N*={(neZ|nx0} as time sets. A time set T = N* is

called a discrete time set.

Definition 8.

Let A and B be non—empty sets, which will be referred to as input and output
alphabet set respectively, and X=AT={x1x:T—->A is a mappingy and Y=B ={x|x:T-B is
a mappingy will be referred to as an inpul set and an output set, respectivelgj.
A subset ScXxY (=ATxBY) is said to be an abstract time system, or simply a time
system. If the time set T is discrete, then S is said to be discrete time

system. In this section, we always assume that T denotes a time sel and that
X=AT and Y=F*.[]

Definition 9.

Let ©: T-R be such that 6(t)=(1+t)7}, and let v:XxX—Tw{es} and d:XxX-R be as

Jollows:
inf{teT] x(t)= 2 ()}, ifx=+X
v(x,x') = {
o otherwise,
and
. Oy(x,x)) ifx=+o,
d(x,x) =
{ 0 otherwise.
O

It can be shown thal the function d:XxX—R is a non-Archimedean distance
Junction and that (X,d) is a complete metric space. A similar distance function
on Y, which will be denoted also by d, can be defined, and then (Y,d) is a non-
Archimedean and complete metric space. Hence, time systems over X and Y are

instances of non-Archimedean systems.

The following proposition describes the intuitive meaning of the metric

defined above; that is, the degree of closeness of two points x and y of X
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amounts to how long they as functions coincide with each other from time O.

Proposition 7.
Let x,yeX, and teT. Then x' =y' if and only if d(x,y)<O(t),
where for any zeX and teT, 2' denotes the restriction of z:T—A to T'={ueT|u<t).

g

Definition 10,
A functional system fcXxY is said to be causal if for any x, ¥ €X and for any
teT, x*t =2 ¢ implies f(x)t = f(x):. O

Proposition 8.

A functional system fc<XxY is L-continuous if and only if f is causal. []

This indicates that the notion of causality is some aspect of the wider
notion of continuity.

It should be noted that for a time system S, Cs is the set of all causal
functional subsystems of S. An L-continuous time system with respect to the

metric defined in Definitidn 8 is called a causal system.

Proposition 9.
A time system ScXxY is e—-isolated for some >0 if and only if the condition
(1) is satisfied:
(1) There is some positive time T such that for any xeX and for aﬁy y and
¥ with (x,y)eS and (x,¥)eS, ¥ =y Timpliesy =¥ . O
This proposition shows that e-isolatedness of a system is equivalent to the
Jinitely-observability of the system, where a time system S is called finitely
observable if there is a time >0 such that for any input x if two outputs y and
Yy are indistinguishable before v, then y and ¥ are the same output.

If we hold a praqtical point of view that a man can not directly perceive
infinitly, we see the importance of the case where the input and output alphabet
sels are finite and the time set is discrete. In the remainder of the report we

will discuss only discrete time systems whose base spaces have alphabet sets of
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finite cardinality, and will show some applications in finite automata theory.
What characterize the case in question where the base spaces X and Y have
finite sets as their alphabet sets and the time set is discrete are the facts
that base spaces are compact with respect to the metric defined in Definition 8,
and that the notion of strongly-completeness is equivalent to that of

completeness for the base spaces.

Proposition 10,
If A is a finite set and T a discrete time set, then the metric space (X,d),
wvhere X = AT and d is the metric defined in Definition 8, is compact. [

Proposition 11.
For the same space (X,d) as in Proposition 10, any subset K of X is strongly—
complete if and only if it is complete, which is, in a complete space,

equivalent to that it is closed. [

As corollarties to Proposition 3, 4, and some others, the following Theorem 12

and Proposition 13 are obtained.

Theorem 12.
If a time system SXXY is finitely observable, then the state space of any L-

continuous state space representation of S is a finite set.

Proposition 13.
The state space of any L-continuous state space representation of a causal
time system S satisfying the condition (1) given below is necessarily finite.
(1) 3N>0 such that |S(x)| = N for all xeX. O

Finally, we discuss automaton type time systems as an application of what

have been shoun so far.

Definition 11.
Given an automaton 4=<A,B,C,8,1>, where A and B are finite input and output
alphabet sets respectively, C a state set, and & and u state transition function

and output function respectively. Let &*:CxX—C' be the extended state-transition
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Junction defined by
3*(c,x) (0)=c and &*(c,x) (t+1)=6(6*(c,x) (t),x(L)),
and p*:CxX—Y the extended output function defined by
K (c,x) (0)= p(c,x(0)) and p*(c,x) (t+1)= pu(8*(c,t),x(t)).
The behavior of Sy is defined by Sg ={(x,#(c,x)) | (c,x)eCxX}.

A time system for which there is an automaton 4 such that Sg=3S, is called a
automaton type time system, while such an automaton is said to represent S.
Notice that automaton type time systems are by definition discrete lime systems.

If there is some finite state space automaton representing S, then S is said
to be a finite automaton type, and furthermore, if it is the case that any
reduced automaton that represents S has a finite state space, S is said to be an

intrinsically finite automaton type. [

It is known that the class of finite automaton type time system divides into
a class whose members are of intrinsically finite automaton type and that whose
members are not; that is to say, there exist finite automaton type time systems
of both types.

Concerning what have been stated here, the following theorem is known; the

theorem is a corollary to Theorem 12.

Theorem 14.

Any finitely observable time system of automaton type is an intrinsically
finite automaton type time system. In other words, if the behavior of an
automaton with finite alphabet sets is finitely observable, no equivalent

automaton that is reduced has infinite state space. [J

Another corollary, the one to Proposition 13, is obwious.

4. Conclusion

We have seen that abstract time systems posses non—-Archimedean metric
structure and that by directing our altention to the structure much information
on the systems can be obtained. These facls seem to suggest the feasibility and
possibilities of topological approach for the abstract systems theory.
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