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1. Introduction

There are three issues in decision making based on simulation: modelling, programming,
and statistics(Fishman 1973). This paper concerns modelling and programming.

By simulation we mean here that of queuing soucture and called discrete event

simulation. Although calculation of a system of difference equations is sometime called as
simulation, we restrict the usage of the word. That kind of calculation should be taken as
discrete time system. Relation between discrete event systems and discrete time systems has not

been much clear yet.
Pidd[2] has noticed that there are three types of errors on validation of simulation models

after considering what is meant by validation concluding that a model can be said to be valid for
particular purpose under specific assumptions. The first and second ones are well known in
statistical hypothesis testing. A Type I error occurs when an valid model is wrongly rejected. An

error of Type II occurs when an invalid model is taken to be valid. Much more severe is of Type

Zero. It occurs modeler/tester asks the wrong questions, and then the model resulted is over-
elaborated $and/or$ over-simplified. It can be happen that a part of the model is too elaborated
while other part has insufficient detail. To avid errors of this type Pidd[2] has proposed
involvement of client of the study and the users of the result to use their knowledge through
usage of non-technical language, diagrams $and/or$ graphics to represent the problems and
models. Furthermore he insisted that explicit and evolutionary approach to models and programs
should be used because it is better to start a simple skeleton model than to have over-elaborated
disaster that no one can understands.

To be realize the above idea Pidd[2] proposed a simple diagram, called an activity cycle
diagram, for provision of non-technical representation of a model, and three phase simulation
program which is supposed to be carry out the simulation according to the interaction of entities‘
behavior that is depicted in the diagram. (According to Pidd[2], activity cycle diagrams were
popularized by Hills (Hills, P.R., HOCUS, P.E. Group, Egham, 1971) and three phase
approach to discrete event simulation was first described by Tocher (Tocher, K.D., The Art of
Simulation, English Universities Press, 1963)). Although it seems to be easy to understand and
do actually the methodology, by which one can start to make an activity cycle diagram and then
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build a corresponding program to get data of simulation experiments, several important issues
are not much clarified.

In this paper the methodology proposed by Pidd[2] as three phase approach, which is
shown in Fig. 1, is formulated in terms of dynamics and interaction within the modelling
process. That is, a state space representation of a discrete event system is constmcted. The
formulation is to provide systems theoretical basis of simulation modelling and then to give
insight for avoiding errors of Type Zero. The questions we would like to answer are:

(i) What is a discrete event system?
(ii) What information fully decides the dynamics of a discrete event system?

That is, in rigorous sense what kind of dynamics is dealt with and how?
(iii) How interactions are modelled and built into a program?

Fig. 1. Outline of Simulation Methodology

2. Basic Concepts

In this section systems, state space representations and some notation are defined
$ac_{\vee}^{\cap}ording$ to Mesarovic and Takahara[l]. State space is a key concept by which we can grasp
the behavior of the dynamic system in causal way.

Definition 1. system

A system is a relation of an input set and output set. If those two sets are sets of time
functions defined on the same time set, then the system is called a time system.

The value set of inputs of a time system is called input alphabet and that of output called
output alphabet. Usually one of the set of non-negative real numbers $R^{+}$ or that of non-negative
integers $Z^{+}$ is taken as a time set. Let $x$ be a function ffom a time set $T$ to a input alphabet. For
any $t,$ $t’\epsilon T,$ $t\leq t’$ , the restriction of domain of $x$ to $[t, t’$ ) is written as $x_{tt’}$ . That is, $x_{tt’}(\prime r)=x(\tau)$
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for any $\tau,$ $t\leq\tau<t’$ . Similarly $x_{t}$ is defined as $x_{t}(\tau)=x(\tau)$ for any $T,$ $t\leq\tau$ . Let $x$ and $x’$ be

arbitrary functions from $T$ to the same alphabet A. For any $t\epsilon T$, we can defne another element
$x”:Tarrow A$ by

$x^{\prime I}(t’’)=\{\begin{array}{l}x(t^{|\prime}),ift^{|\prime}<tx’(t’’),ift^{l}’\geq t\end{array}$

$x”$ is called the concatenation of $x_{0t}$ and $x_{t}’$ and denoted by $x^{1\prime}=x_{0t}\cdot x_{t}^{t}$ .

Definition 2. state space representation

Let $S\subset X\cross Y$ be a time system with output alphabet B. A pair $<\Phi,$ $\mu>where$

$\Phi=$ { $\phi_{tt’}|\phi_{tt’}$ : $C\cross X_{tt’}arrow C$ and $t,$ $t’\epsilon T,$ $t\leq t’$ }
and $\mu:Carrow B$

is a state space representation of $S$ if and only if the following conditions are satisfied:
(i) the functions $\Phi$ satisfies the following

$(\alpha)\phi_{tt’’}(c, x_{tt’’})=\phi_{t’t’’}(\phi_{tt’}(c, x_{tt’}),$ $x_{t’t’’}$), where $t\leq t^{1\prime}\leq t’$ and $x_{tt’’}=x_{tt’}\cdot x_{t’t’’}$

$(\beta)\phi_{tt}(c, x_{tt})=c$

(ii) (x,y) $\epsilon S$ if and only if there exists some $ceC$ such that for any $t\epsilon T$

$y(t)=\mu(\phi_{0t}(c, x_{0t}))$ .
$C$ is called the state space of $<\Phi,$ $\mu>$ .

Especially $\Phi$ is called a transition family if it satisfies $(\alpha)$ and $(\beta)$ of the above definition.
State space representations are wide-spread framework to recognize dynamics of a time

system in causal way. Mesarovic and Takahara[l] shows that a time system is causal if and only
if it has a state space representation. Therefore what decides the dynamics of a system is
equivalent to what information can be used as a state space.

3. Discrete Event System

The target of our study, discrete event system is defined as follows:

Definition 3. discrete event system
If a time system $S\subset X\cross Y$ satisfies the following four conditions then is refeITed to be

as discrete event system:
1) $T=[0, T_{end}$ ), $T_{end}\epsilon R^{+}$

2) There is a set $A$ ’ and the input alphabet A of input space X is a power set of $A^{\dagger}$ . That is,
$A=P(A’)$ , where $P(A’)$ is the power set of $A’$ .

3) For any $x\epsilon X,$ { $t|x(t)\neq 0,0$ is the empty set} is finite set
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4) For any $t_{1}$ and $t_{2},$ $t_{1}<t_{2}$, and any (x,y) $\epsilon S$ , if $y(t_{2})\neq y(t_{1})$ then $x(t)\neq 0$ holds for

some $t,$ $t_{1}<t\leq t_{2}$ .

In the above definition the third character is representation of a ”discrete event“ system.

Taking an element of the set $A’$ as an activity, the second character shows parallel execution of
some activities. The founh character represents that if there happens no event then the
corresponding output remains at the same value. In other words the concerned system has no
variable that changes continuously with time. A discrete event system is specified by a
sextuple $(A’, B, T, X, Y, S)$ . When there is no confusion we simply call
$SCX\cross Y$ a discrete dynamical system.

For an input $x$ the set { $t1x(t)\neq 0,0$ is the empty set} is denoted by event(x) and an
element of event(x) is called an event of $x$ . Since event(x) is finite for any input $x$, we can think
that event(x) $=\{t_{1}, t_{2}, \ldots, t_{n}\},$ $t_{1}<t_{2}<\ldots<\ddagger_{n}$ for some integer $n$ . A function
nextevent: $Xarrow\{Tarrow T\}$ is defined as

( $t_{k}$ , if $t_{k- 1}\leq t<t_{k}$ for some $k,$ $1\leq k\leq n$

nextevent(x)(t) $=$
$\{$

( $T_{end}$ , if $t_{n}\leq t$

,where $t_{\theta}=t$. As its name shows the nextevent function shows the next event of $x$ at $t$ .
In order to establish a realization theory which can be direcdy implemented as a computer

program for simulation of a discrete event system, we need the following transformation of
inputs of discrete event systems.

Definition 4. $L$ (time-list representation)

Let $x$ be an input of a discrete event system $(A’, B, T, X, Y, S)$ . Notice $x(t)\epsilon P(A’)$

holds for any $t\epsilon$ T.
Define $L:Xarrow\{Tarrow\{A’arrow R^{+}\}\}$ as

($T_{end}$ , if $x(t^{t})$ does not include $b$ for any $t^{\dagger},$ $t\leq t’<T_{end}$ ,

$L(x)(t)(b)=$ $\{$

($\min$ { $t’|x(t’)$ includes $b$ at $t’,$ $t’>t$ }, otherwise
for any $x\epsilon X,$ $t\epsilon T$, and $b\epsilon A’$ . $L(x)$ is called a time-list representation of $x$ .

For any input function $x,$ $L(x)$ is referred to as time-list representation (or simply time-
list) of $x$ . The meaning of $L(x)$ is simple and illustrated in Figure 1. Any input $x$ of any discrete
event system has finite events(x) by definition 3. So event(x) can be written as $\{t_{1}, t_{2}, \ldots, t_{n}\}$ ,

and without loss of generality $t_{i}<t_{j}$ holds if $i<j$ . When we write $L(x)$ as $x^{A},$ $x^{\wedge}(t)$ is a function
from $A’$ to $R^{+}$ for any time $t$ . Let $b$ be an event. Then the fact $x^{\wedge}(t)(b)=t_{3}$ , for example, shows
that at the time $t$ the event $b$ will occur at $t_{3}$ . Since $A^{1}$ is finite, $x^{\wedge}(t)$ can be seen as a table or a
vector which tells each event will happen at each of recorded times.
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The following lemma shows some relation between $L(x)$ and events of $x$ .

Lemma 1
Let $x$ be an arbitrary input of a discrete event system and event(x) $=\{t_{1}, t_{2}, \ldots, t_{n}\},$ $t_{1}<$

$t_{2}<\ldots<h$. Then for any $k,$ $1\leq k- 1\leq n- 1$ , the followings hold:
(i) $L(x)_{tt’}(\tau)=L(x)(t_{k- 1})$

for any $t,$ $t’,$ $t_{k- 1}\leq t<t’\leq\iota_{k}$, and any $T,$ $t\leq\tau<t’$ .
(ii) $L(x)_{t_{k- 1}t}(\tau)(b)\geq nextevent(x)(t_{k- 1})=t_{k}$

holds for any $b\epsilon A’$ , any $t,$ $t>t_{k- 1}$ , and any $\tau,$ $\iota_{k}\leq\tau<t’$ . Furthermore there is a $b’\epsilon A’$ such
that $L(x)_{t_{k- 1}t}(\tau)(b’)=t_{k}$.

Proof It is clear from the above definitions of $L$ and nextevent. $\square$

The function $L$ has its inverse which is written as $L^{-1}$ . For a discrete event system $S$ whose
input space is X, the time system whose input space is $L(X)$ is written as $L(S)$ .

Definition 5. discrete event dynamical system

Let $S$ be a discrete event system. A discrete event dynamical system of $S$ is a state space
representation of $L(S)$ .

The reason why the input of a state space representation of a discrete event system is $L(X)$

instead of X, is that the formulation is in programming orientation. In Section 5 a simulation
program will be formulated and its input is $L(X)$ . Since it is shown that the program is a state

space representation and then we can get a concrete program of the dynamics. In other words
this definition provides us not only an analysis of dynamics of discrete event systems but also
the way how to implement it as a program.

4. Activity lnteraction Diagram

As depicted in Fig. 1, Pidd’s approach to simulation modelling is two fold. The first is
creation of diagrammatic skeleton model called an activity cycle diagram. The concept of activity
cycle diagram is modified and then the name is changed as activity interaction diagram. The
reason of the change is explained later.

Definition 6. activity interaction diagram
A seventuple ($E$ , EC, $A,$ $A^{t},$ $W,$ $D,$ $f_{EA}$) is called an activity interaction diagram if it

satisfies following conditions;
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1) $E$ is a finite set named as entity set and its element is called as entity. An equivalence class
is defined on $E$ and the quotient set is EC. An equivalence class of entity set is called as an entity
class.

2) A is a finite set named as activity set and its element is called as activity. Each entity class
corresponds to activities which is specified by the function $f_{EA}:ECarrow P(A)$ .

3) $W$ is a finite set named as wait set and its element is called a waiting queue.
4) Let $V=Au$ W. The graph $D$ $CVxV$ satisfies the following three conditions:

4-1) For any a $\epsilon A,$ $(a, w)\epsilon D$ holds for some $w\epsilon$ W.
4-2) $(s_{1}, s_{2})\epsilon Darrow(s_{1}\epsilon A\ s_{2}\epsilon W)$ or $(s_{1}\epsilon W\ s_{2}\epsilon A)$ : alternation of A and D.
4-3) $D$ is finite.

5) $A^{t}=$ {a $\epsilon$ A $|(w,$ $a)\not\in D$ holds for any $w\epsilon W$ } $\neq 0$ , where $0$ is the empty set.

An activity interaction diagram is a graph. Fig. 2 depicts an example of an activity interaction
diagram. $s_{1}arrow s_{2}$ in graph representation is written as $(s_{1}, s_{2})$ in definition 6. A path of arrows
in accordance with their directions shows how an entity of an entity class behaves through time.

Fig. 2. acitivity interaction diagram

An activity is also called activity state and represented by a square, and a waiting queue
called also wait state is by an ellipse. All of waiting queue are not real queue in a simulation
program. Some of them are used just to represent conditions by which an activity can occur. In
such case both $0$ (or false) and 1 (or true) might be used as possible values of the queue. Before



203

some activity starts the previous activity must be finished and an entity must be in a certain wait
state. Thus activity state and wait state appear alternatively in any path.

An element of $A’$ is called $B$ activity. Anival” in Fig. 2 is an example. In the simulation
program any $B$ activity bootstrapped to decide the next occurrence time when it occurs. An
element of $A$ , that is not in $A’$ , is called $C$ activity. Its occurrence is conditioned by related
queues in the program. An example of $C$ activity is “Service“ in Fig. 2.

Activity interaction diagrams are slightly different ffom activity cycle diagrams which is
defined in Pidd[2]. Firstly the name is different, and secondly any possible path with respect to

an entity may not make closed cycle in activity interaction diagram while activity cycle diagram
urges to do that.

The name is changed because one of the main information represented by the diagram is
interactions between entities’ behavior as Pidd himself said. Making cycle has no effect in
making a corresponding simulation program and no conceptual value. Precisely speaking,
interaction between entities is depicted through a typical (or representative) entity of the same
character, that is, through classes of entities. The interaction suggests the existence of
conditions on mutual possible behavior of entities of different classes of entities at any time.

Fig. 3. acitivity cycle diagram

Although both activity cycle diagrams and activity interaction diagrams have the same
philosophy, the forner urged to make any path circle. For example, the same interaction of clerk
and customer in a fast food restaurant depicted in Fig.2 is shown as activity cycle diagram in
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Fig.3. In modelling a problem situation by activity interaction diagram modelers think about
history of not a class of entities, but a typical entity, like a customer or a clerk. An arrow from

“Outside“ to “Arrival” not only does not be needed but also can be misleading because a
customer entity may not come again to the window after once got the service. Funhermore other
customers can arrive while the previously arrived customer is still in queue, not outside. Thus
when there are activities, like arrival, that occur independently from other status of the system,

cycle representation does not seem to be suitable.
The above two kind of consideration make us change the name and definition of activity

cycle diagram as activity interaction diagram.
An activity interaction diagram can correspond to discrete event system. One of them is

defined below.

Definition 7. consistent discrete event system
Let $(A_{S}’, B, T, X, Y, S)$ be a discrete event system. It is said to be consistent with a

activity interaction diagram ($E$ , EC, $A,$ $A’,$ $W,$ $D,$ $f_{EA}$) if satisfies the following conditions:
1) $A_{S}’=A’$ .
2) The alphabet of output $Y$ is the set of functions {fl $f:Warrow Z^{+}$ },

3) Let $(x, y)\in S,$ $w\epsilon W$ , and $t_{1},$ $t_{2}\epsilon T$ be arbitrary. Assume $t_{1}<\iota_{2}$ holds.
Then there exist a $\epsilon A,$ $(a, w)\epsilon D$ , and $t\epsilon T,$ $t_{1}<t\leq t_{2}$ , such that $[y(t_{1})(w)\neq y(t_{2})(w)$

$arrow a\epsilon x(t)]$ holds.

5. Three Phase Simulation System

In the following definition a framework of simulation program based on the three phase
approach[2] is formulated. And it will be proved to be a state space representation (discrete

event dynamical system) of a discrete event system. In the $following/*\ldots*/is$ a comment.

Definition 8. three phase simulation system $<\Phi,$ $I_{Q}>$

8-1) definition of auxiliary sets

Clock $=[0, T_{end}]$ , where $T_{end}\epsilon R^{+}/^{*}\dot{\mathfrak{a}}me$ set of three phase simulation system $/$

$\Delta\epsilon$ Clock $/*The$ smallest time-slice to proceed simulation $/$

Entities $=\{1,2, \ldots, n\}$ $/*EveIy$ entity has a unique name as a $number^{*}/$

EntityClass $=Entities/\equiv$ , where $\equiv is$ an equivalence relation on Entity
AnEntityState $=TimeCell\cross NextActivity\cross Avail$

,where TimeCell $=C1\propto k$

NextActivity $=ActivityS$et $=BActivitySet\cup$ CActivitySet
$/*BActivitySet$ and CActivitySet are finite $*/$

Avail $=$ { $available$, void} $/^{*}shows$ whether the time cell of the entity state is
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currently available or $not^{*}/$

$/*Each$ entity is associated to an activity. If the activity is an element of BActivitySet and the
value of Avail is “available“ then the activity will occur at the time represented in TimeCell. If

the activity is of CActivitySet possibility of occurrence of it is examined at each time any
BActivity and CActivity occurred. $*/$

EntityStates: $Entitiesarrow AnEntityState$ $/*entity$ has its state $/$

QueueId is a fmite set. $/*each$ queue in the system has its name as a number $/$

Queue: $QueueIdarrow Number$ $/*Queue$ shows the length of a queueid $/$

$f_{Afec\mathbb{Q}};ActivitySetarrow QueueId/^{*}$ Each activity affects a queue specified by $f_{AfectQ}$. $*/$

$X=$ { $x1x;Cl\propto karrow P(BActivitySet),$ $\{t1x(t)\neq 0,0$ is the empty set} is finite} $/*input^{*}/$

BTL $=$ {fl $f:BActivityarrow[0,$ $T_{end}]$ } $/^{*}Note$ that $L(x)(t)$ is an element of BTL for any
$t\epsilon[0, T_{end}]^{*}/$

$/*Ifz$ is an element of a Cartesian product and has A-coordinate then the A-coordinate of $z$ is
written as “z.A“. For example, if $z=(a, b, c)\epsilon$ AxBxC then z.A $=a$ and z.B $=b$ . The

chlonological change of EntityStates and Queue can be divided into three phase, each of which
is named A-Phase, B Phase, and C Phase. $*/$

8-2) Transition in A-Phase

$/*The$ transition of this phase is time scan and characterized by functions $f_{Scan}$ and $f_{Dues}$ . $*/$

$f_{Scan}:EntityStatesarrow Clock$

$f_{Scan}(entitystates)$

$= \min\{k1k=entitystates(i).TimeCell$ and
entitystates(i).Avail$=available$ for some entity $i\epsilon$ Entity}

$f_{Dues}:EntityStatesarrow P(Entities)$, where P(Entities) is the set of subsets of Entities.
$f_{Dues}(entitystates)=\{i$ I $f_{Scm}(entitystates)=entitystates(i)$.TimeCell,

and entitystates(i).Avail $=available$ }

8-3) Transition in B-Phase

$/^{*}$ The transition of B-Phase is characterized by functions $f_{Type},$ $f_{AfectQ},$ $f_{B_{-}Ent}$, and $f_{B_{-}Que}$ . $*/$

$f_{Typ};ActivitySetarrow$ { $ScheduleNext$, NonSchedule}
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$/*This$ indicates whether a BActivity should be ‘bootstrapped‘ or not. If an activity is bootstrap

type, the TimeCell value is reassigned when it occurs. And that TimeCell value shows when the
activity occurs next time. $*/$

We define $f_{B_{-}Ent}$ as follows.
Let entitystates $\epsilon$ EntityStates and $x$ be arbitrary, nextdues $=f_{Dues}(entitystates)$ and $c=$

$f_{Scan}(entitystates)$ .
$f_{B_{-}Ent}$ : $Entities\cross En\dot{\mathfrak{a}}\ddagger yStates\cross BTLarrow AnEntityState$

$f_{B_{-}Ent}$($i$ , entitystates, $\beta$) $=entitystate$ such that

casel: when $i$ is not in nextdues:
entitystate $=entitystates(i)$ $/*unchanged^{*}/$

case2: when $i$ is in nextdues:
$case2.1$ : when $f_{TyI^{g}}(en\dot{\mathfrak{a}}tystates(i).NextActivity)=NonSchedule$:

entitystate.NextActivity $=entitystates(i).NextActivity/*unchanged^{*}/$

entitystate.TimeCell $=entitystates(i).TimeCell$ $/*unchanged^{*}/$

entitystate.Avail $=void$.
case2.2: when $f_{Type}(entitystates(i).NextActivity)=ScheduleNext$ ;

entitystate.NextActivity $=en\dot{\mathfrak{a}}\iota ystates(i).NextActivity/*unchanged^{*}/$

entitystate.Avail $=available$

entitystate.TimeCell $=\beta(entitystates(i).NextActivity)/*’\dagger b\infty tstrap^{I\prime}*/$

,where $\beta$(entitystates$(i)$ .NextActivity) $\geq\Delta+c$ .

$f_{B_{-}Que}:Entities\cross EntityStates\cross Queuearrow Queue$

$/^{*}f_{B_{-}Que}$ calculates Queue when any of BActivity occurs. $*/$

$f_{B_{-}Que}$($i$ , entitystates, queue) $=queue’$ such that
( $f_{QueVa1}$ ($entitystates(i)$ .NextActivity, queue),

queue’(k) $=$ { if $i\epsilon$ nextdues and $k\epsilon f_{AfectQ}(entitystates(i).NextActivity)$

(queue$(k)$ , otherwise,

where $f_{QueVa1}:ActivitySet\cross Queuearrow Number$

$/*Each$ activity is associated to a queue specified by fAfectQ. If an activity is supposed to take
place the associated queues are calculated by fB-Que. Whether an activity occurs or not at the
time $c$ is decided from the fact that the activity is an element of nextdues. $*/$

8-4) transition in C Phase

$f_{C_{-}condition}:Queuearrow Entityu0$, where $0$ represents the empty set.
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$/*Based$ on the status of the whole queue this function decides which CActivities occur by
specifying entities whose NextActivity is an CActivity. $*/$

Let $i$ be an arbitrary element of Entity.
$f_{C_{-}Ent}:Entities\cross En\dot{n}tyStatesarrow AnEntityState$

$f_{C_{-}Ent}$($i$ , entitystates) $=entitystate$ such that
casel: when $i$ is not in $f_{C_{-}condition}(queue)$ :

entitystate $=entitystates(i)/*unchanged^{*}/$

case2: when $i$ is in $f_{C_{-}condition}(queue)$ :
entitystate.NextActivity $=f_{CBNextAct}(en\dot{\mathfrak{a}}tystates(i).NextAc\dot{\mathfrak{a}}vity)$

entitystate.TimeCell $=f_{NextTime}$($f_{CBNextAct}$(entitystates$(i)$ .NextActivity)),

entitystate.Avail $=available$

,where $f_{CBNextAct}$ is a function $f_{CBNextAct}:CActivitySetarrow BActivity$ , and
$f_{NextTime}$ : $Clockarrow BTL$ such that $f_{NextTime}(f_{CBNextAct}(entitystates(i).NextActivity))\geq\Delta+c$ .

$/*There$ are two types of BActivities. One is bootstrapping type. The other is non bootstrapping
and set into an entity to occur sometime by a CActivity. For example, assume that there is a
sales clerk at ticket office and she accepts phone call if there is no customer in the office. The
start of phone conversation is a CActivity because it happens when both there is no customer

and there is a phone call. If she starts phone call service the time to finish it is solely determined.
That is, the activity “end of phone call“ is a BActivity of non bootstrapping. $*/$

$f_{C_{-}Que}:Entities\cross EntityStates\cross Queuearrow Queue$

$/^{*}f_{C_{-}Que}$ calculates Queue when any of CActivity occurs. $*/$

$f_{C_{-}Que}$($i$ , entitystates, queue) $=queue’$ such that

queue’(k) $=\{\begin{array}{l}f_{QueVal}(entitystates(i).NextActivity,queue)ifi\epsilon f_{C_{-}condition}(queue)andk\epsilon f_{Afec\ddagger Q}(entitystates(i).NextActivity)queue(k),otherwise\end{array}$

8-5) construction of $<\Phi,$ $I_{Q}>$

$f_{B}:EntityStates\cross Queue\cross B7Larrow EntityStates\cross Queue$ .
$f_{B}(e, q, \beta)=(e’, q^{1})$ such that

$e’=(f_{B_{-}Ent}(1, e, \beta),$ $f_{B_{-}Ent}(2, e, \beta),$
$\ldots,$

$f_{B_{-}Ent}(n, e, \beta)$ , and
$q’=q_{n}’$ , where $q_{0}’=q,$ $q_{k}’=f_{B_{-}Que}(k, e, q_{k- 1}’)$ for any $k,$ $1\leq k\leq n$ .

$/*f_{Scan}$ and $f_{Dues}$ are used in calculation of $f_{B}$ . $*/$

$/*f_{C}$ is a total function which satisfies the following $/$

$f_{C}$ : $EntityStates\cross Queuearrow EntityStates\cross Queue$.
$((e, q)$ , if $f_{C_{-}condition}(q)=0$,
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$f_{C}(e, q)=(f_{C}(f_{C_{-}Ent}(e), f_{C_{-}Que}(e, q))$

, if $f_{C_{-}condition}(q)\neq 0$ ,

where $f_{C_{-}Ent}(e)=(f_{C_{-}Ent}(1, e),$ $f_{C_{-}Ent}(2, e),$ $\ldots,$ $f_{C_{-}Ent}(n, e))$ , and
$f_{C_{-}Que}(e,q)=q_{n}’$ , where $q_{0}’=q,$ $q_{k}^{|}=f_{C_{-}Que}(k, e, q_{k- 1}’)$ for any $k,$ $1\leq k\leq n$ .

$6;EntityStates\cross Queue\cross BTLarrow EntityStates\cross Queue$

$6=f_{C}\cdot f_{B}$

$f_{EBact}:EntityClassarrow BActivitySet/*Every$ entity class corresponds to a $B$ activity which is
specified by $f_{EBact}*/$

$f_{XEnt}:BTLarrow En\dot{n}tyStates$

$f_{XEnt}(\beta)=e$ such that
$e(i)$.NextActivity $=f_{EBact}([i])$ ,

e(i).TimeCell $=\beta(f_{EBact}([i]))$ ,

$e(i)$ .Avail $=available$

for any $i\epsilon$ Entities, where $[i]$ is the equivalence class that has $i$ as its representative and
$\beta(f_{EBact}([i]))\geq D+f_{Scm}(e)$.

For any $t$ and $t^{\prime 1},$ $t<t’’,$ $\phi_{tt’’}$ is defined by

$\phi_{tt’’}(q, L(x)_{tt’’})=\{w’heret=\min$ {
$t^{\wedge}|t^{\wedge}=L(x)_{tt^{1\prime}}(t)(b)’forsomebBA’c^{)}tivity$

and $t\leq t^{\wedge}\leq t’$ },

Also define $\phi_{tt}(q, L(x)_{tt})=q$ for any $t$ .
The family of functions defined above $<\Phi,$ $I_{Q}>$ , where $\Phi=\{\phi_{tt’}|t, t’\epsilon T, t\leq t^{t}\}$ and $I_{Q}$ is the

identity function on $Q$, is referred to be as three phase simulation system.

In this paper we restrict our consideration in the case where case 2 in the definition of
$f_{C_{-}Ent}$ never occurs. By this restriction we can not deal with the case that there needs some
duration of a $C$ activity. Furthermore we assume that $f_{C}$ is a total function, that is, the
expansion of $f_{C}$ is eventually stops by $f_{C_{-}condition}$ value being empty. In terms of simulation
programs of three phase simulation the assumption that $f_{C}$ is total requires that the program
always stops.

For a three phase simulation system $<\Phi,$ $I_{Q}>the$ resultant system that $<\Phi,$ $I_{Q}>$ defines
is ${\rm Res}(<\Phi, I_{Q}>)=\{(L(x),y)|(\exists q)(\forall t)(y(t)=\phi_{0t}(q, L(x)_{0t}))\}$.

Proposition 1
Let $<\Phi,$ $I_{Q}>$ be a three phase simulation system. $\Phi$ is a transition family.

Proof. Let $q\epsilon$ Queue, $t,$ $t^{t\prime}\epsilon T,$ $t\leq t^{t}$
’ and $x\epsilon X$ be arbitrary. It will suffice to show that
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$(^{*})$ $\phi_{tt’’}(q, L(x)_{tt’’})=\phi_{t’t’’}(\phi_{tt’}(q, L(x)_{tt’}),$ $L(x)_{t’t’’})$

holds for any $t’,$ $t\leq t’\leq t’’$ , where $L(x)_{tt’’}=L(x)_{tt’}\cdot L(x)_{t’t’’}$ .
Since event(x) is finite, we can assume event$(x)\cap[t, t’’]=\{t_{1}, t_{2}, \ldots, t_{n}\},$ $t_{1}<t_{2}<\ldots<$

$t_{\eta}$ . Set $t_{0}=t$ and $t_{n+1}=t’$ . Then we have $t=t_{0}\leq t_{1}<\ldots<t_{n}\leq t_{n+1}=t’’$ . Let $q_{0}=q$ , and
$q_{k}=6(f_{XEnt}(L(x)_{tt’}(t_{k- 1})), q_{k- 1}, L(x)_{tt’}(t_{k})).Queue$ for each $k,$ $1\leq k\leq n$ . Since $\min\{t^{\wedge}|t^{A}=$

$L(x)_{t_{k- 1}t’’}(t_{k- 1})(b)$ for some $b\epsilon$ BActivity and $t_{k- 1}\leq t^{A}\leq t’$ } $=t_{k}$ holds by Lemma 1, we have

$(^{**})\phi_{t_{k- 1}t’’}(q_{k- 1}, L(x)_{t_{k- 1}t’’})=\phi_{t_{k}t’}(6(f_{XEnt}(L(x)_{t_{k- 1}t’’}(t_{k- 1})).Queue, q, L(x)_{t_{k- 1}t’’}(t_{k})), L(x)_{t_{k}t’’})$

$=\phi_{t_{k}t’’}(q_{k}, L(x)_{t_{k}t’’})$

for any $k,$ $1\leq k\leq n$ .
Let $t’$ be an arbitrary element of $[t, t”$). Firstly assume that $t’=t_{k}$ for some $k,$ $0\leq k\leq$

$n+1$ . If $t’=t_{0}$ or $t’=t_{n+1}$ then the equation $(^{*})$ holds trivially. So assume $t^{1}=t_{k}$ holds for

some $k,$ $1\leq k\leq n$ . Then by applying $(^{**})k$ times we have
$\phi_{tt’’}(q, L(x)_{tt’’})=\phi_{t_{k}t’’}(q_{k}, L(x)_{t_{k}t’’})$ .

In the same way, k-l times application of $(^{**})$ , where $t^{t\prime}$ is replaced by $t_{k}$, gives that
$\phi_{tt_{k}}(q, L(x)_{tt_{k}})=\phi_{t_{k- 1^{t}k}}(q_{k- 1}, L(x)_{t_{k- 1^{t}k}})$ .

Since $\min$ { $t^{\wedge}1t^{\wedge}=L(x)_{t_{k- 1^{t}k}}(t_{k- 1})(b)$ for some $b\epsilon$ BActivity and $t_{k- 1}\leq t^{\wedge}\leq t_{k}$ } $=t_{k}$, we have

$\phi_{t}(q_{k- 1}, L(x)_{t})k- 1^{t}kk- 1^{t}k=\phi_{t_{k}t_{k}}(q_{k}, L(x)_{t_{k}t_{k}})=q_{k}$. Above all we have

$\phi_{tt’’}(q, L(x)_{tt’’})=\phi_{t_{k}t’’}(\phi_{tt_{k}}(q, L(x)_{tt_{k}}),$ $L(x)_{t_{k}t’’})=\phi_{t’t’’}(\phi_{tt’}(q, L(x)_{tt’}),$ $L(x)_{t’t’’})$

, which is to be proved.
Secondly assume that $t_{k- 1}<t^{1}<t_{k}$ holds for some $k,$ $1\leq k\leq n+1$ . By $(^{**})$ we have
$\phi_{tt’}(q, L(x)_{tt’})=\phi_{t_{k- 1^{t’}}}(q_{k- 1}, L(x)_{t_{k- 1^{t’}}})$.

Since nextevent(x)(t $k- 1$ ) $=t_{k}$ and $t_{k}>t’,$ $\phi_{t_{k- 1^{t’}}}(q_{k- 1}, L(x)_{t_{k- 1^{t’}}})=q_{k- 1}$ holds. That is,

$\phi_{tt’}(q, L(x)_{tt’})=q_{k- 1}$ . k-l times application of $(^{**})$ gives that
$\phi_{tt’’}(q, L(x)_{tt’’})=\phi_{t_{k- 1}t’’}(q_{k- 1}, L(x)_{t_{k- 1}t’’})$ .

Therefore if $\phi_{t}(q_{k- 1}, L(x)_{t})=\phi_{t’t’’}(q_{k- 1}, L(x)_{t’t’’})k- 1^{t’’}k,1^{t’’}$ holds then we have

$\phi_{tt’’}(q, L(x)_{tt’’})=\phi_{t’t’’}(q_{k- 1}, L(x)_{t’t’’})=\phi_{t’t’’}(\phi_{tt’}(q, L(x)_{tt’}),$ $L(x)_{t’t’’})$

,which concludes the proof. By lemma 1 we have that $L(x)_{t_{k- 1}t’’}(\sigma)=L(x)_{t’t’’}(\tau)=L(x)(t_{k- 1})$

for any $O,$ $t_{k- 1}\leq\sigma<t_{k}$ , and any $T,$ $t^{1}\leq\tau<t_{k}$, and that $\min\{t^{\wedge}$ I $t^{\wedge}=L(x)_{t^{1}t’’}(t’)(b)$ for some
$b\epsilon$ BActivity and $t’\leq t^{A}\leq t_{k}$ } $=t_{k}$. Thus we have

$\phi_{t’t’’}(q_{k- 1}, L(x)_{t’t’’})=\phi_{t_{k}t’’}(6(f_{XEnt}(L(x)_{t’t’’}(t_{k- 1})), q, L(x)_{t’t’’}(t_{k})).Queue, L(x)_{t_{k}t’’})$

$=\phi_{t_{k}t’’}(q_{k}, L(x)_{t_{k}t’’})$ .
The equation $(^{**})$ says this is equal to $\phi_{t}(q_{k- 1}, L(x)_{t})k- 1^{t’’}k- 1^{t’’}$

$\square$

Proposition 2
Let $<\Phi,$ $I_{Q}>be$ a three phase simulation system. Then $L^{-1}({\rm Res}(<\Phi, I_{Q}>))$ is a discrete

event system.
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Proof. Let $t_{1},$ $t_{2},$ $t_{1}<t_{2}$ , and $(x,y)\epsilon L^{- 1}({\rm Res}(<\Phi, I_{Q}>))$ be arbitrary. lt will suffice to show that
if $x(t)=0$ for any $t,$ $t_{1}<t\leq t_{2}$ , then $y(t_{1})=y(t_{2})$ . Assume that $x(t)=0$ for any $t,$ $t_{1}<t\leq t_{2}$ . Then

there are $t$
’ and $t^{1\prime}$ such that $t’,$ $t’\epsilon$ event(x), nextevent(x)(t’) $=t’$ ’ and $t’\leq t_{1}<t\leq t_{2}<t’’$ hold. Let

$q’=\phi_{0t’}(q, L(x)_{0t’}))$ . Then $\phi_{0t_{1}}(q, L(x)_{0t_{1}}))=\phi_{t’t_{1}}(q’, L(x)_{t’t_{1}}))$. Since $\min\{L(x)_{t’t_{1}}(t’)(b)Ib$

$\epsilon$ BActivitySet} $=t”$ and $t^{t\prime}\not\in[0,t_{1}]$ , we have $\phi_{t’t_{1}}(q’, L(x)_{t’t_{1}}))=q’$ . Similarly we have $\phi_{0t_{2}}$

$(q, L(x)_{0t_{2}}))=\phi_{t’t_{2}}(q^{t}, L(x)_{t’t_{2}}))=q^{t}$ by noticing $t^{t\prime}\not\in[0,t_{2}]$ . By definition of $L^{-1}({\rm Res}(<\Phi$,

$I_{Q}>)),$ $y(t_{1})=\phi_{0t_{1}}(q, L(x)_{0t_{1}}))=q^{t}=\phi_{0t_{2}}(q, L(x)_{0t_{2}}))=y(t_{2})$ .
$\square$

The above two propositions provide one of the two main results.

Theorem 3
Let $<\Phi,$ $I_{Q}>be$ a three phase simulation system. Then $<\Phi,$ $I_{Q}>is$ a discrete event

dynamical system of $L^{- 1}({\rm Res}(<\Phi, I_{Q}>))$ .

The so-called discrete event simulation is carried out by a program whose input is a time
function on BActivities. Length of time between events, when several activities occur, are taken
from appropriate distribution through sampling technique.
The whole simulation program works as Fig. 4. After initialization of EntityStates by assigning
appropriate values, a cycle consists of A-Phase, B Phase and C Phase is repeated until clock
exceeds the pre-determined time Tend. Every time a BActivity occurs its corresponding
entitystate changes its TimeCell value by sampling from its assigned distribution. When
simulation is over a pair $(x, y)$ is provided. When much data is needed to statistical evaluation
experiment design should be used, although we do not mention it in this paper.
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Fig. 4. Execution of three phase simulation

Definition 9. simulation-implementation ofactivity interaction diagram
Let $(E_{aid}, EC_{aid}, A_{aid}, A_{aid}’, W_{aid}, D_{aid}, f_{EAaid})$ be a activity interaction diagram and

$<\Phi,$ $I_{Q}>$ a three phase dynamical system. $<\Phi,$ $I_{Q}>is$ called a simulation-implementation of the

activity interaction diagram if the following conditions hold:
1) $E_{aid}=Entity,$ $EC_{aid}=EntityClass$

2) $A_{aid}’=BActivitySet$

3) $f_{EAaid}=f_{EBact}$

4) $W_{aid}=QueueId$

5) For any a $\epsilon A_{aid}’=BActivitySet$ and $w\epsilon W_{aid}=QueueId$ the following holds:

$f_{AfectQ}(a)=w$ if and only if $(a, w)\epsilon D_{aid}$ .

The following theorem shows how a simulation implementation of an activity interaction
diagram can be made and how the information that the diagram has is used in simulation.

Theorem 4
Let $<\Phi,$ $I_{Q}>be$ a simulation-implementation of an activity interaction diagram. Then

$L^{- 1}({\rm Res}(<\Phi, I_{Q}>))$ is consistent with the diagram.

Proof. It will suffice to show that the last condition of the definition of consistent discrete event
system. Let $(x, y)\epsilon L^{-1}({\rm Res}(<\Phi, I_{Q}>)),$ $w\epsilon W$, and $t_{1},$ $t_{2}\epsilon T$ be arbitrary. Assume $t_{1}<t_{2}$ holds.
Furthermore assume $y(t_{1})(w)\neq y(t_{2})(w)$ . Since $L^{- 1}({\rm Res}(<\Phi I_{Q}>))$ is a discrete event system
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there is a $t,$ $t_{1}<t\leq t_{2}$ , such that $x(t)\neq 0$ . From the construction of $\Phi$, there must be an activity in
$f_{AfectQ^{-1}}(w)$ such that queue is changed according to $f_{B_{-}Que}$ andlor $f_{C_{-}Que}$ by caIrying out the

activity at the event $t$. $\square$

6. Conclusion

What the formulation revealed are:
i) The dynamics of three phase simulation program is formulated as a state space

representation whose state space is queue (by Theorem 3), and the resultant system is a discrete
event system in the defined sense (Definition 3). The question, what has the all of historical
information of the system by which further dynamics of the system is fully determined, is not

trivial but fundamentally important to answer what kind of system we will have by simulation.
ii) From the fact that the queue is the state space of the dynamical system, the condition

check, that decides which $C$ activities are ready to occur, should be examined about only the
whole queue. There is no need to examine other information. This fact has not been exactly
declared yet.

iii) The formulation of three phase simulation implementation (Defmition 8) shows that
the state, queue, is changed by activities and in a program (implementation) the priority of
activities that can be occurred simultaneously is fixed. And the fixed priority is given by the
correspondence between activities and entities.

iv) A skeleton model, activity interaction diagram, models entities, entity classes,

independent activities, correspondence between activities and entities, queues and a condition
which must be preserved in the simulation program of the skeleton model (Theorem 4).

As mentioned in Section 5 two assumptions are used in defining three phase dynamical
system. The effect and meaning of them are included in topics to future research.
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