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1 Introduction

In this paper, we consider the isomorphism problem for finite-dimensional

finitely presented algebras over a field $k$ . In the paper [8], monomial

algebras (defined by the form “monomial $=0$’ only), the simplest class

of finitely presented algebras, have been already shown to have a very

effective solution, based on the presentation uniqueness theorem. In this

case, surprisingly, it turns out that the answer is independent of the

ground field $k$ . Moreover, as to non-degenerate binomial algebras (defined

by the form “monomial $=0$’ or $\zeta(binomial=0$ (non-degenerate relations)

“), the paper [9] has provided some necessary conditions for an existence

of isomorphism. These conditions were described in terms of a partially

ordered set.

This paper deals with the problem for general finitely presented alge-
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bras: given two finitely presented algebras $A$ and $B$ of the same dimension

over a field $k$ , decide whether they are isomorphic as k-algebras. In Sec-

tion 2, we provide a general criterion for deciding an algebra isomorphism.

In Section 3, our non-commutative problem is reduced to a radical mem-

bership problem in a commutative ring. Section 4 presents an efficient

technique for computing the determinant of an isomorphism candidate.

In Section 5, we can propose a Gr\"obner basis method for solving our

problem. In particular, it is shown that the isomorphism problem in the

commutative case is decidable. The method can provide a precise solu-

tion even when $k$ is not necessarily algebraically closed. That is, if two

algebras are isomorphic over an algebraic extension $k’$ of $k$ , then it can

find $k’$ . We present a concrete algorithm based on it and show examples.

In Section 6, an application of this algorithm is described.

Throughout this paper, $k\langle X|R\rangle$ denotes the non-commutative associa-

tive algebra generated by variables in $X$ having $R$ as defining relations.

2 Isomorphism Criterion

Let $k$ be a field of arbitrary characteristic and $A$ and $B$ finite-dimensional

finitely presented algebras over $k,$ $k\{X_{A}|R_{A}\rangle$ and $k\langle X_{B}|R_{B}\rangle$ respectively.

Take $S_{A}=\{t_{i}\}$ and $S_{B}=\{s_{j}\}$ as k-linear bases of $A$ and $B$ so that

$t_{1}=1_{A}$ and $s_{1}=1_{B}$ . If necessary, by computing (finite) non-commutative

Gr\"obner bases of $R_{A}$ and $R_{B}$ , we construct $S_{A}$ and $S_{B}$ , using a method

similar to that in the commutative case ([1], METHOD 6.6). See $[6],[5]$ ,

and [4] for the details of non-commutative Gr\"obner bases. However,
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note that the main purpose of this paper is not to use non-commutative

Gr\"obner bases here, but to use commutative Gr\"obner bases as discussed

in Section 5.

Now assume that $\# S_{A}=\# S_{B}=n$ (i.e. $\dim A=\dim B$ ). Let us define a

k-linear mapping $\varphi$ : $Aarrow B$ by image of each generator of $A$ as follows:

$\varphi(x_{\lambda})=\sum_{j=1}^{n}a_{j\lambda}s_{j}a_{j\lambda}\in k$ (1)

where $X_{A}=\{x_{\lambda}\}$ . If $\varphi$ acts on each element $t_{i}$ of $S_{A}$ as ring homo-

morphism, then $\varphi(t_{i})$ is formally determined under $R_{B}$ in the following

manner:

$\varphi(t_{i})=\sum_{j=1}^{n}b_{ji}s_{j}b_{ij}\in k$

Thus we have a square matrix $M_{\varphi}=(b_{ji})_{1\leq i,j\leq n}$ of degree $n$ . Here we

assume that $\varphi(1_{A})=1_{B}$ . That is, $b_{11}=1$ and $b_{j1}=0$ for $j\neq 1$ .

Let $\varphi(R_{A})$ be the set of all relations applied to the respective relations

in $R_{A}$ by $\varphi$ as ring homomorphism. Then we have:

Theorem 1 (Isomorphism Criterion) $A$ and $B$ are isomorphic as k-

$algebras\Leftrightarrow for$ the above $\varphi$ , both $\varphi(R_{A})$ under $R_{B}$ and $detM_{\varphi}\neq 0$ can

be satisfied in the field $k$ .

Proof. $(\Rightarrow)$ We apply the mapping $\varphi$ to an isomorphism between $A$ and

$B$ . Then $\varphi(R_{A})$ under $R_{B}$ and $detM_{\varphi}\neq 0$ can be simultaneously satisfied

in $k$ because $\varphi$ is a homomorphism from $A$ to $B$ and a bijective k-linear

mapping.

$(\Leftarrow)$ We can naturally deem $\varphi$ as a homonorphism from $k\langle X_{A}\rangle$ to $B$ ,
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where $k\langle X_{A}\rangle$ is the free associative algebra generated by $X_{A}$ over $k$ . By

assumption, $\varphi$ is a surjective homomorphism with $R_{A}\subseteq Ker\varphi$ . Thus

there exists a surjective homomorphism $\overline{\varphi}:k\langle X_{A}\rangle/\langle R_{A}\ranglearrow B$ such that

$\varphi=\overline{\varphi}oc$ , where $\langle R_{A}\rangle$ is the two-sided ideal generated by $R_{A}$ and $c$

is the canonical mapping from $k\langle X_{A}\rangle$ onto $k\langle X_{A}\rangle/\langle R_{A}\rangle$ . However, the

assumption that $\dim A=\dim B$ implies the result since we can identify

$A$ as $k\langle X_{A}\rangle/\langle R_{A}\rangle$ . $\blacksquare$

Example Decide whether $A=k\langle x|x^{2}=x\rangle$ and $B=k\langle x|x^{2}=1\rangle$ are

isomorphic. (In this case, both are degenerate binomial algebras, which

were not treated in [9].)

Take $S_{A}=\{1, x\}$ and $S_{B}=\{1, x\}$ (using the same symbol $x$ , if there

is no confusion possible). Now, for a k-linear mapping $\varphi$ from $A$ to $B$ ,

put $\varphi(x)=a+bx$ , where $a,$ $b\in k$ . Thus we have

$M_{\varphi}=(\begin{array}{ll}1 a0 b\end{array})$

$\varphi(R_{A})$ is $\{\varphi(x^{2})=\varphi(x)\}$ . By “left hand side” $=\varphi(x)^{2}=a^{2}+2abx+$

$b^{2}x^{2}$ , “right hand side” $=a+bx$ , and $x^{2}=1$ in $B$ , we have $2ab=b$ and

$a^{2}+b^{2}=a$ . Since $detM_{\varphi}=b$ , when char $k\neq 2$ , putting $a=1/2$ and

$b=\pm 1/2,$ $detM_{\varphi}\neq 0$ can also be satisfied. Consequently,

$\{\begin{array}{l}A\simeq Bifchark\neq 2A\not\simeq Bifchark=2\end{array}$
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3 Radical Membership Problem

Let each $a_{j\lambda}$ in the expression (1) correspond one to one with a new

indeterminate $x_{j\lambda}$ over $k$ .

$a_{j\lambda}arrow x_{j\lambda}$

Of course, each $x_{\lambda j}$ is not in $X_{A}$ or $X_{B}$ . We define a commutative ring

$R=k[x_{j\lambda}]$ (generated by $x_{j\lambda}’ s$ over $k$ ). $\varphi$ is naturally extended to the

k-linear mapping $\tilde{\varphi}:R\{X_{A}|R_{A}\rangle$ $arrow R\langle X_{B}|R_{B}\rangle$ (coefficient ring extension).

Thus

$\tilde{\varphi}(x_{\lambda})=\sum_{j=1}^{n}x_{j\lambda}s_{j}$ . (2)

Let $M_{\overline{\varphi}}=(y_{ji})$ denote the formal image of $1\psi_{\varphi}=(b_{ji})$ by the above

correspondence as ring homomorphism. Obviously, we have $detM_{\overline{\varphi}}\in R$ .

Put $f(x_{j\lambda})=detM_{\overline{\varphi}}$ .

Similarly, $\tilde{\varphi}(R_{A})$ is the set of all relations applied to the respective

relations in $R_{A}$ by $\tilde{\varphi}$ as ring homomorphism. Now let the relations among

$x_{j\lambda}’ s$ derived from $\tilde{\varphi}(R_{A})$ using $R_{B}$ be as follows:

$\{\begin{array}{l}f_{1}(x_{j\lambda})=0f_{r}(x_{j\lambda})=0\end{array}$

We have the polynomials $f_{1}(x_{j\lambda}),$ $\cdots$ , $f_{r}(x_{j\lambda})$ in $R$ . Now put $I=$

$(f_{1}, \cdots , f_{r})$ (the ideal in $R$ generated by these polynomials).

We say that $A\simeq B$ for an extension $(k’)$ if $k’\langle X_{A}|R_{A}\rangle\simeq k$
‘

$\langle X_{B}|R_{B}\rangle$

for some algebraic extension $k’$ of $k$ . Then we have:
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Theorem 2 (Isomorphism Test) $A\simeq B$ for an $extension\Leftrightarrow$

$f\not\in\sqrt{I}$ , where $\sqrt{I}=\{x\in R|\exists ns.t. x^{n}\in I\}$ .

Proof.
$A\simeq B$ for an extension $k’\Leftrightarrow$ both $\varphi(R_{A})$ under $R_{B}$ and $f\neq 0$ can be

satisfied in $k’$ (by Theorem 1)

$\Leftrightarrow$ there exist solutions of $I$ satisfying $f\neq 0$

$\Leftrightarrow\neg$ “every solution of $I$ is a solution of $f=0$“

$=\neg f\in\sqrt{I}$

(by Hilbert’s Nullstellensatz ([11]))

$\Leftrightarrow f\not\in\sqrt{I}$

$\blacksquare$

Corollary 1 When $k$ is algebraically closed, $A\simeq B\Leftrightarrow f\not\in\sqrt{I}$ .

4 Constant Elimination Technique

Before considering Gr\"obner basis methods, we show an efficient technique

for computing the determinant $detA’I_{\tilde{\varphi}}$ .

Theorem 3 (Determinant Property) $detM_{\overline{\varphi}}\in k[x_{j\lambda)}\cdot j\geq 2]$ .

Proof. First, from $\tilde{\varphi}(x_{\lambda})=\Sigma_{j=1}^{n}x_{j\lambda}s_{j}$ , the matrix $M_{\tilde{\varphi}}$ contains the column

vectors $(x_{1\lambda}, \cdots, x_{n\lambda})$ for all $\lambda’ s$ . Every element $t_{i}$ of $S_{A}$ is a k-linear com-

bination of monomials of $x_{\lambda}’ s$ in $R_{A}$ . Since the image by $\tilde{\varphi}$ of a monomial

of $x_{\lambda}’ s$ contains products between $x_{1\mu}$ and $\Sigma_{j=1}^{n}x_{j\lambda}s_{j}$ for some $\mu^{)}s$ and $\lambda’ s$ ,

the image of $t_{i}$ makes a column vector containing products between $x_{1\mu}$
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and $(x_{1\lambda}, \cdots, x_{n\lambda})$ for some $\mu’ s$ and $\lambda’ s$ . Conversely, all $x_{1\nu}’ s$ appearing

except in the first row vector derive from these products. Thus, by a

property of determinant, we can eliminate all these products and in the

new matrix, no $x_{1\nu}’ s$ appear except in the first row vector. Finally, since

the first column vector is $(1, 0, \cdots, 0)$ , the determinant can be calculated

without using any entry of the first row vector. $\blacksquare$

By this theorem, we can propose a technique for calculating $detM_{\overline{\varphi}}$

that we eliminate constant terms in the initial definition ((2), Section 3)

of $\tilde{\varphi}$ . That is,

[Constant Elimination Technique]

We assume that $\tilde{\varphi}$ is settled in the following manner:

$\tilde{\varphi}(x_{\lambda})=\sum_{j=2}^{n}x_{j\lambda}s_{j}$ . (3)

We want to stress, however, that this assumption is only valid for

computing $detM_{\tilde{\varphi}}$ and that we have to come back to (2) for develop-

ing $\tilde{\varphi}(R_{A})$ . In fact, there is not always an isomorphism such as (3) (see

Example in Section 2).

The elimination of constant terms makes it easier to compute $\tilde{\varphi}(t_{i})$

and $detM_{\tilde{\varphi}}$ .

5 Gr\"Obner Basis Method

In Section 3, we have reduced our problem into a radical ideal membership

problem. So we can consider two Gr\"obner basis methods. One method is

to compute the Gr\"obner basis of the radical directly and then to rewrite
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the determinant modulo this basis. However, in this paper, this rewriting

method will not be explained owing to limited space. See [10] for the

details.

We will apply another method as follows:

[Adjoining Method] Introduce a new indeterminate $t$ . Then, $A\simeq B$

for an $extension\Leftrightarrow 1\not\in GB$(( $I$ , tf–l)) in $R[t]$ .

Here $GB(J)$ denotes the (reduced) Gr\"obner basis of an ideal $J$ calcu-

lated by Buchberger Algorithm ([1], ALGORITHM 6.3). This method is

a well-known technique for the radical membership, based on an alterna-

tive description of Hilbert’s zero point theorem. In fact, the correctness

of it is shown by that “I and $f\neq 0$ in $R$ have a $soluti_{on}’$ )
$\Leftrightarrow(\zeta I$ and

tf–l in $R[t]$ have a solution”

We describe an algorithm based on the adjoining method.

Algorithm IT $(k;X_{A}, R_{A};X_{B}, R_{B})$ : Isomorphism Test

Input: Field $k$ ; two finite presentations $X_{A},$ $R_{A}$ ; $X_{B},$ $R_{B}$ .

Assumption: $dimA=dimB<\infty$ , where $A=k\{X_{A}|R_{A}\rangle$ and

$B=k\langle X_{B}|R_{B}\rangle$ .

Output: TRUE if $A\simeq B$ for an extension, otherwise FALSE.

Step 1: Find linear bases $S_{A}=\{t_{i}\}$ and $S_{B}=\{s_{j}\}$ .

Step 2: Define a k-linear mapping: $\tilde{\varphi}(x_{\lambda})=\Sigma_{j=1}^{n}x_{j\lambda}s_{j}$ , where

$X_{A}=\{x_{\lambda}\}$ and each $x_{j\lambda}$ is an indeterminate over $k$ . Put

$R=k[x_{j\lambda}]$ .

Step 3: Define a k-linear mapping: $\tilde{\varphi}^{*}(x_{\lambda})=\Sigma_{j=2}^{n}x_{j\lambda}s_{j}$ and

make the matrix expression $M_{\overline{\varphi}^{*}}$ of $\tilde{\varphi}^{*}$ under $S_{A}$ and $S_{B}$ .
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% Constant Elimination Technique

Step 4: Compute $f=detM_{\varphi^{*}}$ . % $detM_{\tilde{\varphi}}*=detM_{\overline{\varphi}}$ by Theo-

rem 3

Step 5: Construct the set of polynomials $\{f_{1)}\cdots, f_{r}\}$ which

consists of all coefficients of $\tilde{\varphi}(R_{A})$ (under the assumption that

$\tilde{\varphi}$ behaves as a ring homomorphism) w.r. $t$ . each basis in $S_{B}$ ,

using the relation $R_{B}$ . Put $I=(f_{1}, \cdots, f_{r})$ (the ideal in $R$).

Step 6: Compute $G_{\tilde{I}}=GB(\tilde{I})$ for the ideal $\tilde{I}=$ ( $I$ , tf–l) in

$R[t]$ , w.r.t. the purely lexicographical monomial ordering with

a variable ordering such that $t$ is the smallest.

Step 7: If $1\in G_{\overline{I}}$ then return FALSE otherwise return TRUE.

Remark The purely lexicographical ordering of monomials is appropriate

for finding an extension field such that $A$ and $B$ are isomorphic over

it. This is based on the well-known property that the lexicographical

Gr\"obner basis contains a univariate polynomial in the variable with the

smallest ordering. The variable ordering such that $t$ is the smallest may be

just heuristic for obtaining a univariate polynomial with minimal degree.

An example will be given later.

Let us give two examples of running IT, assuming that $k$ is an alge-

braically closed field, say $C$ , the field of complex numbers.

Example 1 Decide whether $A=k\langle x|x^{3}=x^{2}-1\rangle$ and $B=k\langle x,$ $y|x^{2}=$

$4x,$ $xy=yx=0,$ $y^{2}=3y\rangle$ are isomorphic.

Input: $c;\{x\},$ $\{x^{3}=x^{2}-1\}$
)

$\{x, y\},$ $\{x^{2}=4x, xy=yx=0, y^{2}=3y\}$ .

Output: TRUE.
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[Trace of IT]

Step 1: $S_{A}=\{1, x, x^{2}\}$ and $S_{B}=\{1, x, y\}$ .

Step 2: $\tilde{\varphi}(x)=a+bx+cy$ , where $a,$ $b,$ $c$ are indeterminates over $k$ .

$R=k[a, b, c]$ .

Step 3: $\tilde{\varphi}^{*}(x)=bx+cy$ , and we have $M_{\overline{\varphi}^{*}}=(\begin{array}{lll}1 0 00 b 4b^{2}0 c 3c^{2}\end{array})$ .

Step 4: $f=detM_{\varphi^{*}}=bc(3c-4b)$ .

Step 5: From $\tilde{\varphi}(x^{3})=\tilde{\varphi}(x^{2}-1),$ $I=(a^{3}-a^{2}+1,12ab^{2}+3a^{2}b+16b^{3}-$

$4b^{2}-2ab,$ $9ac^{2}+3a^{2}c+9c^{3}-3c^{2}-2ca$ ).

Step 6: $G_{\tilde{I}}=GB$ (( $I$ , tf-l)) $=\{a+9/25c^{2}+69/200ct+3/2c-9/25,$ $b-$

$27/100c^{2}-207/800ct-3/8c+1/50,$ $c^{3}-1/9c+23/324t,$ $t^{2}+144/23$} in

$k[a, b, c, t]$ , w.r.t. the purely lexicographical ordering with $a>b>c>t$ .

Step 7: TRUE since $1\not\in G_{\tilde{I}}$ .

Example 2 (non-commutative case) What about $A=k\langle x,$ $y|xy=$

$x,$ $yx=2y\rangle$ and $B=k\langle x, y|xy=x, yx=0, y^{2}=1\rangle$ ?

Input: $c;\{x, y\},$ $\{xy=x, yx=2y\};\{x, y\},$ $\{xy=x, yx=0, y^{2}=1\}$ .

Output: FALSE.

[Trace of IT]

Step 1: $S_{A}=\{1, x, y\}$ and $S_{B}=\{1, x, y\}$ .

Step 2: $\tilde{\varphi}(x)=a+bx+cy,\tilde{\varphi}(y)=a’+b’x+c’y$ . $R=k[a, b, c, a’, b’, c’]$ .

Step 3: $\tilde{\varphi}^{*}(x)=bx+cy,\tilde{\varphi}^{*}(y)=b’x+c’y$ . And $j\psi_{\tilde{\varphi}^{*}}=(\begin{array}{lll}l 0 00 b b’0 c c\end{array})$ .

Step 4: $f=detM_{\tilde{\varphi}^{*}}=bc’-b’c$ .
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Step 5: $I=(aa’+cc’-a$ , $ab’+ba’+bc^{l}-b,$ $ac’+ca’-c,$ $aa’+cc’-$

$2a’$ , $ab’+ba’+cb’-2b’,$ $ac’+ca’-2c’$ ).

Step 6: $G_{\tilde{I}}=GB$ (( $I$ , tf–l)) $=\{1\}$ in $k[a, b, c, a’, b’, c’t]$ , w.r.t. the

purely lexicographical ordering with $a>a’>b>b^{l}>c>c’>t$ .

Step 7: FALSE since $1\in G_{\tilde{I}}$ .

Furthermore, when $k$ is not algebraically closed, if two algebras are

isomorphic over an algebraic extension $k’$ of $k$ , then we can find $k’$ by

simply inspecting $G_{\overline{I}}$ (in Step 6 of IT). In Example 1, when $k$ is $Q$ , the

field of rational numbers, $t^{2}+144/23$ has no solution in $k$ . This implies

that $A\not\simeq B$ over $Q$ , since if $a,$ $b,$ $c$ (a solution of $I$ ) $\in Q$ , then $f\in Q$ and

hence $t=f^{-1}\in Q$ . From $G_{\overline{I}}$ , we can obtain the result that:

$Q(\sqrt{-23}, \alpha)\langle x|x^{3}=x^{2}-1\}\simeq Q(\sqrt{-23}, \alpha)\langle x, y|x^{2}=4x, xy=yx=0, y^{2}=3y\rangle$ ,

where $\alpha$ is a root of $x^{3}-1/9x+\sqrt{-23}/27=0$ .

Finally, let us note the decidability of the isomorphism problem.

Theorem 4 (Decidability) It is decidable rvhether two given finite-
dimensional commutative finitely presented algebras are isomorphic for
an extension.

Proof. The dimension of an underlying linear space is computable by

Gr\"obner basis method ([1], METHOD 6.6). If the dimensions of the two

algebras are not equal, return FALSE. Otherwise employ IT. All we need

to check therein is Step 1, i.e., to find the linear bases, but it is also pos-

sible by the same method (METHOD 6.6). $\blacksquare$

Remark In the non-commutative case, if finite (non-commutative) Gr\"obner
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bases are given for two given relations, it is decidable because the linear

bases and dimensions are computable by a method similar to METHOD

6.6.

6 Application

Here we want to claim the possibility of an application of IT to the

factorization or irreducibility modulo a polynomial ideal. It would be

interesting if we focus on the commutative case.

Given a polynomial ideal or and a polynomial $f$ in $k[x_{1}, \cdots, x_{n}]$ . Con-

sider two problems:

(a)Factorize $f$ modulo $\mathfrak{U}$ over $k$ .

(b)Decide the irreducibility of $f$ modulo ut over $k$ .

If there are an isomorphism $\varphi$ and a quotient algebra $k[t_{1}, \cdots, t_{m}]/\mathfrak{B}$

such that $\varphi$ : $k[x_{1}, \cdots, x_{n}]/\mathfrak{U}\simeq k[t_{1}, \cdots, t_{m}]/\mathfrak{B}$, then the factorization and

irreducibility are preserved under $\varphi$ : that is,

(l)if $f=f_{1}\cdots f_{r}mod \mathfrak{U}$ , then $\varphi(f)=\varphi(f_{1})\cdots\varphi(f_{r})mod \mathfrak{B}$ (and vice

versa); and

(2) $f$ is irreducible $mod \mathfrak{U}$ iff $\varphi(f)$ is irreducible $mod_{\mathfrak{B}}$ .

Therefore, as a candidate of the algebra $k[t_{1}, \cdots, t_{m}]/\mathfrak{B}$ , a “simpler”

form than the initial algebra $k[x_{1}, \cdots, x_{n}]/\mathfrak{U}$ , will be appropriate; at least,

it will be desirable if we can make $m$ as small as possible, compared with

$n$ . Clearly the situation that $m=1$ would be the best.

One strategy for solving the above problems is as follows:
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[Variable Reduction by Isomorphism]

(l)Find an isomorphism $\varphi$ and a quotient algebra $k[t_{1}, \cdots, t_{m}]/\mathfrak{B}$

such that $\varphi$ : $k[x_{1}, \cdots, x_{n}]/\mathfrak{U}\simeq k[t_{1}, \cdots, t_{m}]/\mathfrak{B}$ and $m<n$ , by

IT

(2) $Puth(t_{1}, \cdots , t_{m})$ $:=\varphi(f(x_{1}, \cdots, x_{n}))$ .

(3) $For(a)$ : investigate the irreducibility of $h$ modulo $\mathfrak{B}$ .

For (b): factorize $h$ modulo $\mathfrak{B}$ , say $h=h_{1}\cdots h_{r}$ . Then $f=$

$(\varphi^{-1}h_{1})\cdots(\varphi^{-1}h_{r})$ modulo $\mathfrak{U}$ .

Remark: In a quotient algebra, a linear polynomial may not necessarily

be irreducible. For instance, $x+3=(x^{2}+1)(-x^{2}+2)mod (x^{3}-x^{2}+1)$ .

Example: Given $\mathfrak{U}=(x^{2}-4x, y^{2}-3y, xy)$ in $c[x, y]$ and $f=7x^{3}+$

$6xy^{2}-9y^{2}-109x+29y$ . Then is $f$ irreducible $mod \mathfrak{U}$?

First of all, consider the quotient algebra $A=C[x, y]/\mathfrak{U}$ . In $A,$ $f=$

$3x+2y$ . By Example 1 in Section 5, we have $\psi=\varphi^{-1}$ : $A\simeq B=$

$c[z]/(z^{3}-z^{2}+1)$ , where $\varphi=(\begin{array}{llll}1 a a^{2}0 b 2ab +4b^{2}0 c 2ac +3c^{2}\end{array})$ and $a,$
$b$ , and $c$ are a

solution of (I, $tbc(3c-4b)-1$ ). It follows that $\psi(f)=1/D\{(-12b^{2}c+$

$9bc^{2}-2a^{2}c-6ac^{2})+(4ac+6c^{2})z-2cz^{2}\}$ , where $D=det\varphi=-4b^{2}c+3bc^{2}$ .

Since we can easily show that $c\neq 0,$ $\psi(f)$ is reducible in $B$ . Thus $f$ is

reducible $mod_{\mathfrak{U}}$ .

As the example shows, if the image in the algebra with one variable

is not linear over an algebraically closed field, then it is immediate that

the given initial polynomial is reducible.
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There may be other applications of IT (e.g. solving of algebraic equa-

tions), which will deserve some further detailed study.

7 Conclusion

We have proposed a Gr\"obner basis method for solving the isomorphism

problem for finitely presented algebras. As a result, we have obtained the

decidability in the commutative case. We hope that the isomorphism test

can be applied to the factorization or irreducibility modulo a polynomial

ideal.

We used REDUCE 3.3 on NEC PC-98 (BUG, Sapporo Japan) for

calculating Gr\"obner bases.
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