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ABSTRACT

For a class of Li\’enard equation, every solution curve turns out to be

non-algebraic. As an immediate corollary of it, the limit cycle of van
der Pol equation turns out to be non-algebraic. The paper contains one
more result, that is, the Bogdanov-Takens system turns out to have no
algebraic limit cycles.

\S 1. Li\’enard Equations.

Studying limit cycles has been an important topic in the theory of

Dynamical Systems since H.Poincar\’e first treated it. Van der Pol equa-
t\’ion is the most famous example of having a limit cycle, and Li\’enard

equation is known as a generalization of it. Cf.Chapter XI of [Le].
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The following are our result and its immediate corollary.

TfflOREM. If a polynomial system of Li\’enard equation

$\{\begin{array}{l}x=yy=-f(x)y-g(x)\end{array}$ (L)

satisfies (i) $f,$ $g\neq 0$ , (ii) $\deg f\geqq\deg g$ , and (iii) $g/f\neq constant$ , then

it has no algebraic solution curves.

COROLLARY. The system of van der Pol equation

$\{\begin{array}{l}x=vg=-\mu(x^{2}-1)y-x\end{array}$

, $\mu\neq 0$ ,
(P)

has no algebraic solution curves.
In particular, the limit cycle of it is not algebraic.

We say that a solution curve on the real plane is algebraic if it
is a portion of an algebraic curve. The algebraicity of limit cycles is
a very natural notion and it has been studied by several mathematicians.
Cf. Bibliography of [Ye]. The existence of non-algebraic limit cycle can
be shown by a result of A. Lins-Neto [Ne]. Nonetheless, no one had announ-
ced any concrete example of non-algebraic limit cycles.

If the system (L) does not satisfy the condition (ii), then it may
possibly have an algebraic limit cycle. Indeed, J.C.Wilson constructed

such an example. Cf. \S \iota }.

\S 2. Fundamental Lemma.
–

The following is a fundamental tool for studying the algebraicity

of solution curves.



29

LEMMA. If a solution curve of a polynomial system

$\{\begin{array}{l}x=p(x,g)y=q(x,y)\end{array}$ (2. 1)

is a portion of an irreducible algebraic curve $\Phi(x, y)=0$ , then there

is a polynomial $h$ ( $x$ , y) satisfying

$[p(x, y) \frac{\partial}{\partial x}+q(x, y)\frac{\partial}{\partial y}]\Phi(x, y)=h(x, y)\cdot\Phi(x, y)$ (2. 2)

Conversely, if (2.2) holds, then the algebraic curve is an invari-
ant curve of the system (2. 1).

PROOF. By differentiating the equation $\Phi=0$ by the time, we see that

the left-hand side of (2.2) is equal to zero on the algebraic curve. So

the left-hand side has $\Phi$ as a factor. Cf.Theorem $1\mathbb{I}\cdot 3.t$ of [Wa]. Hence

the first half is proved.

Conversely, if (2.2) holds, then we obtain

$\Phi(x^{t} y^{t})=\Phi(x^{0}, y^{0})\cdot\exp$ $[]_{0}^{t}h(x^{s}, y^{s})ds$ ]

for every solution $(x$ ‘, $y$
‘ $)$ . So the algebraic curve $\Phi=0$ is an invari-

ant curve. Hence the second half is proved. $\square$

By using the above lemma, the task of studying algebraic solution

curves of (2. 1) is transformed into that of solving (2.2).

\S 3. Proof of the Theorem.
–

To prove the theorem, we assume that a solution curve of the system

(L) is a portion of an irreducible algebraic curve $\Phi=0$ . Then, by using

the lemma, we obtain

$[h(x, y)-y\underline{\partial}+f(x)y\underline{\partial}+g(x)\underline{\partial}]\Phi(x, y)=0$ . (3. 1)
$\partial x$ $\partial y$ $\partial y$
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From now, we put

$\Phi(x, y)=\sum_{j=0}^{k}\Phi_{J}(x)y^{j}$ , where $\Phi_{k}(x)\neq 0$ ,

$h(x, y)= \sum_{j=0}^{\ell}h_{j}(x)y^{j}$ ,

$M=\deg f$ , and $N=\deg g$ .
Then, by comparing the coefficient of $y^{k+j}$ of (3. I), where $j$ runs from

1 to 2 in turn, we get

$h_{J}(x)=0$ for every $2\leqq j\leqq t$

Moreover, by comparing the coefficient of $y^{k+1}$ , we get

$h_{1}(x)\Phi_{k}(x)-\Phi_{k}’(x)=0$ .
So we obtain

$h_{1}(x)=\Phi_{k}’(x)=0$ .
Thus we attain

$h(x, y)=h_{0}(x)$ and

$\Phi_{k}(x)=constant$ .
By comparing the coefficient of $y^{j}$ of (3. 1) , we get

$-\Phi_{J-1}’+[h_{0}+jf]\Phi_{J}+(j+1)g\Phi_{j+1}=0$ . (3. 2)

(From now, we omit the variable $x$ to write easily.) Let an integer $m$

be the maximal degree of the polynomials $\Phi_{J}$ and an integer $n$ the maxi-
mal suffix attaining it. Then, by putting $j=n$ in (3.2), we get

$[h_{0}+nf]\Phi_{n}=\Phi_{n-1}’-(n+1)g\Phi_{n+1}$ . (3. 3)

Since the right-hand side is of degree less than $m+M-1$ , we obtain

$\deg[h_{0}+nf]<M$ and, therefore,

$\deg[h_{0}+jf]=M$ for every $j\neq n$ .
By putting $j=k$ in (3.2), we get

$\Phi_{k-1}’=[h_{0}+kf]\Phi_{k}$ .
Since $\Phi_{k}$ is a non-zero constant, we obtain

$\deg\Phi_{k-1}=M+1$ .
Similarly, by putting $j=k-1$ in (3.2) , we get

$\Phi_{k-2}’=[h_{0}+jf]\Phi_{k-1}+kg\Phi_{k}$ .
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So we obtain
$\deg\Phi_{k-2}=2(M+1)$ .

By repeating the procedure, we attain
$\deg\Phi_{k-j}=j(M+\rceil)$ for every $0\leqq j\leqq k-n$ . (3.4)

Thus, by putting $j=k-n$ to (3.4) , we get

$m=r(M+1)$ , where $\gamma=k-n$ .
By applying (3.4), we see that the right-hand side of (3.3) is of degree

at most $m-1$ . So we obtain

$h_{0}=-nf$ .
From now, we assume that $\Phi$ is normalized in a sense, that is,

$\Phi_{k}=1$ .
By putting $j=k$ to (3.2), we get

$\Phi_{k-1}’=rf$ .
By integrating it, we obtain

$\Phi_{k-1}=rF+R_{0}$ ,
where $F’=f$ . (From now, we denote by $R_{J}$ an unknown polynomial of

degree at most $j.$ ) Similarly, by putting $j=k-1$ to (3.2), we get

$\Phi_{k-2}’=\gamma(r-1)fF+(r-1)fR_{0}+kg$ .
By integrating it, we obtain

$\Phi_{k-2}=[r(r-t)/2]F^{2}+R_{M+1}$

By repeating the procedure, we attain
$\Phi_{k-f}=_{r}C_{j}F^{j}+R_{(j-1)}(M+1)$ for every $0\leqq j\leqq\gamma$ , (3.5)

where $rC_{J}=\gamma!/[j ! (r-j) !]$ .
By putting $j=n$ to (3.2), we get

$\Phi_{n-1}’=(n+1)g\Phi_{n+1}$ .
By putting (3.5) to it, we obtain

$\Phi_{n-1}’=\gamma(n+1)gF^{r-1}+R_{tn-M-2}$ . (3.6)

On the other hand, by putting $j=n-1$ to (3.2) , we get

$\Phi_{n-1}=[ng\Phi_{n}-\Phi_{n-2}’]/f$ .
By putting (3.5) to it, we obtain

$\Phi_{n-1}=[ngF^{k}+R_{m-1}]/f$ .
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By differentiating it, we obtain
$\Phi_{n-1}$ $’=[nfg’F^{r}+\gamma nf^{2}gF^{r-1}-nf’gF^{r}+R_{m+M-2}]/f^{2}$ .

(3.7)

By using (3.6) and (3.7), we attain
$\gamma f^{2}gF^{r-1}+n[f’g-fg’]F^{r}=R_{m+M-2}$ .

By comparing the term of the maximal degree, we get

$r(M+1)+n(M-N)=0$ .
Since the second term is not negative, we get

$m=\gamma(M+1)=0$ .
So we see that $\Phi$ has $y$ as a single variable. Since $\Phi$ is irreducible,

we obtain

$\Phi=y+C$

where $C=constant$ . Thus, by putting it to the system (L) , we attain

$g/f=C$ .
Hence we finish proving. $\square$

\S 4. Unsolved Problem.
–

In connection with our theorem, we wish to introduce an example of

J.C. Wilson [Wi].

EXAMPLE. The following system of Li\’enard equation

$\{\begin{array}{l}x=yy=-\mu(x^{2}-1)y-(ll^{2}/16)x^{3}(x^{2}-4)-x,0<|\mu|<2\end{array}$ (W)

has the following algebraic curve as a limit cycle

$y^{2}+(\mu/2)x(x^{2}-4)y+(x^{2}-4)$ [ $(\mu^{2}/16)_{X^{2}}(x^{2}-4)$ 十 $1$ ] $=0$ .

The above statement can be confirmed by applying the second half of
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the lemma. Incidentally, we obtain
$h(x, y)=-(\mu/2)x^{2}$ .

When $|\mu|\geqq 2$ , the algebraic curve turns out to have a singularity, and

so it can not be a limit cycle.

The polynomials $f$ and $g$ of the system (W) are of degree two and

five respectively, therefore, there is a gap between our theorem and the

example. So we wish to propose the following to bridge the gap.

CONJECTURE. Even if the system (L) satisfies $2\deg f\geqq\deg g>\deg f$ , it
has no algebraic limit cycles.
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\S 5. APPENDIX-The Bogdanov-Takens System.

The proposed problem in \S 4 is difficult to answer. In this section,

we give an answer of the problem in case of $\deg f=1$ and $\deg g=2$ . In

this case, by transforming the variables $(x , y, t)$ , the system can be

rewritten into the following form

$\{\begin{array}{l}x=yg=/1_{1}+\mu_{2}y+x^{2}+xy\end{array}$ (BT)

The above system is called Bogdanov-Takens system in Bifurcation Theory.

The system can possibly have a single limit cycle if the coefficients
$\mu_{1}$ , $\mu_{2}$ satisfy a suitable condition. Cf. \S 7.3 of [GH] and [LRW].

The following is our result in this section.

THEOREM. The Bogdanov-Takens system (BT) has no algebraic limit cycles.

PROOF. To prove the theorem, we assume that the system (BT) has an alge-

braic limit cycle. Before we begin the proof, we remark that the system

(BT) can be transformed into the system

$\{\begin{array}{l}x=y-xy=-f(x)g-g(x)\end{array}$ (5-1)

where

$f(x)=x+Co$ and

$g(x)=d_{1}x+d_{0}$ .
Since the system (BT) has an algebraic limit cycles, so does the system

(5-1). Since the region surrounded by the limit cycle must contain a
singularity, we can assume without loss of generality that the origin is
a singularity, $i.e$ . $d_{0}=0$ , surrounded by the limit cycle.
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We denote by $\Phi=0$ the algebraic limit cycle. Then, by using the

lemma, we obtain

$[h(x, y)-y \frac{\partial}{\partial x}+x\frac{\partial}{\partial x}+f(x)y\frac{\partial}{\partial y}+g(x)\frac{\partial}{\partial y}]\Phi(x, y)=0$ .

(5-2)

From now, we will proceed with the proof by using the same notation and

method as in \S 3. By comparing the coefficient of $y^{j}$ of (5.2), we get

$-\Phi_{J-1}’+x\Phi_{J}’+[h_{0}+jf]\Phi_{j}+(j+I)g\Phi_{j+1}=0$ . (5-3)

By using the same method of \S 3, we attain

$m=2r$ and

$h=-nf-2r$
Since the algebraic curve $\Phi=0$ is not a straight line, we obtain

$m=2r\neq 0$ .
As in \S 3, we assume

$\Phi_{k}=1$ .
By putting $j=k$ to (5-3) , we get

$\Phi_{k-1}’=\gamma f-2\gamma$ .
So we obtain

$\Phi_{k-1}=rF-2rx+R_{0}$ ,

where $F’=f$ . Similarly, by putting $j=k-1$ to (5-3), we get,

$\Phi_{k-2}’=r(r-1)fF-3r(r-1)x^{2}+R_{1}$ .
So we obtain

$\Phi_{k-2}=[r(r-I)/2]F^{2}-r(r-1)x^{3}+R_{2}$ .
By repeating the procedure, we attain

$\Phi_{k-j}=_{r}C_{J}F^{j}-2^{2-j}j{}_{r}C_{j}x^{2}tj-1)$ $”+R_{2}$ (j-1) for every $0\leqq j\leqq\gamma$ ,
(5.4)

where , $C_{j}=\gamma!/[j ! (r-j) !]$ .
By putting $j=n$ to (5-3), we get

$\Phi_{n-1}’=x\Phi_{n}’-2r\Phi_{n}+(n+1)g\Phi_{n+1}$ .
By putting (5-4) to it, we obtain

$\Phi_{n-1}$ $’=\gamma xfF^{r-1}-2rF^{r}+\gamma(n+1)gF^{r-1}+2^{2-r}\gamma x$ $”-1+R_{m-2}$ .
(5-5)
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On the other hand, by putting $j=n-1$ to (5-3), we get

$\Phi_{n-1}=[ng\Phi_{n}+x\Phi_{n-1}’-\Phi_{n-2}’]/[f+2r]$ .
By putting (5-4) to it, we obtain

$\Phi_{n-1}=[ngF^{r}+R_{m}]/[f+2r]$ .
By differentiating it, we obtain

$\Phi_{n-1}$ $’=[nfg’F^{r}+\gamma nf^{2}gF^{r-1}-nf’gF^{r}+R_{m}]/[f+2r]^{2}$ .
(5-6)

By using (5-5) and (5-6), we attain

$\gamma[g+xf-2F+2x]f^{2}F^{r-1}+n[f’g-fg’]F^{r}=R_{m}$ .
By comparing the term of the maximal degree, we get

$d_{1}-c_{0}+2=0$ .
So, by using the lemma, we can easily confirm that the algebraic curve

$y+(1/2)x^{2}+(c_{0}-2)x=0$

is an invariant curve of the system (5-1). Clearly, the curve must get

across the limit cycle. It is a contradiction. Thus the system (BT) has

no algebraic limit cycles. Hence we finish proving. $\square$
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