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Abstract

First, a neural network model as the Globally Coupled Map (GCM) is proposed.
The model is obtained by modification of a Hopfield network model that has a
negative self feedback connection. Secondly, information processed by this modei
is interpreted in terms of the variety of the maps acting on the network elements,
and a new, dynamic information processing model is described. The search for
information using vague keywords, and solution of the traveling salesman
problem $(TSP)$ are introduced as applications.

1. Introduction

Recently, artificial neural networks based on the high-grade and complicated
information processing ability of the brain are being studied and developed.
Typical models are the Hopfield network [1] [2], and the back-propagation
learning network [3]. These networks consist of very simple single neuron
models.

Aihara proposes a chaotic neural network model [4] that comprises a neuron
model with chaotic response; this neuron model is a modified Nagumo and Sato
neuron model [5]. Tsuda further proposes neural network models that use
dynamical systems that have assigned probability being implemented. These
models are based on observations of the cerebral cortex column structure [14]
[15].

Conversely, Kaneko proposes Globally Coupled Map, GCM systems; GCM
systems consist of chaotic elements that are globally coupled. He has investigated
their dynamic behavior and information processing ability thoroughly $[6]-[10]$ .

We consider a neural network model as one class of GCM system that is
composed of single neurons (l-dimensional maps) having a chaotic attractor.
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In this paper, first, as the concrete model of the same neural network, we
propose a difference model of the Hopfield network that has a negative self
feedback connection. Secondly, from a consideration of this model as a GCM, we
describe a new, dynamic information processing model that uses single neurons
having various attractors. Finally, we introduce two engineering applications
using the information processing ability. The applications are the location of
information by vague keywords, and solution of the traveling salesman problem
(TSP).

2. The neural network model as a GCM

A typical neural network mathematical model is proposed by Hopfield [2]. The
model is given by

$\frac{du_{i}}{dt}=\sum_{j=1}^{M}T_{ij}v_{j}-\frac{u_{i}}{R}+I_{i}$

(1)

with
$v_{i}=g(u_{i})=\frac{1}{2}\{1+\tanh(\frac{u_{i}}{2\alpha})\}$

(2)

where, ui is the input of neuron $i(i=1, \ldots, M)$ at continuous time $t$ , vi $(0<Vi<1)$ is
the output of neuron $i,$ $L$ is the threshold value of neuron $i$ , Tij is the synaptic
connection of neuron $j$ lj $=1,$ $M$ ) to neuron $i,$ $R(>0)$ is the damping constant
of the input and $\alpha(>0)$ is the gain constant of the function $g$ .
If we assume that eq. (1) $-(2)$ has the negative self feedback connection Tii $(=- T$ ,

$T>0)$ , then take the difference equation version of eq. (1) $-(2)$ by Euler$|s$ method
with the difference step $\triangle t$ , we obtain a neural network model which is in the
form of a GCM. The model is defined by,

$P:(n+1)=F_{q_{i}(n)}\{p_{i}(n)\}$ , (3)

$q_{i}(n)=\frac{1}{T}\{\sum_{j\neq i}^{M}T_{ij}p_{j}(n)+I_{i}\}$

(4)

with
$F_{q}\langle p)=rp+(1- r)[1-\frac{1}{2}\{1+\tanh(Li)\}]2^{-}\beta$

, (5)

where pi(n) $(0<pi(n)<1)$ is the intemal buffer of neuron $i$ at the discrete time $n$ ,

the parameter $r(0<r<1)$ and $\beta(>0)$ are given by,
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$r=(1-\frac{\triangle t}{R})$

(8)

$\beta=\frac{\alpha}{RT}$. (9)

The input and the output of neuron $i$ at the discrete time $n$ are calculated by,

$u_{i}(n)=RT\{q_{i}(n)- p_{i}(n)\}$ ,
$v_{i}(n)=g\{u_{i}(n)\}$ .

$(6)(7)$

This neural network model eq. (3) $-(5)$ is equivalent to the Hopfield network
model eq. (1) $-(2)$ with small self feedback connection. It can also be shown to be
equivalent to the chaotic neural network proposed by Aihara [4] by a simple
variable transformation.

When the synaptic connection Tij is given by-T $\delta$ ij ( $\delta$ ij is Kronecker$|s$ delta.),
qi(n) becomes the following expression:

$q_{i}(n)=\frac{I_{i}}{T}=q_{i}$

(10)

From eq. (10), eq. (3) is transformed to the following simple l-dimensional map:

$p_{i}(n+1)=F_{Qi}\{p_{i}(n)\}$ , (11)

where qi is the control parameter. Behavior of the single neuron $i$ can be
described by this l-dimensional map eq. (11).

Comparing eq. (3) and (11), and eq. (4) and (10), the model eq. (3) $-(5)$ is
recognized to be one class of GCM systems. The characteristic of the class is that
the local variable is transformed by a nonlinear map and connected to other
variables through the control parameter of the map. That is, in our neural
network model eq. (3) $-(5)$ the map Fqi $\prime_{l}0$ that is a nonhnear transformation from
pi(n) to pi $(n+1)$ is decided by pj (n) $(j\neq:)$ at each discrete time $n$ .

3. Behavior of the single neuron $i$

As previously stated, behavior of the single neuron $i$ is defined by the 1-
dimensional map eq. (11). In this section, after discussing the characteristics of
eq. (11) as a l-dimensional map, we shall describe the role of the control
parameter qi in the neural network model eq. (3) $arrow(5)$ .

Figure 1 shows examples of Fq $i$ for a few qi, and figure 2 shows their
trajectories. Figure 3 shows the bifurcation diagram for qi and the Lyapunov
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exponent $\lambda:$ .

-Figure 1-
-Figure 2-
-Figure 3-

From figure 1, broadly speaking, we find that the l-dimensional map Fqi
consists of two parallel, positive slope straight lines,

$p_{i}(n+1)=\cdot rp_{i}(n)+(1- r)$ , (12)
$p_{i}(n+1)=rp_{i}(n)$ , (13)

and a negative slope curved line interpolating these lines. The slope $r$ of eq. (12)
and (13) is between $0$ and 1. The curved line has a local slope of less than-l at
the midpoint which is at (qi, $rqi+(1- r)/2$).

It is clear from the definition of the Lyapunov exponent, that when the
trajectory of pi(n) is generated solely by the map eq. (12) and (13), it is not
chaotic behavior (see figure 2 $a,$ $c,$ $d,$ $f$ and g). When the straight and the curved
lines are used as the map, however, the trajectory of pi(n) can be chaotic (see

figure 2 $b$ and e). The map Fqi can generate a chaotic trajectory of pi(n) due to
the above-mentioned negative slope curved line.
The parameter qi controls the position of this curved line on the coordinate axis

pi(n). Therefore, the behavior of pi(n) becomes chaotic, periodic and fixed
according to the value of qi (see figure 3). Table 1 shows the character of Fqi for
different ranges of qi.

-Table 1-

Here, we can estimate the behavior of each neuron $i$ in the model eq. (3) $-(5)$

with figure 1-3. We can therefore deduce the next fact.
In the case of the single neuron $i$ , Fqi is a map independent of time. So Fqi

causes only one nonlinear transformation. However, since map $F_{qi}(n)$ is changes
with time in the neural network, it is possible that $F_{q\iota(n)}$ induces various nonlinear
transformations (for example, figure 1 a at the time $n$ , figure 1 $b$ at the time $n+1$

and so on). Namely, since the single neuron $i$ connects with other neurons $j$ , Fqi
changes to various maps $F_{q}:\omega$ .
We have found the meaning of the connection (the neural network) at this point.

Now, we can propose a new information processing model using the variety of
$F_{qt(n)}$ .



116

4. Behavior of the neural network

As described in the section 3., the meanuing of the neural network model eq. (3) $-$

(5) as the GCM lies in the variety of maps $F_{q\mathfrak{i}}\omega$ .
In this section, after discussing the way CAM (Content-Addressable Memory),

proposed by Hopfield, [1] [2] uses just two types of the various maps $F_{qi(n}$), we
shall describe a dynamic information processing model that uses a greater variety
(fixed, periodic and chaotic) of maps Fq$i(n)$ .

4.1. The variety of maps Fq $:(n)$ in the CAM

Suppose that the synaptic connection Tij is symmetric $(Tij=T_{J^{i}})$ and the self
feedback connection Tii is zero (Tii $=0$). Hopfield shows that in this case the
model eq. (1) $-(2)$ behaves in such a way that the energy function decreases [2].
The energy function is defined by

$E=-\frac{1}{2}\sum_{i=1}^{M}\sum_{j=1}^{M}T_{ij}v_{i}v_{j}-\sum_{i=1}^{M}I_{i}v_{i}+\frac{1}{R}\sum_{i=1}^{M}\int_{2}\perp^{v_{1}}garrow 1(v)dv$

(14)

where, the synaptic connection Tij is given by the following method with the
vector patterns $V^{s}(=\{V^{s_{1}}, V^{s_{M}}\}, s=1, N)$ ;

$T_{ij}=\sum_{\Leftarrow 1}^{N}(2V^{s_{i}}- 1)(2V^{s_{j}}- 1)$

(15)

From eq. (15), each vector pattern $V^{s}$ can correspond to a minimum value of the
energy function eq. (14) [1]. Hopfield proposed that the model eq. (1) and (2) be
used for the associated memory by regarding each vector pattem $V^{s}$ as the
content of memory. He named the information processing model CAM.

Our neural network rnodel eq. (3) $-(5)$ can achieve CAM by using a small self
feedback connection. Then, how does the action of the variety of maps Fq $i(n)$

decide the trajectory of $pi(n)$ at the discrete time $n$ .

-Figure 4-

For the purpose of simulation, we construct the model eq. (3) $-(5)$ of $M=16$
neurons that are defined by the l-dimensional map eq. (11). The synaptic
connection Tij is decided by eq. (15) with three orthogonal vector patterns (see
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figure 4). Now we shall investigate the behavior of the model eq. (3) $-(5)$ that has
the small self feedback connection $T(=1)$ .

Figure 5 shows the trajectories of the internal buffer $P^{2(n)}$ and ps(n). Figure 6
shows that the maps $F_{q}2\omega$ and $F_{qs(n)}(n=1, 4)$ decide their trajectories. Figure
7 shows how the behavior of $q(n)(=\{ql(n), qM(n)\})$ decides the variety of Fq
$:(n)$ .

-Figure 5-
-Figure 6-
-Figure 7-

From figure 5-7, in the case of recall of the vector pattern $F,$ $F_{qi1(n)}$ (il $=2,3$ ,
4, 5, 9, 10, 11, 13) converges to a map that is approximated by eq. (12) at the
time $n(=4)$ ;

$p_{i}(n+1)-rp_{i}(n)+(1- r)$ , (16)

and the trajectory of $p:1(n)$ is driven into 1. Also, Fq $D(n)(iO=1,6,7,8,12,14$,
15, 16) converges to a map that is approximated by eq. (13) at the time $n(=1)$ :

$p_{i}(n+1)-rp_{i}(n)$ , (17)

and the trajectory of pio(n) is driven into $0$ .
The reason why the variety of $Fqi(n)$ are described by just eq. (16) and (17) is

that the self feedback connection $T$ is small in eq. (4). The variable qi(n) goes out
of the region $(0<q:(n)<1)$ that has the variety of $Fqi(n)$ (see figure 7).

4.2. Dynamic information processing model using the variety
of maps $Fqi(n)$

As explained in 4.1, we can interpret the CAM as a skillful information
processing model usingjust two maps eq. (16) and (17) in the variety of maps $F_{qi}(n)$ .

Here, we propose a dynamic information processing model that uses a greater
variety of maps.

First, when pi(n) is transformed by the l-dimensional map Fqi eq. (11), we put
the control parameter qi to the following expression:

$q_{i}=\frac{I_{i}}{T}=0.09$

(18)

Then, we can set pi(n) to the chaotic behavior (figure 2 b) independent of the self
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feedback connection T.
Secondly, we construct the model eq. (3) $-(5)$ that has the synaptic connection

$Tij$ . The synaptic connection Tij is defined by eq. (15) with three orthogonal
vector patterns $C,$ $F$ and 4.
Finally, we need a method to determine the self feedback connection T. The self

feedback connection $T$ is chosen in such a way that variable qi(n) exists between $0$

and 1.
Generally, the vector pattem which is recalled by the model eq. (3) $-(5)$ at the

discrete time $n$ is tecognized by the output vi(n) of neuron $i$ . The output is
calculated by eq. (6) $-(7)[2][4]$ . In contrast to this, we recognize the vector
pattern by the variable qi(n) that decides the variety of $Fqt(n)$ . Our focus is not the
actual activity vi(n) but the virtual activity qi(n), namely, the variety of nonlinear
transformations. If we take small self feedback connection, the actual activity
vi(n) just obeys the virtual activity qi (n).

The vector patterns $C,$ $F$ and 4 that are stored as the memory have a
characteristic structure; the structure is that there are equal numbers of 1 and $0$ .

From now on, the vector pattem $\phi(n)(=\{\phi_{1}(n), \ldots, \phi_{M}(n)\})$ that is recalled
by the model eq. (3) $-(5)$ in the virtual level is obtained by dividing the variety of
$Fq\mathfrak{i}(n)$ into two, equal parts. The method of division is the following simple coding
using the mean of qi(n):

$\phi(n)=\{q_{i}(n)\geq\overline{q}arrow 1$
,

$q_{i}(n)<\overline{q}arrow 0$ (19)

with

$\overline{q}=\lim_{narrow\infty}\frac{1}{nM}\sum_{k=0}^{n- 1}\sum_{i=1}^{M}q_{i}(k)$

(20)

Figure 8 shows the Lyapunov spectrum $\lambda(=\{\lambda 1, \ldots, \lambda M\})[11]$ for a range of
values of the self feedback connection $T(10<T<21)$ .

-Figure 8-

From figure 8, the Lyapunov spectra that have positive maximal Lyapunov
exponent are classified into three types. The three types are the following $(a)-(c)$ :

(a) large flat structure
(b) smooth continuous structure
(c) partially flat structure

Next, we select typical values of $T$ corresponding to types $(a)-(c)$ and study the
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behavior of the model eq. (3) $-(5)$ there.

(a) large flat structure $(T=13.1)$

Figure 9 shows behavior of variable $q(n)=$ {ql(n), ..., $qM(n)$ } (we call these
Kaneko plots $[6]-[8].$), the vector pattern $\phi(n)=\{\phi_{1}(n) ,..., \phi_{M}(n)\}$ that is
recalled in the virtual level and the precision $(1/p=10^{-4})$ dependent cluster
number $k^{p}(n)[7]$ that means the effective degrees of freedom for $q(n)$ .

-Figure 9-

In figure 9, the variable $q(n)$ is separated into two groups and has almost
peridic osciUation (maximal Lyapunov exponent $\lambda 1^{-}0.2$ , Lyapunov dimension
[12] $D\lambda-6$).

Thus, the variety of $F_{qt}tI0$ is classified into two types, the vector pattern $\phi(n)$

becomes only vector pattern $F$ and the cluster number $k^{p}(n)$ takes the constant
value $(=8)$ independent of the time $n$ .

Many other attractors that recall other vector patterns ($C,$ $4$ and so on) are
obtained with different initial condition $p(O)=t_{P^{1}}(0),$

$\ldots,$
$pM(0)$ }. However,

their behavior is similar.

(b) smooth continuous structure $(T=15)$

Figure 10 shows behavior of $q(n),$ $\phi(n)$ and $k^{p}(n)$ .

-Figure 10-

In figure 10, the variable $q(n)$ separates into various groups, almost merge
again to one group and then separates again into other groups, and so on
repeatedly. The behavior is complicated and irregular (maximal Lyapunov
exponent $\lambda 1^{-}0.5$ , Lyapunov dimension $D\lambda-15$).

As the result, the Fq $j(n)$ has innumerable types that are decided by chaotic
trajectory of qi(n), in the variety of $F_{q\iota(n)}$ is generated by chaos, the vector
pattern $\phi(n)$ becomes a nonperiodic time series visiting all pattems $C,$ $F,$ $4,$ $\underline{C},\underline{F}$,
$\underline{4}$ ($-is$ reversed pattern) and the cluster number $k^{p}(n)$ , nonperiodic, fluctuates
between about 9 degrees of freedom, and about 13 degrees of freedom.

Although changing initial condition $p(O)$ , dose not change the fact that all
patterns are recalled in a nonperiodic time series, we find there are many
attractors that have a different recall-frequency of each vector pattem.

(c) partially flat structure $(T=17.2)$
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Figure 11 shows behavior of $q(n),$ $\phi(n)$ and $k^{p}(n)$ .

- Figure 11 -

In figure 11, the variable $q(n)$ is almost periodic in the way that it repeatedly
merges almost into one group only to separate again into various groups
(maximal Lyapunov exponent $\lambda_{1^{\sim}}0.2$ , Lyapunov dimension $D\lambda\sim 7$ ).
The variety of $F_{qi}\emptyset$ is classified into six types, the vector pattern $\phi(n)$ becomes

the periodic time series visiting $C,$ $4$ , and $\underline{F}$, and the cluster number $k^{p}(n)$ takes
the constant value $(=9)$ almost independent of the time $n$ .

With change the initial condition $p(O)$ we find many attractors that have
different periods and recall pattems.

We have described the dynamic behavior of the model eq. (3) $-(5)$ for the
typical three values of self feedback connection T. In particular, behavior of case
(b) may be related with $\uparrow Chaotic$ Itinerancy“ [6] [13] [14] [15], an expected
universal phenomenon in chaotic dynamical systems that have a great deal of
freedom.

5. Applications for the dynamic information processing model

The dynamic information processing model, is network model eq. (3) $-(5)$ plus
the coding and parameter selection described in section 4, has various
information processing abilities due to the use of$\cdot$ the variety of maps $F_{q1}\omega$ In
this section, we introduce two concrete, applied examples as follows:

(a) the search for information using vague keywords,
(b) solution of the TSP.

5.1. The search for information using vague keywords

The information (reference information) memorized in the database of a
computer is searched for by the input of associated keywords. When we search
for the information, the associated keywords must be specific. The more
information there is stored in the database, the more detailed the keyword
instructions need be. The procedures which specify these keywords become
increasingly difficult.

Conversely, if the access information is vague, it is difficult to specify
keywords adequately. Suppose one inputs a wrong keyword, reference systems
that are not user-friendly say $\uparrow\uparrow nothing^{t}$ in the worst case, although information
exists within the system.
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The search for information using vague keywords, using the information
processing ability of th\‘e model eq. (3) $-(5)$ aims to solve the two difficult
problems mentioned above. A search procedure using an optical system with
chaos also has been reported [16].

We set behavior of the model eq. (3) $-(5)$ to the situation in 4.2. (b). Here the
reference information is six vector pattems ($C,$ $F,$ $4,$ $\underline{C},$ $arrow F$ J.

The keywords $k(=\{k1, kM\})$ are input by control parameter qi eq. (18) as
follows:

$q_{i}=\frac{I_{i}}{T}=\{0090..08arrowarrow k_{i}^{i}=||noth\dot{m}g^{lt}k=0,$

,

$0.10arrow k_{i}=1$ (21)

From eq. (21), the model eq. (3) $-(5)$ behaves like 4.2. (b) under conditions that
no keywords $k$ are input.

We investigate behavior of the model eq. (3) $-(5)$ when keywords $k$ are input.
Figure 12 shows two keywords $k$ that have been input. Figure 13 shows behavior
of the variable $q(n)$ and the vector pattem $\phi(n)$ .

-Figure 12-
- Figure 13 -

When the vector pattem $C$ is given as keyword, the variable $q(n)$ behaves
similar to 4.2. (a) and the vector pattem $\phi(n)$ becomes $C$ only (maximal

Lyapunov exponent $\lambda$ 1\sim -0.2).
In this case, when keyword $k$ is given, the model eq. (3) $-(5)$ switches from

chaotically moving around all the information, to outputting necessary
information only (chaotic search process). Therefore, the model eq. (3) $-(5)$ has
the ability to search for information. This behavior is similar to that observed in
experiments by Freeman [17].

When we input the keyword $k$ that is two Hamming distances away from the
information $C$ , the variable $q(n)$ behaves similar to 4.2. (b) and the vector
pattem $\phi(n)$ visits all stored pattems (maximal Lyapunov exponent $\lambda 1^{-}0.3$ ,

Lyapunov dimension $D\lambda-13$ ).

We notice though that information $C$ is recalled the most. It shows that the
information $C$ has the shortest Hamming distance to the keyword $k$ . When we
input keywords $k$ , corresponding to pattems which are not stored in the network
unhelpful reference systems say $|\mathfrak{l}nothing^{\prime t}$ . However, this model switches to
chaotic search and the information closest to the keywords $k$ is recalled most
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frequently. As a result, we obtain substitute information.
We investigated situations where one keyword $k$ is given that has the same

Hamming distance to information $C$ and $F$ , and we obtained the result that $C$ and
$F$ are recalled the most frequently.

In this section we showed examples of search for iMformation using vague
keywords. Although they are on a very small scale, for the total information
amounts to only six pieces, the search ability of the model eq. (3) $-(5)$ is expected
to solve the two information access problems mentioned at the begimung of the
section.

5.2. Solution of the TSP

The TSP is defined as the task of the salesman visiting all the $N$ cities on his list
once and once only, and retuming to his starting point after traveling the
minimum possible distance. That is a classic combinatorial optimization problem
(NP complete).

Hopfield proposes a solution with high speed and good approximate accuracy
for the TSP using the model eq. (1) $-(2)$ , and he shows an example solution using
a concrete number $N(=10)$ of city coordinate values. We can also solve the TSP
by the model eq. (3) $-(5)$ .

First of all, the expression for the solution of the TSP uses the same method
proposed by Hopfield (neurons arranged in $N\cross N$ grid patterns, the visiting
order $N$ indicated by lateral position, the city names $N$ indicated by longitudinal
position, so each neuron is expressed by the suffix.of city name $i,$ $j=1,$ $\ldots,$

$N$ and
the suffix of visiting order $k,$ $1=1,$ $N$).

Next, after this expression, the estimation function $E(n)$ is decided by the
constraint term $E1(n)$ and the total path length term E2(n) as follows:

$E(n)=\frac{1}{2}\{AE_{1}(n)+BE_{2}(n)\}$
(22)

where A and $B$ are positive constants, the constraint term $E\iota(n)$ is defined by,

$E_{1}(n)=\sum_{i=1}^{N}\{\sum_{k=1}^{N}v_{ik}(n)- 1\}^{2}+\sum_{k=1}^{N}\{\sum_{i=1}^{N}v_{ik}(n)- 1\}^{2}$

(23)

and the total path length term E2(n),

$E_{2}(n)=\sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{k=1}^{N}d_{ij}v_{ik}(n)\{v_{jk+1}(n)+v_{jk- 1}(n)\}$

(24)
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where $v:k(n)$ is the output of each neuron ik at the discrete time $n$ , dij is the
constant value of distance from the city $j$ to $i$ , vio(n) $=viN(n)$ and $ViN+1(n)=Vil(n)$ .

From eq. (22)-(24), the synaptic connection $T:kjl$ and the threshold value $L_{k}$ of
the model eq. (3) $-(5)$ to solve for the TSP are decided by,

$T_{ikj1}=- A$ { $\delta$ ij(1 $-\delta_{k1})+\delta_{k1}(1-\delta_{ij})$ } $- Bd_{ij}(\delta_{1k+1}+\delta_{1k- 1})$ , (25)

$I_{ik}=A$ . (26)

We solve the TSP of $N=10$ cities by controlhng the self feedback connection $T$

by the model eq. (3) $-(5)$ that is composed of $M=100$ neurons.
The city coordinate values use Hopfield’s original data [19] (see figure 14). The

constant values A and $B$ are both 1 in eq. (25) and (26).

The solution for the TSP is obtained from the following vector pattem $\phi(n)$

$(=\{\emptyset 11(n), \ldots, \phi_{NN}(n)\})$ that is recalled in the virtual level:

$\phi_{ik}(n)=\{q_{ik}(n)\geq q(n)\simarrow 1$
,

$q_{ik}(n)<q(n)\simarrow 0$ , (27)

where $\sim q(n)$ is the tenth value of $qik(n)$ in order of decreasing size at each time $n$ .
Figure 14 shows city coordinate values and the best three routes of travel.

Figure 15 shows the solution abilities of the Hopfield model eq. (1) $-(2)$ (using the
method of slowly increasing the gain constant to get the best performance) and
the model eq. (3) $-(5)(T=1.3)$ .

Here, the initial condition $p(O)(=\{P^{l1(0)}, ..., pNN(O)\})$ is chosen by
independent random numbers, so that the constraint term eq. (23) becomes $0$ .
The cut off time for solution is 1000.

-Figure 14-
-Figure 15-

Each circle graph in figure 15 shows the recall-frequency of the best route, the
second, the third, and other good routes and the bad routes (eq. (22) $\neq 0$ )

obtained with 1000 different initial conditions $p(O)$ . The model eq (3) $-(5)$ always
visits the best route within $200-300$ steps. Clearly, the solution ability of the
model eq (3) $-(5)$ is better than eq. (1) $-(2)$ .
Figure 16 shows behavior of the variable $q(n)$ and the estimation function $E(n)$

with the vector pattem $\phi ik(n)$ substituted for the output $Vik(n)$ in eq. (23) when
the best route is recalled by the model eq. (3) $-(5)$ .
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-Figure 16-

In figure 16, the search for the solution of the TSP is divided into two
processes, one is transient search by strong chaotic state $(D\lambda-10)$ , the other is
recall by weak chaotic state $(D\lambda\sim 3)$ .

This is similar to the behavior of the model eq. (3) $-(5)$ on conditions that the
correct keywords are input in 5.1. This is a characteristic of the model eq. (3) $-$

(5) when it is applied to solution of the TSP.

6. Summary and Discussion

After we supposed that the Hopfield network model eq. (1) $-(2)$ has a negative
self feedback connection, and took the difference equation version of eq (1) $-(2)$

by Euler’s method, we obtained the neural network model eq. (3) $-(5)$ as one class
of the GCM.

The characteristic of the model eq. (3) $-(5)$ as a GCM is that the local variable
(we call it the intemal buffer of a neuron) is transformed by a nonlinear map
that connects to other neurons through the control parameter eq. (10) of the map.

One-dimensional maps eq. (11) that describe the behavior of the single neuron
were investigated for their dependence on the control parameter eq. (10). The
map eq. (11) has many kinds of attractors (fixed points, periodic and chaotic)
when the parameter eq. (10) exists between $0$ and 1.

As a result, information can be processed by the model eq. (3) $-(5)$ using a
variety of maps (network elements).

From this point of view, first of all, we investigate the CAM. The CAM can be
interpreted as a information processing model which uses just two maps eq. (16)
and (17) in the variety of maps.

Next, we propose a dynamic processing model that uses a greater variety of
maps and we investigate dynamic behavior of the model eq. (3) $-(5)$ . The dynamic
behavior (information processing ability) of the model eq. (3) $-(5)$ is classified
into the following:

(a) recall of only one stored memory in the weak chaos state,
(b) all stored memories are recalled nonperiodically in the strong chaos state,
(c) some stored memories are recalled periodically in the chaos between (a) and
(b).

This information processing ability $(a)-(c)$ can be classified by the structure of
Lyapunov spectrum.
Finally, two examples of engineering applications are shown as follows:



125

(d) the search for information using vague keywords,
(e) solution of the travelin$g$ salesman problem.

The ability of the model eq. (3) $-(5)$ is better than eq. (1) $-(2)$ for both (d) and (e).
From this result, we can interpret that the complexity of the problems are
overcome by the variety of maps.

One class in the GCM systems (for example our neural network model) is
expected to be applicable to many information processes on condition that the
elements of GCM have various attractors. We have to consider how to quantity
properties such as ltvariety of $maps^{1t}$ in order to evaluate the quantities which
characterize dynamic behavior in the GCM and which can be used to estimate
performance in these applications.

The control parameter of the maps in our neural network model can be driven
by chaotic trajectory $($4.2. $(b))$ . This approach should be compared and
contrasted the dynamical system [14] [15] [20] that has a countable number of
map control parameters which are chosen with certain probabilities.
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Figure captions

Figure 1 : Examples of 1 dimensional map $F_{q\iota}$ (r $=0.7, \beta=0.006)$ for a few qi
is shown. The thick line shows Fqi. TWo parallel dashed dotted lines show 1-
dimensional map eq. (12) and (13). The dashed line drawn at a slant shows
pi(n+l) $=p:(n)$ . The vertical dotted line shows pi(n) $=qi$ . (a) qi $=$ 0.0, (b) qi $=$

0.09, (c) qi $=0.25,$ (d) qi $=0.5,$ (e) qi $=0.65,$ (f) qi $=0.85,$ (g) qi $=$ 1.0.

Figure 2 : Trajectories about fig. 1 $(a)-(g)$ are shown. The fine line shows
trajectory. (a) Transient trajectory to fixed point $(- 0.0226)$ , $\lambda i=- 0.9047$ .
(b)Chaotic trajectory, $\lambda:=0.4042$ . $(c)3$ periodic trajectory, $\lambda:=-$ 0.6910. (d)
2 periodic trajectory, $\lambda:=0.3567$ . $(e)$ Chaotic trajectory, $\lambda:=0.3660$ . $(f)4$

periodic trajectory, $\lambda:=- 0.2\grave{6}49$ . (g) Transient trajectory to fixed point
(0.9774), $\lambda:=$ $- 0.9047$ .

Figure 3 : (a) Bifurcation diagram of l-dimensional map Fqi $(r=0.7,$ $\beta=$

0.006) for qi is shown. Two parallel dashed dotted lines show pi(n) $=rqi+(1- r)$
and pi(n) $=rqi$ . $(b)$ The Lyapunov exponent $\lambda$ : of l-dimensional map Fq $i$ for qi is
shown. The dashed line shows $\lambda:=0$ .

Figure.4 : Vector patterns stored in the neural network as the memory are
shown. The white square shows vi $=0$ and the black squares shows vi $=1$ . $(a)$

The arrangement of neuron index $i(=1, \ldots, 16),$ $(b)$ Vector pattem C. (c) Vector
pattem F. (d) Vector pattem 4.

Figure 5 : Trajectories of the intemal buffer during recall of the vector pattem $F$

are shown $(r=0.7, \beta=0.006)$ . $(a)$ Transient trajectory of neuron 2 to local
fixed point (–1). (b) Transient trajectory of neuron 8 to local fixed point (–0).

Figure 6 : Maps $F_{qn}2()$ and $Fqs(n)(n=0, \ldots, 3)$ deciding fig.5 $(a)-(b)$ are shown.
The thick line shows $Fqt(n)$ . Two parallel dashed dotted lines show eq. (12) and
(13). The dashed line drawn at a slant shows pi(n+l) $=p:(n)$ . $(a)F_{q}2(0),$ $(b)F_{q}2(1)$ ,
(c) $F_{q2}(2)$ , (d) $Fq2(3),$ $(e)F_{qs}(0),$ $(f)Fqs(1),$ $(g)Fq8(2),$ $(h)Fqs(3)$ .
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Figure 7 : Behavior of variable $q(n)(=\{q1(n), \ldots, qM(n)\}, n=0, \ldots, 50)$

deciding the variety of $Fqi(n)(r=0.7, \beta=0.006)$ is shown. The continuous lines
show $qil(n)$ (il $=2,3,4,5,9,10,13$). The dashed lines show $q:o(n)(iO=1,6,7$ ,
8, 12, 14, 15, 16).

Figure 8 : Structure of Lyapunov spectrum $\lambda(=\{\lambda 1, \ldots, \lambda 16\})$ for a range of
the self feedback connection $T(10\leqq T\leqq 21)$ is shown $(r=0.7, \beta=0.006)$ . $(a)$

Large flat structure. (b) Smooth continuous structure. (c) Partially flat structure.

Figure 9 : Behavior of the variable $q(n)$ , the vector pattem $\phi(n)$ and the cluster
number $k^{p}(n)$ in the region fig.8 (a) $(T=13.1)$ are shown $(r=0.7, \beta=0.006)$ .
(a) $q(n),$ $(b)\phi(n)$ (the symbol $0$ means “other” (not memory) pattems), (c)
$k^{p}(n)$ , $n=100000,$ $\ldots$ , 100200.

Figure 10 : Behavior of the variable $q(n)$ , the vector pattem $\phi(n)$ and the cluster
number $k^{p}(n)$ in the region fig.8 (b) $(T=15)$ are shown $(r=0.7, \beta=0.006)$ .
(a) $q(n),$ $(b)\phi(n)$ (the symbol $0$ means \dagger tother\dagger t (not memory) pattems), (c)
$k^{p}(n)$ , $n=100000,$ $\ldots$ , 100200.

Figure 11 : Behavior of the variable $q(n)$ , the vector pattem $\phi(n)$ and the cluster
number $k^{p}(n)$ in the. region fig.8 (c) $(T=17.2)$ are shown $(r=0.7, \beta=0.006)$ .
(a) $q(n),$ $(b)\phi(n)$ (the symbol $0$ means $\dagger_{other^{||}}$ (not memory) pattems), (c)
$k^{p}(n)$ , $n=100000,$ $\ldots$ , 100200.

Figure 12 : Two keywords $k$ input to the model eq. (3) $-(5)$ are shown. The white
square shows $kj=0$ and the black square shows ki $=1$ . $(a)$ The keyword C. (b) A
keyword which is two Hamming distances away from the keyword C.

Figure 13 : Behavior of the variable $q(n)$ and the vector pattem $\phi(n)$ resulting
from input of keywords $k$ are shown $(r=0.7, \beta=0.006)$ . $(a)q(n),$ $(c)\phi(n)(n$

$=100000,$ $\ldots$ , 100200) with the keyword fig.12 (a). (b) $q(n),$ $(d)$ $\phi(n)(n=$

100000, ..., 100200) with the keyword fig.12 (b).

Figure 14 : (a) 10 city (A-J) coordinate values [19] are shown. (b) Best route.
(c) Second best route. (d) Third best route.

Figure 15 : (a) Solution abilities of the model eq. (1) $-(2)$ and eq. (3) $-(5)$ for the
TSP are shown $(r=0.7, \beta=0.006)$ . $(a)$ Ability of the model eq. (1) $-(2)$ (best
$=14.3\%$ , second $=$ 5.5%, third $=$ 1.1%, other $=$ 78.8% and bad $=$ 0.3%). (b)
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Ability of the model eq. (3) $-(5)$ (best $=$ 94.7%, second $=$ 2.5%, third $=$ 0.5%,
other $=2.1\%$ and bad $=0.2\%$).

Figure 16 : Behavior of the variable $q(n)$ and the energy function $E(n)$ for $\phi(n)$

are shown $(r=0.7, \beta=0.006)$ . $(a)q(n),$ $(b)E(n),$ $n=1760,$ $\ldots$ , 1960.

Table 1

Character of l-dimensional map Fqi $(r=0.7, \beta=0.006)$ for the rough range of
control parameter qi.

$\ovalbox{\tt\small REJECT} ra_{i}ngqiq<0Havingon1yFixedpointattractors(\sim 0)$

$0\leqq$ qi $\leqq 1$ Having various Fixed point, periodic and chaotic attractors
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