### 連続区分線形写像の一般形

# 小室元政 (Motomasa KOMURO)(西東京科学大学理工学部)

#### 1992年7月

### 1 連続区分線形写像の定義

定義 1 Define an n-1 dimensional hyperplane U in n-dimensional euclidian space  $\mathbb{R}^n$  by

$$U = U(\alpha, \beta) = \{x \in \mathbf{R}^n : \langle \alpha, x \rangle = \beta\}$$

where  $\alpha \in \mathbf{R}^n - \{0\}$ ,  $\beta \in \mathbf{R}$  and  $\langle \cdot, \cdot \rangle$  denotes the usual inner product. We suppose that elements of  $\mathbf{R}^n$  are column vectors. For  $\alpha_1, \dots, \alpha_k \in \mathbf{R}^n - \{0\}$  and  $\beta_1, \dots, \beta_k \in \mathbf{R}$ , define

$$\tilde{\alpha} = (\alpha_1, \dots, \alpha_k) \in M(n \times k), \tilde{\beta} = (\beta_1, \dots, \beta_k) \in M(1 \times k)$$

where  $M(m \times n)$  denotes the set of all  $m \times n$  matrices with real components. For  $(\tilde{\alpha}, \tilde{\beta})$  a union of hyperplanes

$$B = B(\tilde{\alpha}, \tilde{\beta}) = \bigcup_{i=1}^{k} U(\alpha_i, \beta_i)$$

is called a linear boundary (or simply, boundary) defined by  $(\tilde{\alpha}, \tilde{\beta})$ . For  $(\tilde{\alpha}, \tilde{\beta})$  define a function  $\omega : \mathbf{R}^n \to \{0, 1\}^k$  by

$$\omega(x) = (\operatorname{sgn}(<\alpha_1, x > -\beta_1), \cdots, \operatorname{sgn}(<\alpha_k, x > -\beta_k))$$

where

$$\operatorname{sgn}(t) = \left\{ \begin{array}{ll} 0 & (t \le 0) \\ 1 & (t > 0) \end{array} \right.$$

The set of signs of regions is a subset of  $\{0,1\}^k$  defined by

$$\Omega = \Omega(\tilde{\alpha}, \tilde{\beta}) = \{\omega \in \{0, 1\}^k : \omega = \omega(x) \text{ for some } x \in \mathbf{R}^n\}.$$

The polyhedral region (or simply, region ) with a sign  $\omega \in \Omega$  is

$$R_{\omega} = \{x \in \mathbf{R}^n : \omega(x) = \omega\} \text{ for } \omega \in \Omega.$$

The union  $\bigcup \{R_{\omega} : \omega \in \Omega\}$  is a partition of  $\mathbf{R}^n$ ;

$$\mathbf{R}^n = \bigcup_{\omega \in \Omega} R_\omega; \text{ and}$$
$$R_\omega \cap R_{\omega'} = \emptyset \text{ if } \omega \neq \omega'$$

定義 2 A mapping  $f: \mathbf{R}^n \to \mathbf{R}^m$  is piecewise-affine if there is a linear boundary  $B = B(\tilde{\alpha}, \tilde{\beta})$  such that

- (i) f is differentiable at all points which do not belong to B;
- (ii) for each  $\omega \in \Omega(\tilde{\alpha}, \tilde{\beta})$ , the derivative Df(x) is constant in the interior of  $R_{\omega}$ , i.e.  $x, x' \in \text{int}(R_{\omega}) \Rightarrow Df(x) = Df(x')$ .

If  $f: \mathbf{R}^n \to \mathbf{R}^m$  is piecewise-affine, then for each  $\omega \in \Omega(\tilde{\alpha}, \tilde{\beta})$ , there are  $A_{\omega} \in M(m \times n)$  and  $q_{\omega} \in \mathbf{R}^m$  such that

$$f(x) = A_{\omega}x + q_{\omega} \text{ for } x \in \text{int}(R_{\omega})$$
  
 $A_{\omega} = Df(x) \text{ for } x \in \text{int}(R_{\omega})$ 

When f is piecewise-affine, we will say that f is piecewise-linear (abbrev. PL), according to custom. In general, a PL map  $f: \mathbf{R}^n \to \mathbf{R}^m$  may be discontinuous at points on B. If f is continuous on B, and so, on  $\mathbf{R}^n$ , f is called a continuous piecewise-linear map (abbrev.  $CPL\ map$ ).

# 2 一般形

定義 3 A continuous piecewise linear map from  $\mathbb{R}^n$  to  $\mathbb{R}$  is called a continuous piecewise linear function of  $\mathbb{R}^n$ . A continuous piecewise linear function is abbreviated as CPL function. The set of all CPL functions of  $\mathbb{R}^n$  is denoted by  $\mathrm{CPL}(\mathbb{R}^n)$ .

If we denote a continuous piecewise linear map  $f: \mathbf{R}^n \to \mathbf{R}^m$  by

$$f(x) = (f_1(x), \cdots, f_m(x)), \quad x \in \mathbf{R}^n,$$

each  $f_i$  is a continuous function of  $\mathbb{R}^n$ .

Now we will consider to express a CPL function using by a absolute value function  $|\cdot|: \mathbf{R} \to \mathbf{R}$ ;

$$|x| = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases}$$

定義 4 Define a set of formal expression of variable  $x \in \mathbf{R}^n$ ,  $L_k(\mathbf{R}^n)$ ,  $(k \ge 0)$ , inductively as follows;

$$L_{0}(\mathbf{R}^{n}) = \{f(x) = \langle a, x \rangle + b : a \in \mathbf{R}^{n}, b \in \mathbf{R}\}$$

$$L_{k}(\mathbf{R}^{n}) = \{f_{0}(x) + \sum_{i=1}^{N} \varepsilon_{i} |f_{i}(x)| : f_{i}(x) \in L_{k-1}(\mathbf{R}^{n}) \quad (0 \leq i \leq N),$$

$$\varepsilon_{i} \in \{-1, 1\} \quad (1 \leq i \leq N), \quad N \geq 0\}$$

where N=0 means that the summation is not taken. Then the following holds;

$$L_0(\mathbf{R}^n) \subset L_1(\mathbf{R}^n) \subset \cdots \subset L_k(\mathbf{R}^n) \subset \cdots$$

Hence  $L_k(\mathbf{R}^n)$  is the set of all linear expression with at most k-ply absolute value function. Define

$$L_{\infty}(\mathbf{R}^n) = \bigcup_{k=0}^{\infty} L_k(\mathbf{R}^n).$$

An element of  $L_{\infty}(\mathbf{R}^n)$  is called an *expression* of CPL function of  $\mathbf{R}^n$ .

定義 5 Define a mapping S from  $L_{\infty}(\mathbf{R}^n)$  to  $CPL(\mathbf{R}^n)$  by

$$S(f)(x) = F(x)$$
 for  $f(x) \in L_{\infty}(\mathbf{R}^n)$ 

where  $F(x) \in \mathbf{R}$  is a value that a formal expression f(x) takes when  $x \in \mathbf{R}^n$  is substituted to f(x).

**Remark.** For  $x \in \mathbf{R}$ ,  $f_1(x) = 1 - |x| + |1 - |x||$  and  $f_2(x) = |x + 1| + |2x| + |x - 1|$  are considered as two different elements of  $L_2(\mathbf{R})$ . However, if we substitute any  $x \in \mathbf{R}$  to them, we have  $f_1(x) = f_2(x)$ , so they are same function as element of  $CPL(\mathbf{R})$ . That is,  $S(f_1)(x) = S(f_2)(x)$ . In general, when  $f_1(x) = f_2(x)$  for all  $x \in \mathbf{R}^n$  while they are different elements of  $L_\infty(\mathbf{R}^n)$ , we say that they are different expression of same CPL function.

定義 6 For  $f(x) = \langle a, x \rangle + b \in L_0(\mathbf{R}^n)$ , the  $b \in \mathbf{R}$  is called a constant term of f(x). Inductively, for  $f(x) \in L_k(\mathbf{R}^n)$ , if

$$f(x) = f_0(x) + \sum_{i=1}^{N} \varepsilon_i |f_i(x)|, \quad f_i(x) \in L_{k-1}(\mathbf{R}^n) \quad (0 \le i \le N),$$

each constant term of  $f_i(x)$  is called a constant term of f(x).

定義 7 For  $f(x) \in L_k(\mathbf{R}^n)$ , define an expression  $\bar{f}(x,y)$  by multiplying  $-y \in \mathbf{R}$  by all constant terms of f(x). Clearly  $\bar{f}(x,y)$  has at most k-ply absolute value function, hence

$$\bar{f}(x,y) \in L_k(\mathbf{R}^{n+1}) \quad (x,y) \in \mathbf{R}^n \times \mathbf{R} = \mathbf{R}^{n+1}.$$

Define a function  $F_{k,n}$  from  $L_k(\mathbf{R}^n)$  to  $L_k(\mathbf{R}^{n+1})$  by

$$F_{k,n}(f)=\bar{f}.$$

**Remark.** Assume  $f_1(x), f_2(x) \in L_k(\mathbf{R}^n)$  are two different expression of same function, i.e.

$$f_1(x) = f_2(x)$$
 for all  $x \in \mathbf{R}^n$ .

Then  $\bar{f}_1(x,y)$  and  $\bar{f}_2(x,y)$ , which are given by multiplying  $-y \in \mathbf{R}$  by all constant terms of  $f_1(x)$  and  $f_2(x)$ , may be different function.

For example,  $f_1(x) = 1 - |x| + |1 - |x||$  and  $f_2(x) = |x + 1| + |2x| + |x - 1|$  satisfies

$$f_1(x) = f_2(x)$$
 for all  $x \in \mathbf{R}$ .

Then, since

$$ar{f}_1(x,y) = -y - |x| + |-y - |x||, \quad ext{and} \ ar{f}_2(x,y) = |x - y| + |2x| + |x + y|,$$

we have

$$\bar{f}_1(0,1) = 0$$
, and  $\bar{f}_2(0,1) = 2$ ,

i.e.  $\bar{f}_1(x,y)$  and  $\bar{f}_2(x,y)$  are different function.

However, it is proved that if  $y \leq 0$ , then

$$\bar{f}_1(x,y) = \bar{f}_2(x,y)$$
 for all  $x \in \mathbf{R}^n$ ,  $y \le 0$ .

定義 8 For  $f(x) \in L_k(\mathbf{R}^n)$ , define an expression  $\tilde{f}(x,y)$  by multiplying

$$\frac{1}{2}\{y+|y|\} \quad (y \in \mathbf{R})$$

by all constant terms of f(x). Clearly  $\tilde{f}(x,y)$  has at most (k+1)-ply absolute value function, hence

$$\tilde{f}(x,y) \in L_{k+1}(\mathbf{R}^{n+1}) \quad (x,y) \in \mathbf{R}^n \times \mathbf{R} = \mathbf{R}^{n+1}.$$

Define a function  $G_{k,n}$  from  $L_k(\mathbf{R}^n)$  to  $L_{k+1}(\mathbf{R}^{n+1})$  by

$$G_{k,n}(f) = \tilde{f}.$$

定義 9 Using two functions  $F_{k,n}$  and  $G_{k,n}$ , we define a function  $T_{k,n}$  as follows;

$$T_{k,n}: L_k(\mathbf{R}^n) \times L_k(\mathbf{R}^n) \to L_{k+1}(\mathbf{R}^{n+1});$$
  
$$T_{k,n}(f,g) = F_{k,n}(f) + G_{k,n}(g).$$

定義 10 Define subsets  $L_n^a(\mathbf{R}^n)$ ,  $L_n^b(\mathbf{R}^n)$  and  $L_n^c(\mathbf{R}^n)$  of  $L_n(\mathbf{R}^n)$  as follows inductively;

$$\begin{split} L_1^a(\mathbf{R}) &:= \{ax + \frac{b}{2}\{x + |x|\} : a, b, x \in \mathbf{R}\} \\ L_1^c(\mathbf{R}) &:= \{c + \sum_{i=1}^N f_i(x - x_i) : f_i(x) \in L_1^s(\mathbf{R}), c \in \mathbf{R}, x_i \in \mathbf{R}, N \ge 1\} \\ L_1^b(\mathbf{R}) &:= \{f(x) \in L_1^c(\mathbf{R}) : S(\tilde{f})(x, y) = 0 \quad \text{for} \quad \text{all } x \in \mathbf{R} \quad \text{and} \quad y = 0\} \end{split}$$

where  $\tilde{f}(x,y) = G_{1,1}(f)$ .

$$\begin{split} L_2^a(\mathbf{R}^2) &:= T_{1,1}(L_1^c(\mathbf{R}), L_1^b(\mathbf{R})) \\ L_2^c(\mathbf{R}^2) &:= \{c + \sum_{i=1}^N f_i(x - x_i) : f_i(x) \in L_2^s(\mathbf{R}^2), c \in \mathbf{R}, x_i \in \mathbf{R}^2, N \ge 1\} \\ L_2^b(\mathbf{R}^2) &:= \{f(x) \in L_2^c(\mathbf{R}^2) : S(\tilde{f})(x, y) = 0 \quad \text{for} \quad \text{all} x \in \mathbf{R}^2 \quad \text{and} \quad y = 0\} \end{split}$$

where  $\tilde{f}(x, y) = G_{2,2}(f)$ .

$$\begin{split} L_n^a(\mathbf{R}^n) &:= T_{n-1,n-1}(L_{n-1}^c(\mathbf{R}^{n-1}), L_{n-1}^b(\mathbf{R}^{n-1})) \\ L_n^c(\mathbf{R}^n) &:= \{c + \sum_{i=1}^N f_i(x - x_i) : f_i(x) \in L_n^s(\mathbf{R}^n), c \in \mathbf{R}, x_i \in \mathbf{R}^n, N \geq 1\} \\ L_n^b(\mathbf{R}^n) &:= \{f(x) \in L_n^c(\mathbf{R}^n) : S(\tilde{f})(x,y) = 0 \quad \text{for} \quad \text{all} x \in \mathbf{R}^n \quad \text{and} \quad y = 0\} \end{split}$$

where  $\tilde{f}(x,y) = G_{n,n}(f)$ .

定理 1 Any CPL function of  $\mathbb{R}^n$ ,  $f(x) \in CPL(\mathbb{R}^n)$ , has an expression in  $L_n^c(\mathbb{R}^n)$ .

**Example 1.** Define a new notation  $[x]^{\varepsilon}$  for  $x \in \mathbb{R}$  and  $\varepsilon \in \{0,1\}$  by

$$[x]^{\varepsilon} = \begin{cases} \frac{1}{2} \{x + |x|\} & (\varepsilon = 1) \\ x & (\varepsilon = 0) \end{cases}$$

Assume that all a's belong to  $\mathbb{R}^n$ , all b's belong to  $\mathbb{R}$  and all  $\varepsilon$ 's belong to  $\{0,1\}$ .

(1)  $L_1^a(\mathbf{R})$  consists of all expression with following form;

$$a_0x + a_1[x]^{\varepsilon}$$
 for  $x \in \mathbf{R}$ 

 $L_1^c(\mathbf{R})$  consists of all expression with following form;

$$\sum_{i=1}^{N} a_i [x+b_i]^{\epsilon_i} \quad \text{for} \quad x \in \mathbf{R}$$

Clearly

$$L_1(\mathbf{R}) = L_1^c(\mathbf{R})$$

holds.

(2)  $L_2^a(\mathbf{R}^2)$  consists of all expressions with following form;

$$\sum_{i=1}^{N} a_i [x + b_i[y]^{\epsilon_{i2}}]^{\epsilon_{i1}} \quad \text{for} \quad (x, y) \in \mathbf{R}^2$$

 $L_2^c(\mathbf{R}^2)$  consists of all expression with following form;

$$\sum_{i=1}^{N} a_i [x + c_i + b_i [y + d_i]^{\epsilon_{i2}}]^{\epsilon_{i1}} \quad \text{for} \quad (x, y) \in \mathbf{R}^2$$

(3)  $L_3^a(\mathbf{R}^3)$  consists of all expression with following form;

$$\sum_{i=1}^{N} a_i [x + c_i + b_i [y + d_i]^{\epsilon_{i2}}]^{\epsilon_{i1}} \quad \text{for} \quad (x, y, z) \in \mathbf{R}^3$$

 $L_3^c(\mathbf{R}^n)$  consists of all expression with following form;

$$\sum_{i=1}^{N} a_i [x + c_i[z]^{\varepsilon_{i3}} + b_i [y + d_i[z]^{\varepsilon_{i3}}]^{\varepsilon_{i2}}]^{\varepsilon_{i1}} \quad \text{for} \quad (x, y, z) \in \mathbf{R}^3$$

Example 2. (1)  $f_1(x) \in L_1^c(\mathbf{R}), f_2(x) \in L_1^b(\mathbf{R});$ 

$$f_1(x) = a_1 x + (a_2 - a_1)[x] + (a_3 - a_2)[x - 1] + c_1$$
  
$$f_2(x) = -a_4 + a_4[x + 1] - a_4[x] + c_2$$

(2)  $F(x,y), G(x,y) \in L_2^a(\mathbf{R}^2);$ 

$$\begin{split} F(x,y) &= \bar{f}_1(x,y) + \tilde{f}_2(x,y) \\ &= a_1 x + (a_2 - a_1)[x] + (a_3 - a_2)[x + y] - c_1 y \\ &- a_4[y] + a_4[x + [y]] - a_4[x] + c_2[y] \\ &= a_1 x - c_1 y + (a_2 - a_1 - a_4)[x] + (-a_4 + c_2)[y] \\ &+ (a_3 - a_2)[x + y] + a_4[x + [y]] \end{split}$$

$$G(x,y) = -c_1'y + a_3'[x] + c_1'[y] + (a_3' - a_2')[x + y] + (a_2' - a_3')[x + [y]]$$

(3)  $H_1(x,y) \in L_2^c(\mathbf{R}^2), H_2(x,y) \in L_2^b(\mathbf{R}^2);$ 

$$\begin{split} H_1(x,y) &= F(x+1,y-1) + G(x-1,y+1) + c_3 \\ &= a_1[x+1] - c_1(y-1) + (a_2 - a_1 - a_4)[x+1] \\ &+ (-a_4 + c_2)[y-1] + (a_3 - a_2)[x+y] + a_4[x+1+[y-1]] \\ &- c_1'(y+1) + a_3'[x-1] + c_1'[y+1] + (a_3' - a_2')[x+y] \\ &+ (a_2' - a_3')[x-1+[y+1]] + c_3 \end{split}$$

$$H_2(x,y) = F'(x+1,y-1) + G'(x-1,y+1) + d_3$$

$$= -d_1(y-1) + b_3[x+1] + d_1[y-1]$$

$$+(b_3 - b_2)[x+y] + (b_2 - b_3)[x+1 + [y-1]]$$

$$+d_1(y+1) - b_3[x-1] - d_1[y+1] + (b_2 - b_3)[x+y]$$

$$+(b_3 - b_2)[x-1 + [y+1]] + d_3$$

(4)

$$\bar{H}_1(x,y,z) = F(x-z,y+z) + G(x+z,y-z) - c_3 z$$

$$= a_1[x-z] - c_1(y+z) + (a_2 - a_1 - a_4)[x-z]$$

$$+(-a_4+c_2)[y+z]+(a_3-a_2)[x+y]+a_4[x-z+[y+z]]$$

$$-c'_1(y-z)+a'_3[x+z]+c'_1[y-z]+(a'_3-a'_2)[x+y]$$

$$+(a'_2-a'_3)[x+z+[y-z]]-c_3z$$

$$\begin{split} \tilde{H}_2(x,y,z) &= F(x+[z],y-[z]) + G(x-[z],y+[z]) + d_3[z] \\ &= -d_1(y-[z]) + b_3[x+[z]] + d_1[y-[z]] \\ &+ (b_3-b_2)[x+y] + (b_2-b_3)[x+[z] + [y-[z]]] \\ &+ d_1(y+[z]) - b_3[x-[z]] - d_1[y+[z]] + (b_2-b_3)[x+y] \\ &+ (b_3-b_2)[x-[z] + [y+[z]]] + d_3[z] \end{split}$$

# (5) $K(x, y, z) \in L_3^a(\mathbf{R}^3)$ ;

$$\begin{split} K(x,y,z) &= \bar{H}_1(x,y,z) + \tilde{H}_2(x,y,z) \\ &= a_1[x-z] - c_1(y+z) + (a_2 - a_1 - a_4)[x-z] \\ &+ (-a_4 + c_2)[y+z] + (a_3 - a_2)[x+y] + a_4[x-z+[y+z]] \\ &- c_1'(y-z) + a_3'[x+z] + c_1'[y-z] + (a_3' - a_2')[x+y] \\ &+ (a_2' - a_3')[x+z+[y-z]] - c_3z \\ &- d_1(y-[z]) + b_3[x+[z]] \\ &+ d_1[y-[z]] \\ &+ (b_3 - b_2)[x+y] + (b_2 - b_3)[x+[z] + [y-[z]]] \\ &+ d_1(y+[z]) - b_3[x-[z]] - d_1[y+[z]] + (b_2 - b_3)[x+y] \\ &+ (b_3 - b_2)[x-[z] + [y+[z]]] + d_3[z] \end{split}$$

