A Note on Minimal Models

Koichiro Ikeda (池田宏-家)

Institute of Mathematics University of Tsukuba

A model M is said to be *minimal* if there is no proper elementary submodel of M. We consider the size of an indiscernible set in a minimal model. In [2] Shelah showed that if a theory T is ω -stable then there is no infinite indiscernible set in a minimal model of T. On the other hand Marcus [1] constructed a theory having a minimal (and prime) model with an infinite indiscernible set. The theory is stable but non-superstable. In this note we show the following theorem:

THEOREM. Let T be superstable and let A be any set. Then there is no minimal model over A which has an infinite set of indiscernibles over A.

1. Notation

We fix a countable stable theory T. We usually work in a big model \mathbb{C} of T. Our notations are fairly standard. A, B, \ldots are used to denote small subsets of \mathbb{C} . \bar{a}, \bar{b}, \ldots are used to denote finite sequences of elements in \mathbb{C} . φ, ψ, \ldots are used to denote formulas (with parameter). p, q, \ldots are used to denote types (with parameter). The nonforking extension of a stationary types p to the domain A is denoted by p|A. The type of a over A is denoted by tp(a/A). $R^{\infty}(p)$ is the infinity rank of a type p. We simply write $R^{\infty}(a/A)$ instead of $R^{\infty}(tp(a/A))$. The set of realizations of a type p (resp. a formula φ) in a model M is denoted by p^M (resp. φ^M).

2. Theorem and Proof

First we prove the following lemma:

Lemma. Let T be superstable and let A be any set. Let $I = \{a\} \cup J$ be an infinite Morley sequence of some stationary type $p \in S(A)$. Let M be a model containing $I \cup A$. Suppose that B is a maximal set satisfying $J \subset B \subset M$ and $B \downarrow_A a$. Then B is an elementary submodel of M.

Proof: For the simplicity of the notation, we may assume that $A = \emptyset$. Take any consistent formula $\varphi(x, \bar{b_0})$ over B. By the Tarski criterion it is enough to see that φ is satisfied by B. By the superstability of T we can pick an element b of φ^M such that $R^{\infty}(b/B)$ is minimal.

CLAIM. b is independent from a over B.

PROOF: Take a formula $\theta(x, \bar{b_1}) \in tp(b/B)$ such that $R^{\infty}(b/B) = R^{\infty}(\theta)$. Without loss of generality, we can assume that $\bar{b_0} \subset \bar{b_1}$. Suppose that b and a are not independent over B. By the superstability there is a finite sequences $\bar{b} \in B$ such that $ab \downarrow_{\bar{b}} B$ and $\bar{b_1} \subset \bar{b}$. Then we obtain that b and a are not independent over \bar{b} . So we can get a formula $\psi(x, \bar{b}, a)$ such that $\models \psi(b, \bar{b}, a)$, and if $\models \psi(b', \bar{b}, a)$ then $b' \not\downarrow_{\bar{b}} a$. Let $\Gamma(\bar{b}, a)$ denote $(\exists x)(\varphi(x, \bar{b_0}) \land \psi(x, \bar{b}, a) \land \theta(x, \bar{b_1}))$. On the other hand there is a finite subset I' of I such that I - I' is the infinite Morley sequence of $p|\bar{b}$ since $\kappa(T)$ is finite. Moreover we can assume that $a \in I - I'$, since \bar{b} and a are independent. So we can pick some $a' \in J(\subset B)$ such that $\Gamma(\bar{b}, a')$ holds. Therefore there is an element $b' \in \varphi^M$ such that $R^{\infty}(b'/\bar{b}) = R^{\infty}(b/B)$ and $b' \not\downarrow_{\bar{b}} a'$. But $R^{\infty}(b'/B) = R^{\infty}(b'/\bar{b}a') < R^{\infty}(b'/\bar{b}) \leq R^{\infty}(b/B)$. This contradicts the minimality of $R^{\infty}(b/B)$. Hence b and a are independent over B.

So we have $b \in B$ by the maximality of B and the above claim. Hence φ is realised by the element b of B. This completes the proof of the claim.

Our theorem follows directly from the above lemma:

Theorem. Let T be superstable and let A be any set. Then there is no minimal model over A which has an infinite set of indiscernibles over A.

Proof: Suppose that M is a model containing a set A and an infinite set I of indiscernibles over A. We can assume that I is an infinite Morley sequence over A because $\kappa(T)$ is finite. By the lemma we get a proper elementary submodel of M. So M is not minimal over A.

3. Example

The following example shows that our theorem can not be extended to a stable theory. It is a slightly improvement of Marcus' one (see [1]).

EXAMPLE: We construct a countable structure M with the following conditions: i) M is minimal, ii) M has an infinite indiscernible set and iii) Th(M) is stable but non-superstable. Let L_0 be a language with an equality only. For $i < \omega$, let $L_{i+1} = \{P_{i+1}\} \cup \{R_{i+1}^n : n < \omega\} \cup L_i$, where P_{i+1} is a unary predicate symbol and R_{i+1}^n 's are binary predicate symbols. For each $i < \omega$ we define inductively countable L_i -structures M_i and countable subgroups H_i of $Aut(M_i)$ satisfying the following properties: (1) $P_{i+1}^{M_{i+1}} = M_{i+1} - M_i$.

(2) $R_{i+1}^n \subset P_i^{M_{i+1}} \times P_{i+1}^{M_{i+1}}$. For any $a \in P_i^{M_i}$ and $b \in P_{i+1}^{M_{i+1}}$ there is a predicate $R_{i+1}^n \in L_{i+1}$ such that $\models R_{i+1}^n(x,b)$ if and only if x = a.

(3) M_0 is a countable set. H_0 is a countable subgroup of permutation of M_0 which move only a finite number of elements.

(4) For all $f \in H_0$ and $i < \omega$ there is a unique extension of f to an automorphism $f^* \in H_i$.

Now assume that M_i and H_i are defined as required. Let $M_{i+1} = \{b_f : f \in H_i\} \cup M_i$. Then M_{i+1} is countable (because H_i is so). Define a predicate $P_{i+1}^{M_{i+1}} = M_{i+1} - M_i$. Let $\{a_n : n < \omega\}$ be an enumeration of $P_i^{M_i}$. For every $n < \omega$ define a predicate $R_{i+1}^n \stackrel{M_{i+1}}{=} \{(f(a_n), b_f) : f \in H_i\}$. Clearly R_{i+1}^n 's satisfy the condition (2). For $g \in H_i$ define a g^* as follows:

$$\begin{cases} g^*(b_f) = b_{g \cdot f} & \text{for each } b_f \in M_{i+1} - M_i, \\ g^*(a) = g(a) & \text{for each } a \in M_i. \end{cases}$$

Then g^* is an automorphism of M_{i+1} . In fact we can see that $(f(a), b_f) \in R_{i+1}^n$ iff $((g \cdot f)(a), b_{g \cdot f}) \in R_{i+1}^n$ iff $g^*((f(a), b_f)) \in R_{i+1}^n$. Let $H_{i+1} = \{g^* : g \in H_i\}$. Then H_{i+1} is a countable subgroup of $Aut(M_{i+1})$ since H_i is so. Hence we can construct M_i 's and H_i 's.

Let $L = \bigcup_{i \in I} L_i$. Let M be an L-structure with $M = \bigcup_{i \in I} M_i$.

(i) M is a minimal model: Let N be any submodel of M. Take any element a of M. Since M is the union of P_i^M 's there is minimum $i < \omega$ such that $a \in P_i^M$. Pick an arbitrary element b of P_{i+1}^N . By the condition (2) there is some predicate $R \in L_{i+1}$ such that R(x, b) holds if and only if x = a. Hence $a \in dcl(b) \subset N$, so N = M. Therefore M is minimal.

(ii) M_0 is an indiscernible set : Let \bar{a} , \bar{b} be any elements of M_0 with the same length. By the condition (3) there is an $f \in H_0$ such that $f(\bar{a}) = \bar{b}$. Moreover by (4) f can be extended to an automorphism of M. So $tp(\bar{a}) = tp(\bar{b})$.

(iii) Th(M) is not superstable: Let $\{a_n : n < \omega\}$ be an enumeration of M_0 . For all $n < \omega$ let $\bar{a}_n = a_0 \cap a_1 \cap \ldots \cap a_n$. For all $n < \omega$ let $\varphi_n(x, \bar{a}_n)$ denote $R_1^0(a_0, x) \wedge \ldots \wedge R_1^n(a_n, x)$. Then $(\varphi_n)_{n < \omega}$ is a infinite chain of forking formulas. In fact, for each $n < \omega$, $\{\varphi_n(x, \bar{a}_{n-1}^n)^{\mathbb{C}} : a \in M_0 - \{a_0, \ldots, a_{n-1}\}\}$ is a pairwise disjoint set. Hence Th(M) is not superstable.

REFERENCES

- 1. Marcus, L., A minimal prime model with an infinite set of indiscernibles, Israel J. Math. 11 (1972), 180–183.
- 2. Shelah S., "Classification Theory," North-Holland, Amsterdam, 1990.