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wi-Souslin trees under countable support iterations
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Nanzan University ExEE (BELX - 8%)

Abstract

We show the property “is proper and preserves every wji-Souslin tree ” iterates under
countable support. As an example we show Con( SAD + — SH ) via a countable support
iteration from [1].

Introduction

In [1], it is shown that the forcing axiom SAD is consistent via an iterated Souslin
forcing. It is also shown that the forcing axiom does not imply the nonexistence of w;-
Souslin trees by constructing a pair of an wj-Souslin tree and an iterated Souslin forcing
in such a way that the w;-Souslin tree remains to be an w;-Souslin tree in the generic
extensions via the Souslin forcing. In [2], a general theory on countable support iterations
is developed and stronger versions of SAD are shown to be consistent.

We show countable support iterations for getting SAD preserve every w;-Souslin tree
in the ground model. This note is organized as follows: In §0, we deal with various pre-
liminaries. In §1, we consider preservations of w;-Souslin trees under proper and strongly
proper preorders. In §2, we present an argument on o-Baire under countable support iter-
ations from [2]. In §3, we exhibit Con( SAD + - SH ) via a countable support iteration.

§0. Preliminary

(0.0) Definition. A triple (P,<,1) is a preorder iff < is a reflexive and transitive
binary relation on P with a greatest element 1. The symbol G usually denotes the canonical
P-name for a P-generic filter over the ground model V. For an element z in V, we
usually use z itself to denote its P-name. The preorder is separative iff for any p,q € P
qlFp“p € G” implies ¢ < p. We consider separative preorders in this note and so a
preorder is always a separative one. For a formula ¢, we simply write |- p“y” instead of
1|-p“p”. A subset D of P is predense below q in P iff ¢|-p“D N G # 0”.

For a set z, let TC(z) denote the transitive closure of z. For a regular cardinal 6,
let Hy = {z :| TC(z) |< 6}. A countable subset N of Hy is a countable elementary
substructure of Hy iff the structure (N, €) is an elementary substructure of (Hy, €). For a
regular cardinal § and a countable elementary substructure N of Hy with (P, <,1) € N,
a condition ¢ in P is (P, N)-generic iff for any dense subset D € N of P DN N is
predense below g. Let Gen(P,N) = {G C PN N : G is directed, upward closed in
P N N with respect to < and for any open dense subset C € N of P GNC # (}. For
p € PN N, let Gen(P,N,p) = {G € Gen(P,N) | p € G}. A condition 7 in P is a
lower bound of G € Gen(P,N) iff for all g € G r < g. For a P-generic filter G over V
and a P-name 7, 7[G] denotes the interpretation of 7 by G. But {7[G] | T is a P-name
and 7 € N} is denoted by N[G] which is a countable elementary substructure of HX 11,
Let ((Pa, <asla)a<w, (Qa, <o ia)a<y) be a countable support iteration. For p € P,, we

donote {8 < a | p(8) # i} by supp(p) and so |supp(p) |< w. .
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We pick up a couple of definitions and theorems from [2].

(0.1) Definition. A preorder (P, <,1) is proper iff for all sufficiently large regular
cardinal 6 and all countable elementary substructure N of Hy with (P, <,1) € N, we have
Vp € PN N3iq < p q is (P, N)-generic. For a countable ordinal p, a preorder (P, <,1)
is p-proper iff for all sufficiently large regular cardinal # and all continuously increasing
countable elementary substructures (N | ¥ < p) of Hg s.t. (P,<,1) € Ny and (N |
k < i) € Nyyp for all 1 < p, we have Vp € PN Nodg < pVk < p g is (P, Ni)-generic.
A preorder (P, <,1) is strongly proper iff for all sufficiently large regular cardinal 6, all
countable elementary substructure N of Hy with (P,<,1) € N and all (D,, | n < w) s.t.
D,, is a dense subset of PN N for all n < w, we have Vp € PN Niq < pVn < w q is
predense below D,,.

_|

Let ((Pa, <asla)a<ws (Qa, éa,ia)a<,,) be a countable support iteration s.t. for all
a < v |Fp,“(Qa, < la) is proper”. Let 6 be a sufficientry large regular cardinal and N
be a countable elementary substructure of Hy with (P,,<,1,) € N. '

(0.2) Iteration Lemma for Proper. Let 8 < a <v, € N and a € N, then for any
z € Pg and any Pg-name 7 if z is (Pg, N)-generic and z |-p,“7 € P,NN and 7[p € Gg”,
then there is z* € P, s.t. z*[f = z, z* is (Pa, N)-generic, z* |- p, “r[Go[0] € G” and
supp(z*) N [B,a) C N.

In particular, for any = € Pg and any p € P,NN if z is (Pg, N)-generic and = <g p[8,
then there is z* € P, s.t. z*[3 = z, z* is (P, N)-generic, z* <, p and supp(z*)N (6, &) C
N.

_.1

(0.3) Iteration Theorem for Proper. If ((Pa,ga,la)as,,,(Qa,éa,ia)a<,,) is a
countable support iteration s.t. for all o < v |-p, “(Qa, <as 1a) is proper”, then (P, <4
,14) is proper for all @ < v. Furthermore, under CH, if v = w, and for all @ < w;
I-p, “ Qo |< 297, then P, has a dense subset of size at most w; for all & < wy.

_1

Let p be a countable ordinal and ((Pe, <a;la)a<ws (Qas Sas la)acy) be a countable
support iteration s.t. for all & < v |p, “(Qa, <o, 1) is p-proper”. Let 8 be a sufficiently
large regular cardinal and (Nj, | k£ < p) be a continuously increasing countable elementary
substructures of Hy s.t. (P,,<,,1,) € Ny and (N, | k < i) € N;41 for all i < p.

(0.4) Iteration Lemma for p-proper. Let n < ( < p, f < a < v, B €N,
and o € N, then for any £ € Pg and any Pg-name 7 if z is (Pg, Ny)-generic for all k
with 7 < k < ( and z|}-p,“7 € P, NN, and 7[8 € G’g”, then there is z* € P, s.t.
2*[B = z, * is (Pa, Ny)-generic for all k with 7 < k < ¢, z* |-p, “7[Go[B] € Go” and
supp(:c*) n [ﬂ? a) g N(~

In particular, for any z € Pg and any p € P, N N, if = is (Pg, Ni)-generic for all &k
with n < k < ¢ and © <g p[f, then there is z* € P, s.t. z*[f = x, * is (Pq, Ni)-generic
for all £k with n < k < ¢, * <o p and supp(z*) N [B,a) C N¢.

| 4



(0.5) Iteration Theorem for p-proper. If ((Pa, <a,la )a<,,,(Qa, ,ia)a<,,) is
a countable support iteration s.t. for all o < v ||—- P, “(Qa,<a,1 ) is p-proper”, then
(Py, <a,lq) is p-proper for all a < v.

_l

(0.6) Iteration Theorem for Strongly Proper.
If ((Pa, <arla)a<w, (Qa, <ol )a<,,) is a countable support iteration s.t. foralla < v
I-r. “(Qa, <, 1o) is strongly proper”, then (Py, <a,1ls) is strongly proper for all a < v.

_|

The following is from [1] with minor changes.

(0.7) Definition. For o < wy, a normal tree U of height o means
(1) U C *?w.
(2) U is downward-closed in *”w with respect to C.
(3) Forany 8 <aUNPw#0.
(4) fB<y<aand z € UN Pw, then thereis y € UN Yw with z C ¥.

We use height(U) to denote the height of U so height(U) = a. A normal subtree W of
U means W C U and W is a normal tree with height(W) =height(U). For 3 <height(U),
let U[B=UNPF>wand Us =UN P w. So U[B is a normal tree of height 8 and Ug is the
B-th level of U. A normal subtree W of U is closed under taking the immediate successors
iff whenever 8 <height(W), z € W and £~ (n) € U, we have z™(n) € W.

Let @ = {a < w; | o is a limit ordinal}. An array of directed sets is a sequence
D=(Das|lae, fe *w)st foralla € Qandall f € *>w D,y is a countably
complete directed subsets of *w (i.e. for all non-empty X C D, ¢ s.t. | X |< w, we have
(X € Du,f). A normal tree U of height w; is appropriate for the array of directed sets D
iff
(1) f o € N and f € U[a, then thereis A € D, ¢ s.t. whenever h € A is such that f C h

and V€ < a h[€ € U, then h € U.

(2) If « € 2 and W is a normal subtree of U[a closed under taking the immediate
successors, then for any f € W and any B € D, s thereis h € B s.t. f C h and
V€< ah[EeW.

We sometimes refer to a normal tree of height w; appropriate for an array of directed
sets D as a tree appropriate for D. The forcing axiom SAD denotes the conjunction of the
following statements.

(1) GCH.

(2) Every constructible cardinal is a cardinal.

(3) For every cardinal &, cf(k) =cfl(k).

(4) Every countable sequence of ordinals is constructible.
(

5) If D is a constructible array of directed sets, then every tree appropriate for D has a
cofinal branch through it.
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§1. Preserving w;-Souslin Trees

For the rest of this note a Souslin tree means an wi-Souslin tree.

(1.1) Proposition. Let (P, <,1) be a proper preorder and (T, <r) be a Souslin tree.
The following are equivalent.

(1) |Fp“(T, <r) remains to be a Souslin tree”.

(2) For all sufficiently large regular cardinal § and all countable elementary substructure
N of Hg with (P,<,1), (T, <r) € N, let § = N N wy, then for any (¢,t) € P x Ts if q
is (P, N)-generic, then (g,t) is (P x T, N)-generic.

(3) For all sufficiently large regular cardinal § and all countable elementary substructure
N of Hy with (P, <,1),(T,<r) € N,let § = NNwy, then Vp € PN N3q < pVt € T}
(g,t) is (P x T, N)-generic.

Proof. (1) implies (2): Fix an arbitrary regular cardinal 6 s.t. P,T € Hp and a
countable elementary substructure N of Hy with (P,<,1),(T,<1) € N. Suppose (gq,t) €
P xTs and q is (P, N)-generic. Let A be a maximal antichain of P x T with A € N. Given
an arbitrary P-generic filter Gp over the ground model V with ¢ € Gp and an arbitrary
T-generic filter G over V[Gp| with t € Gr. We want to show (Gp X Gr)NANN # 0.
Let B={s €T |3z € Gp (z,8) € A} in V[Gp]. Then B is a maximal antichain of
T and B € N[Gp]. Since T remains to be a Souslin tree, B is a countable subset of T
Since N[Gp] is a countable elementary substructure of H g/ (Gr ], there is an enumeration
of B in N[Gp]. Since q is (P, N)-generic, we get B C N[Gp]NT = NNT = T[é. Since
t € Ts, there is s € B with s <7 t. So we have z € Gp s.t. (z,s) € A. We may assume
z € GpNN[Gp] =GpN N and so (z,s) € (Gp X Gp) N N.

(2) implies (3): By assumption (P, <,1) is proper. So for all sufficiently large regular
cardinal 6 and all countable elementary substructure N of Hg with (P, <,1),(T,<r) € N,
given p € PN N there is ¢ < p s.t. ¢ is (P, N)-generic. Now by (2) for any ¢t € Ts (g, 1) is
(P x T, N)-generic.

(3) implies (1): Suppose |- p“A is a maximal antichain of T” and p € P. Let B =
{(z,s) € PxT | z|Fp“5 € A”}. Then B is a predense subset of P x T'. Fix a sufficiently
large regular cardinal 6 and a countable elementary substructure N of Hy with p, B, (P, <
,1),(T, <) € N. By (3), we have ¢ < p s.t. for all t € Ts (q,t) is (P x T, N)-generic. So
BN N is predense below (g,t) for all t € Ts. We conclude ¢ |-p“Vt € Ts3s <7t s € A”.
Hence ¢ |-p“A C T[68”. ‘

_l
(1.2) Lemma. Let ((Pa, <asla)a<w (Qa, <a, ia)a<,,) be a countable support iter-

ation and (T', <7) be a Souslin tree. If v is a limit ordinal and for all a < v |l~p, (T, <7)
remains to be a Souslin tree and (Qa, <a,ls) is proper”, then |p, “(T, <) remains to

be a Souslin tree”.

Proof. Suppose p € P, and |}-p, “A is a maximal antichain of 7”. Let B = {(z,s) €
P,xT |z|-“5 € A”}. Fix asufficiently large regular cardinal § and a countable elementary
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substructure N of Hy with p,(P,,<,,1,),(T,<7),B € N. Fix (a, | n < w) s.t. a9 = 0,
an, € vO N and a, < au4q for all n < w and sup{a, | n < w} =sup(v N N). Let
§ = NNw; < wy and (¢, | n < w) enumerate Ts. We construct (£, | » < w) and
(gn | n < w) s.t. foralln <w

(1) & is the Py-name p.

(2) g =0 € Po.

(3) &, is a P, -name.

(4) qn is (Py,,, N)-generic.

(5) @nlFpa, “Gn € P, NN and &n[an € Ga,”.

(6) gn+1lan = gn.

(7) Gn+1 Il—pan+1 “Tnt1 <u ii?n[éa,,+1 [0] and 3s <7 ty, (Eny1,8) € B.

The construction is by recursion on n < w. For n = 0, let £g,qo be as specified.
Now suppose we have &, and g,. Since (4) and (5) hold, we have gnyy € Pa,,, s.t.
Gn+1]|On = Qny Qny1 18 (Pan+1,N)—generic and gp41 ”_P“n+1 “in[Gan“ l—an] [any1 € Gan+1”
by (0.2) iteration lemma for proper. Since |\-p,  “(T,<r) remains to be a Souslin tree”,
we know (qn41,tn) i8 (Pa,,, X T, N)-generic by (1.1) proposition.

Now in order to get a P,  ,-name &n41, let us fix an arbitrary P, -generic filter
Ga,y, Over V with gny1 € Gq,.,,. Let Ga, = Ga,, [0n. We know G, is a Py, -generic
filter over V with ¢, € G, . Let £, = 2,[G,,|. Then z, € P, NN and z,[ant1 € Ganyy
hold. Let D = {(a,s) € Pa,,, x T | a and z,[cny; are incompatible in P, } U{(a,s) €
Py, xT |3z € P)(z <, Ty, (x,8) € B and 2[any1 = a)}. Then D is a predense subset
of Py,,, XxT and D € N. Hence D N N is predense below (¢n41,tr). For convenience
sake, let us fix a T-generic filter Gr over V[G,,,,] with ¢, € T. Then there is (a,s) €
DNNN(Gg,,, XxGr). Since a € G, ,, and z,[ont1 € Ga,,,, there must be z € P, s.t. -
z <, Tn, (z,8) € B and z[ap41 = a. Since (P,,<,,1,),Zn, s, B,an41 and a are all in N,
we may assume z € N. Since s € NN Gr and t,, € Gr, we have s <t t,,. Let &,41 be a

P,, . ,-name of this . This completes the construction. ~

Let ¢ = U{gn | n < w}T1,[[sup(v N N),v). Then q € P,. We claim ¢|}-p, “Vn <
wis € As <r t,” and so g¢|“A C T[6”. To this end let G, be an arbitrary P,-generic
filter over V with ¢ € G,. Put G,, = G, [, and z,, = £,[G,, ] for each n < w.

Since g, € G4, holds for all n < w, we have

(8) zo = p.
(9) z, € P,NN and z,[a, € G, .
(10) zpy1 <, T and 3s <7 t,, (Tpy1,8) € B.
Since z,, € P, N N, we know supp(z,) C P, N N for all n < w. We conclude z,, € G,

for all n < w. Therefore for all n < w thereis s € A[G,,] with s <7 t,. Since G, is an
arbitrary P,-generic filter over V with ¢ € G,,, we have ¢ <, p.

_.{
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(1.3) Theorem. Let ((Pa, <arla)a<is (Ra) <as 1a)a<,,) be a countable support it-
eration of arbitrary length v. If for all a < v |-p, “(Qas <a, 1a) is proper and preserves
every Souslin tree”, then (P,,<,,1,) is proper and preserves every Souslin tree.

Proof. Immediate from (1.2) lemma.
_i

(1.4) Note. There is a countable support iteration ((Pn)n<w, (Qn)n<w) s.t. every
Souslin tree remains to be a Souslin tree in the generic extensions via P, for all n < w.
But P, collapses w;.

_{

(1.5) Proposition. Every Souslin tree remains to be a Souslin tree in the generic
extensions via the following notions of forcing.

(1) Strongly proper preorders.
(2) Preorders which appear in the forcing axiom SAD.

Proof. For (1): Suppose (P, <,1) is a strongly proper preorder and (T,<r) is a
Souslin tree. Fix a sufficiently large regular cardinal § and a countable elementary sub-
structure N of Hy with (P,<,1),(T,<r) € N. Let p€ PN N and § = N Nw;. By (1.1)
proposition it suffices to find ¢ < p s.t. for all t € Ts (gq,t) is (P x T, N)-generic. Let
(Dp | n < w) enumerate dense subsets of P x T which are in N. For each (¢,n) € Ts X w,
let B! ={z € PNN|3s <t (z,5) € D,}. Since (T,<7) is a Souslin tree, we know
E? is a dense subset of PN N. Since (P, <,1) is strongly proper there is ¢ < p s.t. for all
(t,n) € Ts X w E! is predense below q. We conclude D, N N is predense below (qg,t) for
all (t,n) €Ts X w.

For (2): Let U be a normal tree of height w; which is appropriate for some array
of directed sets and (T, <7) be a Souslin tree. Suppose p € U and |-y “A is a maximal
antichain of T” We want to find ¢ € U s.t. ¢ 2 p and q|-y“A is countable”. Fix a
sufficiently large regular cardinal 4 and (N, | n < w)s.t. p,U, (T, <r),A € Ny, Ny, € Npy1
and N, is a countable elementary substructure of Hyg for all n < w. Let N = |J{N,, | n <
w}, § = NNw; and 6, = N, Nw; for each n < w. Then 6, < wy, 6, < 6pyq for all
n < w and 6 =sup{é, | » < w}. Let (¢, | n < w) enumerate Ts and for each n < w s,
be the unique z € T, with z <7 t,. Note s, € N,41 holds for all n < w. We construct
(W™ |n<w)st. foralln <w

1. W™ is a normal subtree of U[6, + 1 and | W™ |= w.
Wn[8, CU N N,.

Yu € W"[6,Vk < w (u™(k) € U implies u™(k) € W").
VzeWgdz Cz3s <t sp z|-p“s € A

W™ € Npy1 and so Wit C Us, N Npy1.

wrH[s, +1=W",

AN

The construction is by recursion on n < w. We first construct WO. Since T is a
Souslin tree, we know {x € UNNp | 3s <7 sp z |-y “5 € A”} is a dense subset of U N Np.
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Now for each y € U N Ny we associate § € Us, s.t. thereisz € UN Ny s.t. y Cz C § and
for some s <7 sg z |-“3 € A”. This is possible because U N N is a normal subtree of U [6
closed under taking the immediate successors and it is assumed that U is appropriate for
some array of directed sets. Let W° = (UNNp)U{j |y € UNNy}. Then this WO satisfies
condition 1 through 4 for n = 0. Since relevant parameters are all in N7, we may assume
WO ¢ Ny. )

Suppose we have gotten W"™. We know {z € UN Npt1 | 3s <7 Spy1 z|-“5 € A7} is
a dense subset of U N Ny, as before. Now for each y € U N Ny41 s.t. there is z € W
with y D z, we associate § € Us,,, s.t. thereis z € UN Npy1 st. y € o C § and for
some 8 <7 Spt1 & |5 € A”. This is possible because W™ U {y € U N Npp1 | 32 € wg
y 2 z} is a normal subtree of U[6,41 closed under taking the immediate successors. Let
Wrtl = WrU{y,9 |y € UNNpy1 and 3z € W y 2 z}. Then this W™*! satisfies
condition 1 through 4 for n+1 and condition 6. Since relevant parameters are all in Ny 42,
we may choose W™*! in N, .. This completes the construction of (W™ | n < w).

Let W = J{W™ | n < w}. Then W is a normal subtree of U[§ closed under taking
the immediate succsessors. Since p € W there is ¢ € Us s.t. ¢ D p and for all n < w
q[6n, € W™. It is clear by the construction that for each n < w there is s <7 s, <7 t,
s.t. |45 € A”. Since {t, | n < w} = Ts and ¢ |-“A is a maximal antichain of 77, we
conclude ¢ |-“A C T[&”.

_..i

(1.6) Note. 1. There is a preorder which is not strongly proper but SAD is applicable.
For each a € Q, let 1o, : w — a be an increasing and cofinal function such that for alln < w
Na(n) is a successor ordinal. Let E = {{n4(n),a} | n < w and a € Q}. Then (w1, E) is
a Hajnal-Mate graph (see [1]). Now force a coloring f : wi — w s.t. {z1,z2} € F implies
f(z1) # f(z2). This p.o.set is an example.

2. There is a preorder which is strongly proper but SAD is not applicable. Consider
the perfect p.o.set.

3. There is a preorder which is strongly proper and SAD is applicable. For each
a € Q, let fy : @ — w be an arbitrary function. Force a function f : w; — w s.t. for all
a € Q fla# fo This p.o.set is an example.

_i

(1.7) Corollary. Countable support iterations of strongly proper preorders preserve
every Souslin tree.

Proof. Since strongly proper preorders are iterable under countable support by (0.6)
iteration theorem for strongly proper. This is immediate from (1.5) proposition.

_‘

§2. o-Baire

In this section we review an argument on o-Baire under countable support iterations

from [2].
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- (2.1) Proposition. Let (P,<,1) be a preorder. For all sufficiently large regular
cardinal # and all countable elementary substructure N of Hy with (P, <,1) € N if we
assume Vp € PN N 3G € Gen(P, N, p) G has a lower bound in P, then (P, <,1) is o-Baire.

Proof. Given open dense subsets (D,, | n < w) of P. We want to show ({D,, | n < w}
is a dense subset of P. To this end fix an arbitrary p € P. Now take a sufficiently large
regular cardinal § and a countable elementary substructure N of Hy with p, (P, <,1), (D, |
n < w) € N. By assumption we have G € Gen(P, N, p) with a lower bound ¢ € P. Since
D, € N, thereis £ € GN D,, and so ¢ < z for all n < w. Since D,, is open for all n < w,
we conclude ¢ € ({Dn | n < w}. Since p € G, we have ¢ < p.

_{
(2.2) Lemma. Let ((Pa,ga,la)as,,,(Qa,éa,ia)a<,,) be a countable support it-

eration such that v is a limit ordinal and for all o < v (Py,<4,1s) is o-Baire. Then
(P,,<,,1,) is o-Baire provided that

1. For all & < v |Fp, “(Qa, Las 1a) is p-proper for all p < w;”. 7
2. For all sufficiently large regular cardinal 6 and all (a, My, M1, G, p) s.t.
(1) a<w.

(2) My and M; are countable elementary substructures of Hy s.t.
(Pat1, <a+1, 1a+1) € My € M.
(3) p€ P, N M.
(4) G € Gen(P,, My,p[a) N My and G has a lower bound in P,.
There is G* € Gen(Pyy1, My, pla+ 1) s.t.
(5) G ={z[a|z e G*}.
(6) For any r € P, if r is a lower bound of G and is (P,, M;)-generic, then there is

r* € Pyyq such that r*[a = r and r* is a lower bound of G*.

Proof. Fix a sufficiently large regular cardinal § and a sequence (N; | ¢ < wj) of
continuously increasing countable elementary substructures of Hy s.t. (P,,<,,1,) € Ny
and (N | k < i) € N;yq for all i < wy. Notice that we have (P, <q,1s) € N; for all
a € N;Nv. Let v* be the order type of (NgNv, €) and (e; | i < v*) enumerate NoN (v +1)
in increasing order. Since | Ny |= w, we have v* < w;. Notice that a,« = v, a;41 = a; +1
for all ¢ < v* and sup{e; | j < ¢} < a; for all limit ordinal ¢ < v*.

Claim 1. We have ¢(j) for all j < v*, where ¢(j) means

For any i < j, any p € P, N Ny and any G € Gen(P,,, No,p[e;) N N;41 with a lower
bound, we have G* € Gen(Py;, No,p[a;) st. G = G*[a; (= {b[ei | b € G*}) and the
following condition (1) holds. ‘

(1) If a lower bound a of G is (Py,, Ni)-generic for all k with i +1 < k < j, then there is
a* € Py, s.t. a* is a lower bound of G* and a* [a; = a.

We show claim 1 by induction on j < v*. But we first observe

Claim 2. ¢(j) implies ¢'(j) for all j < v*, where ¢’(j) means
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For any 7 < j, any p € P, N Ny and any G € Gen(P,,, No,p[a;) N N;41 with a lower
bound, we have G* € Gen(P,;, No,p[a;) N Nj41 s.t. G* has a lower bound in P,; and not
only condition (1) above holds but also the following condition (2) is satisfied.

(2) If alower bound a of G is ( Py, , Ni)-generic for all k withi+1 < k< jand j+1 <k <
for some ! < wy, then there is a* € P,, s.t. a* is a lower bound of G*, a*[a; = a and
a* is (Pq;, Ni)-generic for all k with j +1 <k < L.

Proof. Suppose i < j, p € P,N Ny and G € Gen(P,,, No,p[e;) N Nyy1 with a lower
bound. Then by ¢(j) we have G* € Gen(Py;, No,p[a;) s.t. G = G*[a; and (1) holds.
Since relevant parameters are all in N;;;. We may assume G* € N;4;. We claim this G*
works. Now since G € N;1 and G has a lower bound, we may take a lower bound of G in
N;i;1. Once we take the lower bound of G in NV;;, we may fix a condition a of P,, which
sits below the lower bound taken and is (P,,, Ni)-generic for all £ with :+1 < k < j. This
is possible because P,, is p-proper for all p < wj. Then by condition (1), there is a lower
bound a* of G* in P,;. So G* has a lower bound. ,

Now we establish condition (2). Suppose a is a lower bound of G in P,, and is
(Pa;, Ni)-generic for all k withi+1< k< jandj+1<k <! forsomel < w;. We claim
that there is a Py;-name 7 s.t. a|-“7 € Py, N Nj11, T[a; € Go, and 7 is a lower bound of
G* in P,;”. This is because given an arbitrary P,;-generic filter G, over V with a € G;.
By (1) we have y € Py, s.t. y[a; € G, and y is a lower bound of G* in P,;. Since relevant
parameters involved are all in Njy1[Gq,] and (N;4+1[Gy,], €) is a countable elementary

substructure of (HX[G“‘], €). We may assume that y € Py, NN;;1[Go;] = Pa, N Njy1. Let
T be a P,,-name of this y. We now apply (0.4) iteration lemma for p-proper. Since a is
(Pa;» Ni)-generic for all k with j4+1 < k < land a|-“7 € Py;NN;y; and 7{o; € Ga'.”. We
have this time a* € P, s.t. a*[a; = a, a* is (Pq,, Ni)-generic for all k with j +1 < k<1
and a” |-p, “T[Gaj [ai] € Gaj”. Since a|-p,, “7 is a lower bound of G* in P,;”, we

conclude a* |- P, “G* C Gaj ” and so a* is a lower bound of G* in P,;. This completes .
the proof of claim 2.

_I

We next observe that claim 1 and 2 imply

Claim 3. For any p € P, N Ny there is G* € Gen(P,, Ny, p) with a lower bound in P,
and so (P,,<,,1,) is 0-Baire by (2.1) propotision.

Proof. We simply take i = 0, G = {0} € Gen(P,, Ng,#) N N; and a = 0 in ¢'(v*).
We get G* as claimed.

__l

Now we show claim 1 by induction on j < v*.
Case 1: j is a successor ordinal, say, j = jo + 1.

Giveni < jo+1,p € P,N Ny and G € Gen(P,,, Ny, p[a;) N N;11 with a lower bound.
Subcase 1: 7 < jj.
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By applying ¢'(jo), we have GT € Gen(Py;,; No,p[aj,) N Njo+1 with a lower bound
and G'[a; = G s.t.

(1) For any a € P,, if a is a lower bound of G and a is (P,,, Ni)-generic for all k with
i+1 <k < jo, then thereis a' € Py, s.t. a! is a lower bound of Gt and at [a; = a.

(2) For any a € P,, if a is a lower bound of G and a is (P,,, Ni)-generic for all k with
i+1<k<jand jo+1< k<! for some ! < wy, then there is af GPajo s.t. atis a
lower bound of G', af[a; = a and a' is (Pa;, s Nk)-generic for all k£ with jo+1 <k < L.
Since 6 is a sufficiently large regular cardinal and (e, , No, Njo+1, G1,p) is s.t.

(1) aj, < V.

(2) No and Nj ;1 are countable elementary substructures of Hy s.t.

(Paj +1> Sajo+15 Laj,+1) € No € Njgt1.
(3) p € P, N Ny.
(4) G € Gen(P,, , No,p[ej,) N Njo41 with a lower bound in P, .

We apply the assumption of this lemma. So we have G* € Gen(P,;, +10No, ploo41)
s.t.

(5) G*[a, = Gt and so G*[a; = G.
(6) For all lower bound af of G1 if al is (Pa;,, Nj,+1)-generic, then there is a* € Py, _,
s.t. a* is a lower bound of G* and a*[c;, = al.

To show this G* works for (1) in ¢(j), fix a lower bound a of G s.t. a is (Py,, Ni)-
generic for all k with i +1 < k < jo + 1. Then there is af € Pa,-o s.t. al is a lower bound

of G, a'[c; = a and al is (P, , Nj,41)-generic by (2) in ¢'(jo). Now by (6) just above,

there is a* € P, ,, s.t. a” is a lower bound of G* and a*[ay, = al and so a*[a; = a. This

completes subcase 1.
Subcase 2: i =jgie j=1+1.

This case is done by simply repeating a part of previous subcase. We are given p € P,N
Ny and G € Gen(Py,;, Ny, p[a;)NN;y1 with a lower bound in P,,. Since (e;, No, Nit1, G, p)
is s.t.
(1) o € v.
(2) Ng and N;41 are countable elementary substructures of Hy s.t.
(Pai+1, ai+15 la;+1) € No € Niy1.
(3) pE Py N N().
(4) G € Gen(Py,, No,p[a;) N Niyq with a lower bound.
By assumption there is G* € Gen(P,,, ,, No,p[aiq1) s.t.
(5) G*[a; = G.

(6) For any lower bound a of G if a is (Pa,, N;11)-generic then there is a* € P,,,, s.t. a*
is a lower bound of G* and a*[e; = a.
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This completes subcase 2 and case 1.
Case 2: j is a limit ordinal.

Since j is a countable limit ordinal, we may fix a sequence (j, | n < w) of ordinals
s.t. jo =14, jn < Jnt1 for all n < w and sup{j, | n < w} = j. Note that sup{e;, | n <
w} < oj. Suppose p € P, N Ny and G € Gen(Pq,, No,p[ai) N Niy1. Let (D | n < w)
be an enumeration of the open dense subsets of P,, which belong to Ny. We construct
(pn|n <w)and (G"|n <w)s.t. foralln <w

(a) po = p[aj and G° = G.
(b) pn € Pa; N Ny and G™ € Gen(Py; , No,pn[c;,) N Nj, 41 with a lower bound in Py, .
(€) Pn+1 € Dn N Ny, pr > Pnt1 and G o, = G™.

(d) For any z € P,; if x is a lower bound of G™ and is (P,;_, Ni)-generic for all k¥ with
Jn+1 < k < jpt1, then there is y € Pajn+1 s.t. y is a lower bound of G**! and
ylay, = .

(e) For any = € P,; if z is a lower bound of G™ and is (Py,_ , Ni)-generic for all k¥ with
Jn+1 <k < jpnt1 and jp41 +1 < k < I for some [ < wy, then thereis z € P,

ajn+1
s.t. z is a lower bound of G™"*!, z[a;, = z and z is (Pajn+1 , Ni)-generic for all k£ with
int1 +1 kLI

The construction is by a simultaneous recursion on n < w. Suppose we have con-
structed p, and G™ s.t. (a) and (b) are satisfied. Let D = {x € P,; |« and p,[aj,
are incompatible in Py, }U{x € Py, |3d € Dy p, > d and d[a;, = z}. Then D is an
open dense subset of P,, and D € Ny. By (b) we have z in DN G™. Since p,[c;, € G
and G™ is directed, there must be d € D, s.t. p, > d and d[a;, = z. Since parameters
Dy, pn,>,05, and z are all in Ny, we may assume d € D, N Ny. We put p,q41 = d.
Since we have G™ € Gen(Pq; ,No,pnt1[0y,) N Nj, 41 with a lower bound. We apply
¢'(jn+1)- So thereis G € Gen(Puo, , , No,Pnt1[0j, ) N Nj, 41 8.t. G™H! has a lower
bound, G"*![a;, = G™ and (d) and (e) are satisfied. This completes the construction of
(Pn |7 <w)and (G" | n <w). Let G* ={z € Py, NNy | 3In < w p, < z}. Since p, € G*
for all n < w, we conclude G* € Gen(P,,, No,p[c;) and so G*[a; is in Gen(Pq,, No,p[cv).
Since both G*[a; and G are in Gen(P,,, No,p[a;) with G*[a; C G, we get G*[a; = G.
Now given any a € P,; s.t. a is a lower bound of G and is (P,,, Ni)-generic for all &
with i +1 < k < j. We must show there is a* € P, s.t. a* is a lower bound of G* and

a*[a; = a. To this end fix such a. We construct (a, | n < w) s.t. for all n < w
(f) ap = a.
(g) an € Py, , an is a lower bound of G™ and is (P, ., Ni)-generic for all k with j, +1 <
k<j.
(h) antiley, = an.
The construction is by recursion on n < w. Suppose we have constructed a, s.t.
(f) and (g) are satisfied. In (e), take | = j. Then we have a,4; € Pa;
a lower bound of G"t!, a, [0, = ap and apyq is (Pajn+1,Nk)-generic for all £ with
Jnt+1 +1 < k < j. This completes the construction of (a, | n < w).

s.t. ap4q is
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By (h) there is a* € Py, s.t. a*[a;, = ay for all n < w and supp(p*) C sup{a;, | n <
w}. Since pn € P,; N Ny, we have supp(pn) € a; N No C sup{e;, | n < w} for all n < w.
Hence a* < p,, for all n < w. We conclude a* is a lower bound of G*. This finishes case 2
and the proof of Claim 1. ‘

._i

§3. Con( SAD + —-SH)

(3.1) Proposition. Let U be a normal tree of height w; appropriate for an array of
directed sets D. For any (6, N, p) if we assume

1. 0 is a regular cardinal with 6 > 22°.

2. N is a countable elementary substructure of Hy with U € N.
3.peUNN.

Then there is W such that, if 6 = N Nw;, then

1. W is a normal subtree of U[§ and so height(W) = é.

2.peWCUNN CUJS.

3. Va e W¥n < wif a™(n) € U, then a™(n) € W. |

4. For any h €%w if V&€ < § h[¢ € W, then {h[¢ | ¢ < 6} € Gen(U,N). -
Furthermore there is W* such that |

1. W* is a normal subtree of U[§ + 1 s.t. | W* |=w and W*[§ = W.
2. For all h € W§ {h[{| € < 6} € Gen(U,N) and so h is (U, N)-generic.

Also for any non-empty countable subset X of Ds ,, there is ¢ € Us N[ X s.t. {g[¢ |
¢ < 6} € Gen(U, N, p).

Proof. Suppose § is a regular cardinal with § > 22° and N is a countable elementary
substructure of Hy with U ¢ N. Let p e UNN.

Claim. We may fix a sequence (N,, | n < w) of countable elementary substructures
of H(Zw)-{— s.t.

1. U,p € N().
2. N, € Np4q for all n < w.
3. U{Nn|n<w}=N N Hgwy+.

Proof. Since N is an elementary substructure of Hg and 6 > 22, we have H, (2v)+ €N
and so N N H(y«)+ is a countable elementary substructure of Hswy+. Let (z, | n < w)
enumerate N N H(gw)+. There is a countable elementary substructure Ny of H(zv)+ with
U,p,zo € Ny. Since parameters Hywy+,U,p and zp are all in N, we may assume Ny € N.
Now suppose we have N, € N s.t. Ny is a countable elementary substructure of Hguy+
with z, € Ny,. There is Npy1 s.t. Nuy1 is a countable elementary substructure of Hywy+
with Np,Zpy1 € Npyi. Since parameters H(zw)-{—,Nn and z,41 are all in N, we may
assume N,4; € N. This way we get (N, | n < w). Since z, € N, € N and | N,, |= w we
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have N, C N and so N N Hipuy+ = {2n | n < w} CU{Nn | n <w} C NN Huy+. This
completes the proof of claim.

_|

Let (D, | n < w) enumerate the open dense subsets of U which belong to N. Since

Dn, € NN Hpoyr = U{Nn | n < w}, we may assume D,, € N, for all n < w. Let

6, = N, Nw;y for each n < w and let § = N Nw;. We construct (W™ | n < w) s.t. for all
n<w

(1) W™ is a normal subtree of U[6, + 1, | W" |= w and W™ € Np41.
(2) W"[6, C Ny.

(3) For all z € W thereisy € D N Ny s.t. y C 2.

(4) For all a € W"[§,, and all k < w if a™ (k) € U, then a™(k) € W™.
(5) W[5, + 1= Wn.

The construction is by recursion on n < w. Since for any z € U N Ny there is
y € Dy N Ny s.t. z Cyand UN Ny is a normal subtree of U[§y closed under taking the
immediate successors. So for all y € U N N, there exists z € Us, s.t. y C z. We may
construct W0 in Nj s.t. each condition (1) through (4) for n = 0 is satisfied. Suppose
we got W". Since Wg! € Npqq and | Wi |= w, so Wi C Np41 holds. Since for any
2 € UN Ny thereis y € Dypyi N Npyq st 2 Cy. And for all y € U N Nyyq there exists
z € Us,,, st. y C z. We may construct W™*!. This completes the construction. Let
W =U{W" | n < w}. Since § =sup{d, | n < w}, we claim this W works.

We next construct W*. Since U is appropriate for D and W is a normal subtree
of U[§ closed under taking the immediate successors. For any f € W we may associate
f€Usst. forall ¢ <6 f[¢ € W holds. Let W* =W U {f | f € W}. This W* works.

Lastly for any countable X C Ds, with X # 0, we have (| X € D5, and so there is
g € UsN X s.t. g Dpandforall{ < éq[§ € W holds and so {¢[¢ | £ < 6} € Gen(U, N, p).
This completes the proof of (3.1). ’

..|

(3.2) Lemma. Let U be a normal tree of height w; appropriate for an array of
directed sets D. Then

1. (U,<,0) is o-Baire.
2. (U,<,0) is p-proper for all p < wy.

Proof. For 1. By (3.1) for all sufficiently large regular cardinal 6 and all countable
elementary substructure NV of Hy with U € N, we know for all p € U N N there exists
G € Gen(U, N,p) s.t. G has a lower bound in U. By (2.1) U is o-Baire.

For 2. Let 0 be a sufficiently large regular cardinal and p € U. Fix a continuously
increasing countable elementary substructures (N¢ | £ < wy) of Hg s.t. U,p € Ny and
(Ny | m < &) € Neyq for all € < wy. Let 6 = Ne Nw; for each € < wy.

Claim. (&) holds for all £ < w;, where ¢(£) means
For any n < ¢ and any W s.t.
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W is a normal subtree of U[6,+ 1 and p € W € Np41.
W(é, CUNN, CU[b, and | W |= w.

Va € W6, Yk < w a™ (k) € U implies a™(k) € W.

Vh € Ws, ¥ < n h is (U, Nj)-generic.

There is W* s.t.

W* is a normal subtree of U[d¢ + 1 and W* € N¢q1.
W*[6¢ CUNNg C U[8e and | W* |= w.

Va € W*[6¢ Vk < w a™(k) € U implies a™ (k) € W*
Yh € Wg; VE< € his (U, Ng)-generic.
W*[o,+1=W.

- W

A

Proof. By induction on £ < wy. Fix n < £ < w; and W as in the hypothesis.
Case 1: ¢ is a successor ordinal.

Without loss of generality we may assume ¢ = 7+ 1. For each z € W;_, since € N,
we may apply (3.1) proposition for z by putting N = N¢. So there is W, s.t.
1. W, is a normal subtree of U[6¢ + 1 and z € W,
2. Wi[0e CUNNg and | W, |= w.
3. Va € W, [6 Vk < w a™(k) € U implies a™ (k) € W,.
4. For all h € (Wy)s, his (U, N¢)-generic.
Let W* = WU {y € W, | y 2 = and z € W;, }. Since parameters U, &¢, N¢, (Vg |
€< €),6, and W are all in N¢y1, we may assume W* € Ngyq. This W* works.

Case 2: ¢ is a limit ordinal.

Fix an increasing sequence (£, | n < w) of ordinals s.t. = {y and sup{{, |n <w} =
&. We construct (W™ |n < w) s.t. forall n <w

wWo=w.

W™ is a normal subtree of U[é¢, +1 and W™ € N¢,_41.

W"f&gn CUNNg, C U[-(sgn and l wn |= w.

Va € W"[6¢, Vk < w a™(k) € U implies a™(k) € W™.

Vh € ngn Vi < &, his (U, N;)-generic.

Wt I-(Sgn +1=W,. ‘

This is done by applying ¢(&,) for all 1 < n < w. Let W = JY{W" | n < w}.
Then W1 is a normal subtree of U[§; closed under taking the immediate successors. So
for each a € W' we may associate & € Uy, s.t. @ C @ and for all & < & af[a € WT. Let

W* = Wiu{a|a e Wt}. Since parameters U, b¢, Ne, (Ng | £ <¢),6, and W are all in
N¢y1. We may assume W* € Ngyy. This W* works. This completes the proof of claim.

._|

ANl A N
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For any ¢ with 0 < ¢ < w; by (3.1) proposition, there is W s.t. W satisfies the
assumption in ¢(€) with 7 = 0. So there is W* as in ¢(¢). In particular there is ¢ € U s.t.
q D p and for all £ < ¢ q is (U, Ng)-generic. So U is p-proper for all countable ordinal p.

_‘
(3.3) Lemma. Let (P x U, <,(1,1)) be a two-step iteration such that

1. (P,<p,1) is o-Baire and proper.

2. For some fixed array of directed sets D, we assume | p “Either U is a tree appropriate
for D or U = {0}”.
Then for any (6, Ny, N1, (p,7),G) such that

1. 0 is a sufficiently large regular cardinal.

2. Ny and N are countable elementary substructures of Hg with
(P * 'U> <, (17 1))3D € Ny € Ny.

3. (p,7) € (P *xU) N Ny.
4. G € Gen(P, Ny,p) N N7 with a lower bound in P.
There is G* € Gen(P x U, Ny, (p, 7)) such that

1. G={x e PN Ny | 3o (z,0) € G*} and G* has a lower bound in P x U.
2. For any r € P if r is a lower bound of G and (P, N;)-generic, then there is 7 s.t. (r,m)
is a lower bound of G* in P x U.

Proof. Since {x € P | z|-“U is appropriate for D” or z|-“U = {0}”} is a dense
open subset of P and belongs to Ny. We have two cases to consider.

Case 1: There is g € G s.t. g|-“U = {0}”.
Let G* = {(z,0) € (P+xU)NNp | 3g € G (g,7) < (x,0)}. This G* works.
Case 2: Thereis g € G s.t. g|“U is appropriate for D”.

Since G € Gen(P, Ny,p) N Ny with a lower bound, there is a lower bound =z € Ny of
G. Since (P,<p,1) is proper, there is y € P s.t. y <p = and y is (P, Nq)-generic. Notice
that since y is a lower bound of G, y is also (P, Np)-generic. Hence it is possible to fix a
P-generic filter Gp over V s.t.

1. Gp ﬂNo[Gp] =Gp NNy =0G.
2. No|Gp] OV = No.
3. Nl[GP] N V = Nl.
Let 6o = NoNw;. Then §y = Ny[Gp]Nw; holds. We make use of Gp to define G* for
convenience sake. Since Ny[Gp] is a countable elementary substructure of H ;/ 167] with

U[Gp] € Ny|Gp) and 7[Gp] € TY[GB] N No[Gp]. We may apply (3.1) proposition with
X = N1 N Dg, +(gp]- So thereis g € U[Gp]N Pwn X s.t.

4. {qf¢| € < bo} € Gen(U[Gp], No[GP], 7[GP]).
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For every ¢ < &, since ¢[¢ € Ny[Gp]NU[Go]N éw = NoNU[Gp]N ¢w and (P,<p,1)
is o-Baire, there is (7¢ | £ < &) € V s.t. for all £ < &

5. Te € Ny.

6. ”"P“TE € U”.

7. 3z¢ € G (= No[Gp) N Gp) s.t. z¢ |- “me = ¢q[€”.
8

. 3z € Gs.t. z|“dom(7) = &” for a unique o < wy, let 7, = 7.
Define G* = {(z,0) € (P*U)N Ny |3g € G I < & (g9,7¢) < (z,0)} in V.
Claim 1. G* € Gen(P U, Ny, (p,7)).

Proof. It is clear that G = {x € PN Ny | 3o (z,0) € G*}, (p,7) € G* C (P+U)NNy
and G* is upward-closed in (P * U) N Ny. To see G* is directed, suppose g1,92 € G,
&1,& < . Since zg, |F4Te, = q[&”, ze, |F4Te, = q[€” and z¢,,x¢, € G, there is
g3 € Gst. g3 <p 91,92, %¢,,Te,. We may assume & < & s0 g3 |-“7¢, 2 7¢,” and so
(g3, 'rgz) (91,7¢,), (92, 7¢,). To show G* takes care of every open dense subset C € Ny of
P % U. We first note that {d[Gp] |3 d € Gp (d,d) € C} is an open dense subset of U[Gp]
which is in No[Gp]. Since {q[¢ | £ < 6o} € Gen(U[Gp], No|Gp], T[Gp]), there is £ < &
s.t. for some (d,d) € C N Ny[Gp] = CN Ny, d € G = GpN Ny and ¢[¢ = d[Gp] hold.
So there is z € Gp N No[Gp] = G s.t. z|p g€ = d”. Since d,z¢ € G, we may assume
z < d,z¢ and so z |-“7¢ = d”. Namely we got (z,7¢) € G* s.t. (2,7¢) < (d,d) € C N Ny.
This completes the proof of claim 1.

._|

Claim 2. For any r € P if r is a lower bound of G and is (P, N;)-generic then
r|-“G € U”. And so there is 7 s.t. (r,7) is a lower bound of G* in P + U.

~ Proof. Let f € %>wN Ny be s.t. thereis g € G with g |-“7 = f”. There is a P-name
A € N s.t.

|- p“If U is appropriate for D and f € U[&;, then A € Ds,.5 and for all h € A if for
all ¢ < 6 h[¢ € U and h,D f hold then h € U”.

This is possible because parameters U, D, Ds, f,8, f and (P,<p,1) are all in Nj.
Since r is a lower bound of G and is (P, N;)-generic we get  |-p“A € N;[G] N Ds, 5 =
N1 N Dsy 5 = X”. Since ¢ D 7[Gp] = f, ¢ € PwnNNX and r |-“V€ < & q[¢ € U”, we
conclude r |-“§ € U”. This completes the proof of claim 2, case 2 and (3.3).

4

(3.4) Lemma (V =L). Let (D¢ | ( < wy) enumerate the arrays of directed sets
D= (Das|laeQ fe *w)st. foralla € Qandall f € *>w | Dy |< w;. Fix a
function 7 : wy — Wy X Wy X wy s.t. ’

1. If () = (¢, 7,€) then (,n,¢ < o
2. For all (¢,7,€) € wa X wy X wy, {a < wy | 7(a) = (¢,n,€)} is cofinal in w,.
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We can define a countable support iteration ((Pa, Larla)a<wss (Qa, o1 )a<w2) and
(Tn,e | M, € < wa) such that for all o < wy
(1) P, is p-proper for all p < wy.

(2) P, is o-Baire.

(3) P, has a dense subset of size at most w; and so has the wy-c.c..

(4) P, preserves every cofinality and so cardinality.

(5) P, preserves GCH.

(6) For all £ < wy 7o is a Py-name s.t. |p, “7q ¢ C “17w”.

(7) For all P,-name 7, there is £ < wy s.t. | p, “7 C “*”w implies 7 = 74,¢”.

(8) Let w(a) = (¢,n,€), then |-p, “If 7, ¢[Go[7] is a tree appropriate for D¢ then Qo =

TnelGal7)] else Qq = {0}”.

Proof. The construction is by recursion on a < wz. Suppose we have constructed
((Ps,<p,18)p<ar (@, <p,18)p<a) and (T | 1 < @, € < wy). We want to get Q, and
(Tag | € < wy). Since P, has a dense subset of size wy and |Fp, “w; = w} and “1>w =
(“1>w)V”, we may get (To ¢ | € < ws) s.t. (6) and (7) are satisfied. If m(a) = ((,n,€), then
n < a and so we have a P,-name 7, ¢. Hence it makes sense to define @, as in (8). Then
we have by (3.2) lemma

| Qo |< w1, Qq is p-proper for all p < w; and is o-Baire”.

So Py41 also satisfies (1) through (5). All we left to show is that (1) through (5) hold
for the limit ordinal c. But the iteration lemma for p-proper (0.4) takes care of (1). We
combine (2.1),(2.2),(3.2) and (3.3) to get (2). The iteration theorem for proper (0.3) gives
us (3). Now (4) and (5) follow from (1),(2) and (3). This completes the construction.

_{

(3.5) Theorem (V =L). Let ((Pa;<a,la)agws: (Qar Lasla)acw,) be as in (3.4).
Then we have
(1) P,, is p-proper for all p < w;.
(2) P,, is o-Baire.
(3) P.,, has the wy-c.c. and has a dense subset of size ws.
(4) P,, preserves every cofinality and so cardinality.
(5) P,, preserves GCH.
(6) ., “SAD".
)

(7

For all w;-Souslin tree T' | P., “T' remains to be an w;-Souslin tree ”

Proof. We know (1) and (2) are dealt with in the same way as in (3.4). For (3),
we make use of (3) of (3.4) and a usual A-system argument under CH. Hence (4) and (5)
hold. We deduce (7) by putting together (1.3) and (1.5). So we concentrate on showing
(6). Suppose D is an array of directed sets and p -r., “U is appropriate for D”. Since
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P,, has the wp-c.c., thereis (,£) € wp Xwy s.t. pl-p,, “U = Ty £[Guy [n]”. For each § € Q
and each f € %>w, let Aa’f be a P,,-name s.t.

pl-p,,“f € U[6 implies (A5 s € Ds,s and for any h € As 5 if for all £ < § h[£ € U
and kD f, then h € U)”.

By the wy-c.c., there is a countably complete directed subsets Dj  of Ds s s.t. | Dj ¢ <
wr and pll-p,, “f € U[6 implies As s € D} 5+ Choose ( < w; s.t. D¢ = (Ds 16 €9,
f € >w). Let a < wy bes.t. m(a)= (C,n, ) and supp(p) C a. So DMc = (D%)s,5 C Ds ¢
for all 6 € Q and all f € *w.

Claim. p[a|p, “Ty ¢[Ga[7)] is appropriate for D¢”.

Proof. Let G, be an arbitrary P,-generic filter over V with p[a € G,. Since 7, ¢ is a
P,-name and 7 < ¢, it makes sense to consider 7, ¢[G[7] in V[G,]. Since supp(p) C a, we
may fix a Pw -generic filter G, s.t. p € Gy, and G,,[a = G4. Let G, = Go[n = G, [
and U = U[G,,] = 7¢ 1[G4]. Now since U is appropriate for D in V[G,,], U is a normal
tree of height w; in V[G.,]. Since (“*>w)VICw] = (“1>w)V, U is a normal tree of height
wy in V[G,). Since As f[G.,] € (Dc)gf for all § € © and all f € U[6. For any § € Q
and any f € U[6, there is A (= As ¢[G.,]) in (D%)s 5 such that for all b € A if for all

E<6h[§ €UandhDf,then h € U in V[G,). Next let § €  and W be a normal
subtree of U[§ closed under taking the immediate successors in V[G,]. For any f € W and
any B € (D%)s,, since W is a normal subtree of U[6 closed under taking the immediate
successors in V[G,,], thereis h € B s.t. h D f and for all £ < § h[{ € W. This is true in
V[G,] as well by absoluteness. This completes the proof of claim.

Hence p[a|-p, “Qa = T,,,g[C?a [m]”. So p[a + 1|kp.,, “Tye[Gat1]n] gains a cofinal
path through it” and so p|-p, “U gains a cofinal path through it”.

_‘
(3.6) Note (CH). There is a notion of forcing P s.t.

1. P is strongly proper and so preserves every wi-Souslin tree in the ground model.
2. P is o-Baire and so preserves CH.

3. The negation of { holds in the generic extensions.

The construction of P is similar to (3.4) and (3.5).

References

[1] U.Avraham, K.Devlin and S.Shelah, The consistency with CH of some consequences
of Martin’s Axiom plus 2% > R, Israel Journal of Math., Vol. 31, No.1, 1978.

[2] S.Shelah, Propre Forcing, Lecture Notes in Math., Vol. 940, Springer-Verlag, 1982.



