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Infinitary Jonsson functions and elementary embeddings

MasAHIRO SHIOYA ( 5 7\5 //é:» 7)()\ )

Abstract. We apply Erdos-Hajnal’s partition theorem to combinatorics
on [M\]* and derive Kunen's theorem on nontrivial elementary embed-
dings as a corollary. Pushing this idea further, we also show that a
positive answer to Magidor’s question improves Kunen'’s theorem.

0. INTRODUCTION

Elementary embeddings between transitive models of ZFC have been
central notions in set theory. Requiring the target model of the embed-
ding to be larger, we get stronger properties and closer to inconsistency.

The following limitation for the size of the target model is highly
celebrated.

THEOREM 1 (KUNEN [6]). Let j : V — M be a nontrivial elementary

embedding and X the least fixed point of j above the critical point of j.
Then 3"\ ¢ M.

Various proofs have been provided for Theorem 1 [1, 4, 5], but Kunen’s
original proof is still of some interest because of its simplicity. In this
note, we take an alternative approach to the proof of Theorem 1 via
Erdos-Hajnal’s partition theorem [2] used also by Kunen, working with
the canonically induced ultrafilter on [A]* rather than the embedding
j:V — M with 77X € M. The ultrafilter is strongly normal and
nonprincipal as is well known to be for supercompact or huge embeddings
[8]. But an w-Jénsson function on A (i.e. a witness for A 4 [A]{) gives
us the nonexistence of such a filter and hence the desired contradiction.

Considering a bounded w-Jénsson function on A (i.e. a witness for A /4
[)\];‘f’b), whose existence was asked by Magidor [5], a strongly seminormal
filter and an extender (i.e. a direct system of ultrafilters) instead of
an w-Jonsson function, a strongly normal filter and a single ultrafilter
respectively, we obtain our main result.

THEOREM 2. Let j : V — M and X be as in Theorem 1. Assume that
a bounded w-Jénsson function on A exists. Then j”a & M for some
a< A '

Therefore Theorem 1 will be improved if Magidor’s question is solved
positively for strong limit cardinals of countable cofinality (in fact, a
slightly weaker condition suffices).
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1. PRELIMINARIES

First we introduce some notions and notations. We use &, A and pu
to stand for an infinite ordinal. By (z)#, we denote the set {y C « :
ot y = p}, where z is a set of ordinals and ot y is the order type of
(y,€). By [z]# (resp. [z]}), we denote the set {y C = : |y| = p} (resp.
{y € [z]# : supy < sup z}), when p is an infinite cardinal.

F is said to be a filter on [A]# if F C P[A]# is closed under intersection
and superset and is fine, ie. {x € [A]¥ : 2 D a} € F for any o < A.
A filter F on [A]# is said to be k-complete if (X € F for any X C F
with |X| < &, principal if (JF # 0, and an ultrafilter if F' is maximal
with respect to inclusion. Also, F is said to be strongly normal (resp.
strongly seminormal) if AgepwXe = {x € [A]¥ :Vagz]Y 2 € X} €F
(resp. AgeppeXa = {z € [A]* : Va € [z]f z € Xu} € F) for any
{Xa:a€[AN“}C F (resp. {Xa:a €AY} CF).

By A — [u]“ (resp. A — [u]“'?), we mean that for any f : [\|* — &
(resp. f : [A]Y — k) there exists z € [A]# with f’[z]¥ # & (resp.
Flals # K.

By j: N — M, we mean that j is a nontrivial elementary embedding
between transitive models (N, €) and (M, €) of ZFC. We also use 7 and
k with subscripts other than j. V denotes the set-theoretic universe. By
crit j (resp. fix j), we denote the least ordinal moved by j (resp. fixed
by j above crit 7).

Theorem 1.1 is essential in both of Kunen’s and our proof of Theorem

1.

1.1. THEOREM (ERDOs-HAJINAL [2]). A 4 [A]Y holds for any infinite
cardinal A.

2. PROOF OF THEOREM 1

We start by showing a simple fact on combinatorics of [A]*, which is
a subtheory of that of PA studied in [1, 9].

2.1. PROPOSITION. Any strongly normal filter on [\]* is principal.

PrOOF: Let F be strongly normal. We show {\} € F.

Let f : [A]¥ — X be a witness for A 4 [A]{ ie. f’[z]* = A for any
z €[N} Set X, ={xe[\*:z>5 fla)} € F for a € [\]*. Then
DoeppeXa={e € N} f'[]* Ca}={A} € F. I

Before proceeding to the proof of Theorem 1, let us note the following
simple fact.

2.2. PropPoOSITION (FOREMAN [3]). Let j : V — M and j") € M.
Then PA € M.

Now we prove Theorem 1.



Assume otherwise. Then A is a cardinal by Proposition 2.2 and we
can define an ultrafilter U on [A]* by “X € U iff j/X € jX”. First we
claim that U is strongly normal.

Fix {X, :a € [\]*} CU. Then j”) € j(AgepeXa) = {z € N}NM :
Vae[z]*NM z € (jX)a}, since j’a = ja for any a € [A]“. Thus
AaE[A]WXa ev.

Next we claim that U is non-principal.

Otherwise we can pick z € [A]* with jz = j”A. Then z = ) and hence
A = j” . Contradiction.

Now that Proposition 2.1 and the two claims above yield the desired
contradiction. |

Let us conclude this section with a remark, which leads us the em-
bedding considered in the next section.

2.3. THEOREM. Let j:V — M and A = fix j. Then 7"z ¢ M for any
z € (M) . |

Before proceeding to the proof, let us observe the following simple
fact. '

2.4. PROPOSITION. Let j:V — M. Then j"z < jx for any x C Ord
with ot ¢ > crit j.

Proor: We show only properness of the inclusion.

Fix o € z with ot (zNa) = k = crit j. Then ot (j”xNja) = ot j/(zN
@) = k, while ot (jzNja) =ot j(z N ) = jk. Hence j"z # jr. B
Proor oF THEOREM 2.3: To argue by way of contradiction, fix z €
(A)* with j”z € M. We show that for any f : [z]¥ — =z there exists
y € (z)* with f’[y]* € =, which, together with Theorem 1.1 for |A|,
yields the desired contradiction.

Fix f:[z]Y — z. Then j”z witnesses M |= “Ty € (jz)* (f)'[y]* S
j&”, since (jf)'[j"z]¥ C 3"z and by Proposition 2.4. Hence Jy €
(z)* f"[y]* € z by elementarity of j. §

3. PROOF OF THEOREM 2

First of all, we give a characterization of the elementary embedding
stated in Theorem 2 using an extender. In the course of the proof, we
show that it is also equivalent to the axiom I2 considered in [5, 8].

The notion of an extender dates back to Powell [7]. Our proof is just
a combination of his argument and one for huge embeddings in [8].

3.1. THEOREM. The following are equivalent.
(1) There exists j : V — M with k = crit j,A = fix j and VA C M.
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(2) There exists j : V — M with k = crit j,A = fix j and {j"a : a <
A} C M.

(3) There exist an increasing sequence of cardinals {k, : n < w} with
k = kg and XA = sup,,., &n, and {Uy, : n < w} such that U, is a
strongly normal nonprincipal k-complete ultrafilter on [kp41]*"
for any n < w, that Y € Up, iff {y € [kn+1]*" 1 YN Emy1 EY} E
Up for any m < n < w and Y C [km+41]®™, and that for any
{Yo n<w} withY, € U, foranyn < w there exists ¢ C A with
£ NKpt1 €Yy for any n < w.

Proor: (1)—(2). Trivial.

(2)—(3). Let j : V — M be asin (2). Define a cardinal &, inductively
by ko = k and Kn41 = jKn, and an ultrafilter U, on [kn41]% by Y € U,
iff jkn41 € 7Y”. Then it is straightforward to see A = sup,, <, kn and
strong normality and coherence of U,’s. Hence we show only the last
clause in (3).

Assume otherwise. Then we can pick {Y, : n < w} such that Y, € U,
for any n < w and that for any  C A there exists n < w with £NK,41 &
Yo, Set T =, co{y € [Bng1]*» : Vm <n yNkmy1 € Yin}. Define
a partial order <y on T'by “2 <p yiff m < nand y = 2N Kpny1”,
where y € TN [km41]®™ and z € T N [Kp41]*~. We claim that <p is
well-founded on 7.

Otherwise we can pick {y, : n < w} C T with yp41 <t yn for any
n<w. Sety=J),c,¥n- Then yNkpy1 = yo Nkng1 € Yy, for any
n < w. Contradiction.

Let » : T — Ord be the rank function with respect to <p, i.e. r
is defined inductively by »(y) = sup{r(z) + 1 : z <p y}. Then for
any m < n < w, (Yep{y € [fnp1]™ tyNupn eV} Cc{yeTn
[kns1] : 7(y) < P(y N\ Kmy1)} € Uy by the definition of <7, and hence
(3r)(J" knt1) < (G7)(J" Knt1 N jEm+1) = (J7)(J”Km+1) by the definition
of U,,. Contradiction.

(3) = (1). Let {ks : n < w} and {U, : n < w} be as in (3). Let
n V. — M, = Ult(V,U,) be the canonical embedding for n < w.
Define an elementary embedding ¢y, , : My, — My by i n([flu,.) =
[(f(z N Emy1) : & € [Knt1]*)]u, for m < n < w. Let M be the limit of
the direct system ({M, : n < w},{imn : m < n <w}), or equivalently,
M 1s defined as follows.

Set (A2 = {z C A :Vn<w |zNkng1| = kn}. Define a subalgebra
P;[A]2 of the boolean algebra P[A]} by “X € P;[A]} iff X = {z € [A]}:
TN Kpyr €Y} for some n < wand Y C [k,41]°*”. An ultrafilter U
in Ps[A]} is defined by “X e Uif X = {e € [\]} : e N kpy1 € Y}
for some n < w and Y € U,”. Let F;[A]2 be the proper class of all



g : [A]} — V such that there exist n < w and h : [kp41]"» — V with
g(z) = h(x N kpy1) for any z € [N}, An equivalence relation ~y on
F¢[A]} is defined by “g ~y ¢’ iff {z € [\]} : 9(z) = ¢'(z)} € U”. Set
M = {[glu : g € F[N]2}, where [g]v is the equivalence class of g under
~y. A membership relation €y on M is defined by “[glv €m [¢']u iff
{z € N2 : g(z) € ¢'(x)} € U”. First we claim that €y is well-founded
on M.

Otherwise there exists {g, : n < w} C F;[A]} with {z € [A]} :
gn+1(2) € gn(z)} € U for any n < w, or equivalently, there exist an
increasing {n, : m < w} Cw and {hn, : [kn, +1]%*» — V : n < w} with
Ynm+1 = {y e [Knm+1+1]x.nm+1 : hm+1(y) € hm(y N Knm'*‘l)} E Unm+1
for any m < w. Then we can pick £ C A such that for any m < w,
ENEnpy € Yo 1€ hng1(8 Nk, yi41) € hn(2 N Ky, 41). Contra-
diction.

Hence we identify M with its transitive collapse and claim that V) C
M.

Fix n < w. Then M, is closed under k,4;1-sequences, since i), Kp41 =
[id]ly, € M,. Hence k,4; is inaccessible, since i,(kn) = in([{|z] : z €
[Kmt1]*™Nun) = [(l2 0 kmy1] 2 € [kag1]™ Mo, = |5 6n41 N in(Kmtr)]
= | km+1| = Km41 for any m < n and since kg is inaccessible. Thus
Viwsr C Mp.

Now let k,, : M,, — M be the canonical embedding. Then crit &, >
Kn+1, since i 1(a) = in1([(ot (zNa): & € [Kpt1)*)]u,) = [{ot (xNa) :
¢ € [ki41]*)u, = a for any a < Kpqq, Le. crit 4,7 > Ky for any
n<l<w. Thus Vi, ., CM. I

In Theorem 3.1(3), we adopt strong normality rather than normality
just for later use.

3.2. PROPOSITION. Assume that A /> [A]$"* holds. Then {)\} € F for
any strongly seminormal filter F on [A]*. '

The proof is analogous to that of Proposition 2.1.

3.3. LEMMA. Assume that the assertion (3) in Theorem 3.1 holds.

Then there exist a strongly seminormal filter F on [A]* and X € F with
AgX.

PROOF: Define F by “X € Fiff {x € A} :Vn<w zNkpp1 €EYn} C X
for some {Y, : n <w} with Y, € U, for any n < w”, where {x, : n <w}
and {U, : n < w} are as in (3). First we claim that F' is strongly
seminormal.

Fix Yoo € Up for a € [A]Y and n < w. Set X, = {z € [A\]* : ¥n<
W ZNKpy1 € Yo n} € Ffora € [A]Y. We show that X = Agepje Xa € F.
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Set Zarn = Nmeni¥ € [knt1)™ 1 YN kmy1 € Yam} € Uy for a € [AY
and n < w. Then for any n < w, Zn = Ags¢[knyi]v Zan € Un by strong
normality of U,. Hence Z = {z € [\]* : Vn<w £ Nkpy1 € Zp} € F.
We show that Z C X (in fact, equality holds) and complete the proof of
strong seminormality of F'.

Fix z € Z,a € [A]{ and m < w. Pick m < n < w with a € [Kp41]”.
Then 2 N Kkpy1 € Zgp, since ¢ € Z. Hence £ N Kmy1 € Yo m by the
definition of Z, ,. Thus ¢ € X. .

It is obvious that {z € [A]* : |z N k1| = Ko} witnesses the latter
statement in the lemma. §i

Now that Theorem 3.1, Proposition 3.2 and Lemma 3.3 prove Theorem
2.

We remark that the existence of a bounded w-Jénsson function in
Theorem 2 can be weakened as follows. Let F) be the minimal strongly
seminormal filter on [A]*. Then by the proof above, it suffices to assume
that {A} € F, which is equivalent to the existence of f : [A]{ — A such
that the closure of z under f is A for any z € [A\]* by Proposition 3.4.

3.4. PROPOSITION. X € F) iff {z € [\}* : f"[z]Y C 2} C X C [M] for
some f : [AlY — A

PROOF: We show only-if part, i.e. that the set {{z € [\]* : f/[z]y C
x}: f :[A]Y — A} generates a strongly seminormal filter.

Fix f : [A]Y x [A]Y — A. Define g : [A]Y — [A]<¥ by ¢(a) = {f(c,d),
m(a,a), (o, B), 7(B,a)} if a = 7"c x d and g(a) = {n(e, @), 7(e, B),
7(B3,a)} otherwise, where m : A2 — X is the canonical bijection, o =
mina and 8 = min(a — (@ +1)). Then {z € [A\]*: ¢"[z]y C Pz} C {z €
A} 2 f'[)y x [2]Y C z}, since 77¢ x d € [2]¢ for any z € [A]* closed
under g and ¢, d € [z]{.

Next define A : [A]Y — A by h(a) = gn({7e : € < a}), where 7 : (w; —
W) Xw — w1 —w is a bijection with 7(a,n) > o for any e and n, {7¢ : € <
m(a,n)} is the increasing enumeration of ¢ and {gn,(a) : m < w} = g(a).
Then {z € N\ : R"[z]¥ C 2z} C {z € [\]* : ¢"[2]¥ C Pz}, since for any
a € [z]y and n < w there exists ¢ € [z]y with h(c) = gn(a).
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