On Splitting Numbers

Toshio Suzuki (鈴木 登志雄)

Dept. of Math. Univ. of Osaka Prefecture (大阪府立大学 総合科学部)

Oct. 31. 1992

Abstract. We shall discuss about splitting numbers of uncountable regular cardinals.

1. Question about splitting numbers

The author introduced a question about splitting numbers of uncountable regular cardinals at a talk in Aug. 4. 1992 at RIMS, Kyoto.

Let κ be an infinite cardinal. $S \subseteq [\kappa]^{\kappa} (= \{X \subseteq \kappa : |X| = \kappa\})$ is called a splitting family on κ if for all $X \in [\kappa]^{\kappa}$ there exists an $A \in S$ such that $|X \cap A| = |X \setminus A| = \kappa$. The splitting number of κ is the minimum cardinality of a splitting family on κ . We denote it by $s(\kappa)$.

In particular, $s(\omega)$ is the original splitting number, which is one of the so-called six cardinals and the following is well-known.

FACT. [2]

- (1) $s(\omega) \geq \omega_1$.
- (2) Con(ZFC) implies $Con(ZFC + s(\omega) \ge \omega_2)$.

What about uncountable regular cardinals? In 1991, M. Motoyoshi studied splitting numbers of uncountable regular cardinals under the supervision of S. Kamo.

FACT. [5] Let κ be an uncountable regular cardinal. Then κ is strongly inaccessible $\iff s(\kappa) \ge \kappa$.

At that time I pointed out the following fact.

PROPOSITION. Let κ be an uncountable regular cardinal. Then κ is weakly compact $\iff s(\kappa) \ge \kappa^+$.

PROOF: (\Rightarrow) Suppose κ is weakly compact. Assume for a contradiction that $S = \{S_{\alpha} : \alpha < \kappa\}$ is a splitting family on κ . For each α , let $S_{\alpha}^{0} = S_{\alpha}$ and $S_{\alpha}^{-1} = \kappa \setminus S_{\alpha}$. Put $T = \{f \in {}^{<\kappa}2 : |\kappa \cap \bigcap \{S_{\alpha}^{-f(\alpha)} : \alpha \in \mathbf{dom}f\}| = \kappa\}$. Then (T, \subseteq) makes a κ -tree. Hence there is a $g : \kappa \to 2$ such that for all $\alpha < \kappa$ $g\lceil \alpha \in T$. Consider the next two cases. (i) When the sequence $\langle \bigcap \{S_{\alpha}^{-g(\alpha)} : \alpha < \xi\} : 0 < \xi < \kappa \rangle$ is eventually constant. (ii) Otherwise. In either cases, using the sequence above, we can get an $X \in [\kappa]^{\kappa}$ which witnesses that S is not a splitting family on κ , a contradiction.

(\Leftarrow) Suppose κ is uncountable regular and $s(\kappa) \ge \kappa^+$. By Motoyoshi's result above, κ is strongly inaccessible. Assume for a contradiction that κ is not weakly compact. Let (T, \prec) be a well-pruned κ -Aronszajn tree which witnesses this assumption. For each $t \in T$, let $S_t = \{u \in T : t \preceq u\}$ and put $S = \{S_t : t \in T \text{ and } |S_t| = \kappa\}$. Fix an arbitrary $X \in [T]^{\kappa}$. Then it is easily verified that for some $\alpha < \kappa$, the α -th level of T has two distinct members, say u and v, so that both $X \cap S_u$ and $X \cap S_v$ has size κ ; if not, one can get a chain of length κ in T, contradicting that T is κ -Aronszajn. Since X was arbitrary, S makes a splitting family on T. However, the size of S is clearly at most κ . Therefore $s(\kappa) \leq \kappa$, a contradiction (Q.E.D.)

Question 1 Does $Con(ZFC + \exists a \text{ measurable cardinal})$ imply $Con(ZFC + \exists \kappa \text{ s.t. } \kappa \text{ is an uncountable regular cardinal and } s(\kappa) \geq \kappa^{++})$?

REMARK: $Con(s(\kappa) \ge \kappa^{++}, \kappa \text{ uncountable regular })$ implies $Con(\exists a \text{ measurable })$. Suppose κ is an uncountable regular cardinal and $s(\kappa) \ge \kappa^{++}$. Let K be the Dodd-Jensen core model. There exists an $X \in [\kappa]^{\kappa}$ such that no $Y \in P(\kappa) \cap K$ can split X. Then $U = \{Y \in P(\kappa) \cap K : |X \setminus Y| < \kappa\}$ makes a $K - \kappa$ -complete ultrafilter. Hence by Dodd-Jensen's result [1], there is an inner model of a measurable cardinal.

2. Answer(s)

In August 1992, S.Kamo and T.Miyamoto independently showed a slight stronger result than the following.

THEOREM. [3], [4] $Con(ZFC + \exists a \text{ supercompact cardinal})$ implies

 $Con(ZFC+\exists \kappa \ s.t. \ \kappa \ is an uncountable regular cardinal and s(\kappa) \geq \kappa^{++})$

After that, in October 1992, J. Zapletal in U. S. told us that he improved the lower bound.

Answer. [6] $Con(ZFC + \exists \kappa \text{ s.t. } \kappa \text{ is an uncountable regular cardinal and <math>s(\kappa) \geq \kappa^{++}$ implies $Con(ZFC + \exists \text{ a measurable cardinal } \kappa \text{ such that } o(\kappa) = \kappa^{++})$.

Thus we had negative answer for **Question 1**. However, I don't know the exact consistecy strength yet.

Question 2 Find a large cardinal axiom which is equi-consistent to the existence of uncountable regular κ s. t. $s(\kappa) \geq \kappa^{++}$.

References

- [1] A.Dodd, B.Jensen, The covering lemma for K, Ann. Math. Logic (1982).
- [2] E.K.van Douwen, the integers and topology, (in Handbook of Set-theoretic Topology) (1984).
- [3] Shizuo Kamo, Splitting numbers on uncountable regular cardinals, preprint (Aug. 1992).
- [4] Tadatoshi Miyamoto, Personal letters, (Aug. 1992).
- [5] Minoru Motoyoshi, On the cardinalities of splitting families of uncountable regular cardinals (written in Japanese), Master thesis (Univ. of Osaka Prefecture) (Mar. 1992).
- [6] Jindrich Zapletal, Splitting number and the core model, preprint (Oct. 1992).