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ON MORDELL-WEIL GROUPS OF ABELIAN SCHEMES

BY
Masa-Hiko SAITo

Kyoto University

§1 Mordell-Weil group.

Let S be a connected smooth quasi-projective variety defined over the field of
complex numbers C. An abelian scheme

f:A— S

is a smooth projective group scheme over S with connected fiber. For every closed
point s € S, the fiber A, = f~1(s) is an abelian variety defined over C.

(1.1) Definition. For an abelian scheme f : A — S, we define the Mordell-Weil
group MW (A/S) by the group A,(K) of K-rational points of the generic fiber A,
where K = C(S) is the function field of S and 1 denote the generic point of S.

By definition, the Mordell-Weil group MW (A/S) is isomorphic to the group
{s:S--- — A rational section of f},

and Hartogs’ theorem and GAGA imply that this group is isomorphic to the group of
regular sections of f.

(1.2) Definition. Let K be the function field of S, and Ak an abelian variety defined
over K. A K/C-trace of Ak Is a pair (B, T) consisting of an abelian variety B defined
over C and a homomorphism

T:B— Ak

defined over K which has the following universal property. Given an abelian variety
C defined over C and a homomorphism ¢ : C — Ak, then there exists a unique
homomorphism ¢, ; C — B defined over C such that ¢ = 7¢..

The existence of (K/C)-trace is proved by Chow. Moreover we have the following
fundamental result due to Lang and Néron.
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(1.3) Theorem-Definition. (cf. Lang-Néron [La, p139, Th.2]) Let K be the func-
tion field of S, Ak an abelian variety defined over K, and (B,7) a (K/C)-trace of
Ag. Then A(K)/7(B(C)) is finitely generated. If we write as

Ak /7(B(C)) ~ Z" & (Torsion),

we call the rank r of the free part of Ax [T(B(C)) the Mordell- Weil rank.

This is a function field analogue of Mordell-Weil theorem for abelian variety defined
over a number field. In the number field case, there is a beautiful conjecture due to
Birch & Swinnerton-Dyer about the relation between the order of zero of L-function
and the Mordell-Weil rank. On the other hand, Mordell-Weil groups admit height
pairings, which have been deeply studied by Shioda [Sd 2] and Cox-Zucker [C-Z] for
elliptic surfaces and recently for families of Jacobian of curves (see [Sd3]). In this
note, we will give a Hodge theoretic interpretation of Mordell-Weil groups by using
Zucker’s relative Hodge theory. We will also give a few applications in [Sa.MH] and
recent result on the group of the component of the Néron model.

§2 Relative Hodge theory after Deligne and Zucker.

We shall give a Hodge theoretic interpretation of a Mordell-Weil group MW (A/S).
Given an abelian scheme f: A — S, let R, f.Z x denote the local system of the first
homology of fibers of f. Then from the relative exponential sequence we have the
exact sequence of sheaves on 5™

(2.1) 0 — R1f.Z — Liey s — OF"(A) — 0.
Setting Vz = R, f.Zx and using the isomorphism

| Liea/s ~ R f.OF", |
- we have the following exact sequence:

oy T HY(S,Vz) —— H(S,R'f,0%") —— H(S,0%(A))
' —— HY(S,Vz) —2— H\(S,R'f.O05") )

It is well-known that the exact sequence (2.1) is equivalent to giving data of vari-
ation of Hodge structure (VHS) of weight (-1), moreover it is polarized by a relative
ample line bundle on A.

(2.3) Definition. A polarized variation of Hodge structure (VHS) of weight -1 and
of types (-1, 0), (0, -1) over S is data (Vz, A, %) consisting of:
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(i) a local system of free Z-modules on S,
(ii) a flat Z-valued non-degenerate symplectic form A on Wz,
(iii) and a locally free subsheaf F° C F~1 := Vz ®z Os such that

FOoFO=VzQzOs,

satisfying that

(HRBR): for any non-zero local section u € F°, we have

A(u,u) =0,
—(\/_—I)A(u’ﬁ) >0,

(GT): and the Griffiths’ transversality

V(FP) c FPl @ Qs.

Note that the subsheaf F° C Vz ® Og is given by

ker(Vz ® 05 — L','ieA/s >~ le*(?;‘i“ )

hence one has
1 -1
R f.O4" ~ Gry .

For a general polarized VHS, we have the following

(2.4) Theorem. Let Vz be a polarized VHS over S of weight m. Assume that S is
compact. Then the cohomology group H(S, Vz) admits a Hodge structure of weight
q + m and a primitive decomposition.

(2.5) Remark. This theorem is a starting point of studies of Hodge structures on
the cohomology groups with coefficient in VHS. When dim S = 1 but S may be non-
compact, then Zucker extended Deligne’s result to the cohomology groups H4(S, j.Vz),
which is isomorphic to an intersection cohomology group IH?(S, Vz). Now these kind
of results have been extended to more general cases. (see [K-K], [Sa.Mol, 2]).

Let f: A — S be an abelian scheme and (Vz, A, F°) the corresponding polarized
VHS. We define the filtration on the holomorphic de Rham complex Q3(V¢) by

FrO5(Ve) = 0% @ 777,

(Griffiths’ transversality assures that they actually form subcomplexes.) Assume that
S is compact. Then we have an isomorphism

(2.6) H™(S,Ve) = Hp (S, Ve) for all n.
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By using L2-harmonic theory, one can show that there exists a Hodge decomposition
(27) H™(S,Ve) & Hp\ (S, Ve) = Bpsgmn 1 HPY.

Since one has a quasi-isomorphism V¢ ~ Q(Ve),
the filtration F*Qg(Vc) induces a filtration on H*(S, V) and the Hodge compo-
nents are given by
HP? ~ H"(S, GreQs(Ve)).

For example, H°(S, V) has a 2-step filtration 0 = F! C F° C F~! whose succes-
sive quotients are: -

HY ' =Gr% = F°* = H(F* — Qs ® Gr3'),
H™ ' = Grg! = F71/F® = H*(GrZY).

where Grz' = F~1/F°. H'(S,Vc) has a 3-step filtration 0 = F? C F' C F° C
F~1 = H! whose successive quotients are:

(2-8) HY'=Grhk = F' =H'(0 — 0} ® 7° — 0% @ Gr7),
(2.9) H'® = Gry = F°/F' = H'(F® — Qs ® Gr¥'),
2.10 H U =Grz! = F71/F° = HY(Gr7Y).

F F

Considering H'(S,Vq) as a lattice of H'(S, V¢), we set
(2.23) H'(S,VqQ)™® = H(S,Vq)n H*®.

Let p, : H*(S,Vg) — H~V™ = H™(S, Gr_;-l) be the natural projection map induced
by the Hodge spectral sequence. Set also

(2.11) Aconst = coker{po : H*(S,Vz) — H°(Grz")},
(2.12) HY(S,Vz)" = ker{p, : H'(S,Vz) — H'(S,Grz")}.
Then by Hodge theory one has

(2.13) H'(S,VQ)*® = H'(S,Vz)"’ ®z Q.

Under these notations, we can state the following theorem which gives a very natura.l
description of MW(A/.S') (Cf. [Z1, Cor. 10.2].)

(2.14) Theorem. Assume that S is compact. Then
(1) Aconst in (2.11) is an abelian variety over C, and
(ii) we have a natural exact sequence of abelian group

(2.15) 0 — Aconst — MW(A/S) — H'(S,Vz)*® — 0.
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(2.16) Corollary. If S is compact, the fbllowiﬂgs are equivalent.

(i) H(S, V) =0.

(ii) HO(S,R1f.0%") = 0.

(iii) K/C-trace Aconst is zero.

(iv) MW(A/S) ~ H'(S,Vz)%°, so it is a finitely generated abelian group.

If moreover H(S,Vq)®°® = 0, then MW(A/S) is a fnite group.

§3 Mordell-Weil groups of Kuga fiber spaces.

Let Gq be a semisimple Q-algebraic group such that D := Gr/K becomes a hermit-
ian symmetric domain. A Q-symmplectic representation of Gq is, roughly speaking, a
homomorphism p : Gq — Sp(2g, Q) which induces an equivariant holomorphic map

h:D — M, = Sp(29,R)/K".

Pulling back the universal family fig — Hy via h, we obtain a family of abelian
varieties A — D. Taking a torsion free discrete group I' C p~1(Sp(2g, Z)), one can
obtain an abelian scheme f : Ap — Sp = I'\D, which we call a Kuga fiber space of
abelian varieties associated a symplectic replesentation p.

Shioda [Sd1] proved that Mordell-Weil groups of elliptic modular surfaces are finite.
Silverberg [Sil, 2 & 3] showed the finiteness of Mordell-Weil groups of Kuga fiber spaces
which are characterized by endomorphism algebras and polarizations, introduced by
Shimura [Sh1], [Sh2].

By using the result in §2, Borel-Wallach vanishing theorem [B-W] for L% cohomology
groups and also (Mixed) Hodge theory, the author proved the following

(3.2) Theorem. (cf. [Sa.MH, 1991]). For a Kuga fiber space associated to a standard
Q-symplectic representation, the Mordell-Weil group is finite except possibly for one
case. ,

On the other hand, Mok and To obtained the following theorem independently.

(3.3) Theorem. ([Mo, 1990], [Mo-T, 1991]). For any Kuga fiber space witha trivial
K /C-trace, the Mordell-Weil group is finite.

Mok announced the above result in [Mo], but in the first version of full paper
[Mo-T], there was a misunderstanding about Kuga fiber spaces, that is, they tacitly
assumed that the R-valued points Gr has no compact factor, which is not true in
many important cases.
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§4 Mordell-Weil groups of Elliptic surfaces.

Let f : A — S be an abelian scheme of relative dimension g. In this section we
assume that dim S = 1. If S is not compact, in order to have a similar description
as in Theorem (2.14), we have to introduce some compactification of both abelian
schemes and VHSs. The canonical “compactification” (or extension in precise) of an
abelian scheme is given by “Néron model” due to Néron (cf. [A], [B-L-R]), and the
canonical extension of local system was given by Deligne [D1], and Zucker [Z1] extend
the Hodge theory for this extension.

In order to illustrate this, we will explain about elliptic surfaces. Hence we also
assume that g (= the relative dimension of f) is equal to 1. Denote by S the com-
pactification of S, and set £ = § — S. Then we have the following diagram:

Y - A < A
(41) l V V
Y = § ~j S

Here A is a smooth projective surface which has no exceptional curve of the first kind
in fibers and we set Y = A — A. The fiber space f : A — S is called an elliptic

surface. If we denote by 2 C A the smooth part of f, and by Z}’) C A" the connected
component in which the zero section is passing. Then 2" is a smooth commutative

groﬁp scheme over S which has the Néron’s universal property, so we call A" Néron
model. In this case, we have the following isomorphism:

(4.2) MW(A/S)~{s:8 — Zu, a holomorphic section of f }.
Moreover we define the narrow Mordell-Weil group by
(4.3) MWy(A/S) ~{s: 8§ — Zﬁ, a holomorphic section of f }.

Setting Vz = R, f«Z 4, we have the following exact sequence due to Kodaira
(4.4) 0 — juVz — R'f,04 — O—S-(Z(“)) — 0.

Zucker [Z1] showed that j,. Vz underlies a cohomological Hodge complex or a Hodge
module in the sense of Mo. Saito [Sa.Mol, 2]. In particular, the cohomology group
H9(S,5.Vz) has a pure Hodge structure of weight ¢ — 1. Let Vo denote a Deligne’s
quasi-canonical extension of Vo. Then the Gauss-Manin connection V : Vo — Vo®Q%
extends to

(4.5) V : Vo — Vo ® Q3 (logE).
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Let us set P = j,FP N Vp. Then FP? is a locally free extension of ? to S. Then we
have the following isomorphism: ‘

8

(4.6) Gr7' .= F1/F° ~ R'f,0,4.
We set, as in (2.11) and (2.12),

(4.7) Aconst := H(S,Grz')/H’(S, 5. Vz)

4.8 HY(S,5.VZz)*° := ker{H'(S, . Vz) — H(S,Gr;!)}.
F

From Zucker’s results, one can see that A.,.s¢ is an abelian variety defined over C
and

(4.9) H(S,5. V2’ ® Q~ H'(S,j.Vq) N H*?,

where H? is the Hodge component of type (0, 0) of H'(S,j.Vc) and

(4.10) H*® ~HY(V: FO — Gry' @ Q%(logx)).
As in Theorem (2.14), we have the following proposition from the exact sequence
(4.4).

- Proposition (4.11). Under the above notation, we have the following exact se-
quence:

0 — Aconst — MWy(A/S) — H'(j.VZz)*® — 0

Corollary (4.12). Under the above notation, the followings are equivalent.

(i) H°(S,5.Vc) = 0.

(ii) H°(S,R!f,Ozen) = 0.

(iii) K/C-trace Aconst is zero.

(iv) MWo(A/S) ~ H'(S,j.Vz)™, so it is a finitely generated abelian group.

If moreover H'(S,j,Vq)®° = 0, then MWy(A/S) and MW (A/S) are finite groups.
Remark (4.18). Since f : A — S is an elliptic surface, if f is not trivial, then we

have . _
H°(S,R!'f,Ogen) = 0.
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Hence if f is not trivial, we have an isomorphism MWy(A/S) ~ H'(S,j.Vz)"°.
In this case, Shioda [Sd1] showed that the full Mordell-Weil group MW (A/S) is
isomorphic to

NS(A)/T

where T is a subgroup of the Néron-Severi group N S(A) generated by the zero section
and all components of fibers. Note that we have an isomorphism H?(A4, Z)*° ~ NS(A)
and the Leray spectral sequence for f respects Hodge structure (cf. [Z1]). In our
situation, we have a homomorphism ([Sd2], [C-Z])

§: MW(A/S) — H(S,i.Vz)** ®Q

and the narrow Mordell-Weil group is given by 6 *(H'(S, j.Vz)*°). On H(S, . Vz)*°’®
Q, one has a bilinear form induced by that on H?(A,Z)%°, and hence we can define

a paring on the Mordell-Weil group MW(A/S) which makes MW (A/S) a lattice.
Shioda called this the Mordell-Weil lattice of A/S which has been deeply studied in
[Sd 2]. ’

§5 A sketch of a proof of Theorem (3.2).

We will give a sketch of a proof of Theorem (3.2). We may assume that a Q-
algebraic group Gq is simple and a Q-symplectic representation is primary i.e. sum
of irreducible representations which are mutually isomorphic.

Denote by f : Ar — Sr = I'\D a corresponding Kuga fiber space associated to a
torsion free discrete subgroup I' C Gq. Set Vz := R fuZ 4. Assume that dim Sr > 2.
In this case, if we can show that

HY(S5r,Veg)=0 forg=0,1,

we obtain the finiteness of the Mordell-Weil group MW (A/S). L
Let St be the Baily-Borel-Satake compactification of Sr. Since codim (Sr/Sr) > 2,
we have isomorphisms

Hq(SF7VC) 2J'I-‘H’(I(S_l",VC) forq=(),1 ’

where TH (S—[‘, V) denote intersection cohomology groups. On the other hand, by
Zucker conjecture [L], [Sa-St], one has isomorphisms between intersection cohomology
groups and Ly-cohomology groups, which are calculated by some representation theory
[B-W]. In fact, by using that, we can show that

H(qz)(S[',Vc) = 0 for ¢ < R-rank of Gr .
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Therefore, we have done if R-rank is greater than one. And if R-rank is one, we have
the isomorphism

Gr ~ SU(n,l) x K
where K is compact. In this case we can not expect the vanishing of H!, hence for
example in case that Sr is compact, we have to use sharper criterion like

H(Sr, Vq)o’o =0.

This is done by a careful study of the (0,0)-component and for detail see [Sa.MH].
(The same argument goes through even if dim St = 1 but Sr is compact.)

Next, we have to deal with the case when St is not compact and R-rank of GR is
one, that is, the case when Gq = SU(n,1,Q). '

We will only give a sketch of the proof when Gq = SL,(Q)i.e. when f: Ar — Sp
is an elliptic modular surface. The proofs of other cases are a little bit tricky, but the
key idea is the same as in the following.

We only have to show that the narrow Mordell-Weil group MW, (Ar/Sr) is finite.
Here we put A := Ar and S = Sr. Thanks to (4.10) and (4.12), this will be proved if

HY~H(V:F° — Gr7' ® 0L(logx)) = 0.

Note that the sheaves F° and Gr;-l ® ng(log‘/.)) are invertible. Since the Gauss-Manin

complex over S
V:F— Gr;-l ® N

is induced by a non-trivial homogeneous variation, V must induce an isomorphism.
On the other hand, by the uniqueness of the canonical extension, V has to extend to
an isomorphism V, therefore we have

H(V)=0

as desired.

Remark (5.1). The above argument for elliptic modular surfaces implies that the
Hodge decomposition on H(S, j, V) are given by

HY(S,ju.Vc)=H" 1o H .

The space H'~! is isomorphic to the space of holomorphic cusp forms. This is the
easiest case of Eichler-Shimura isomorphism which was reformulated by Zucker [Z1]
in this form.
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§6 Néron models of Jacobians of curves over function fields.

In this section, we will discuss Néron models of Jacobians of curves over function
fields. A typical examples are given by elliptic surfaces as in §4, but we will deal with
curves with arbitrary genus.

As before, let S be a connected smooth curve, S its smooth compactification, and
set £ =5 — 5. We denote by K the function field C(S) of S ( or S).

Consider a projective smooth morphism f : X — S whose geometric fibers are
smooth connected curves with genus g > 1. Moreover we always consider the following
diagram,;

Y =& X « X
(6.1) | v v
¥ = § 3 S

Here X is a smooth projective surface without exceptional curves of the first kind in
fibers of f, f is a compactification of f , which is a projective flat morphism. The
generic fiber X of f: X — § (or f : X — §) is a proper smooth curve defined
over the field K. The Jacobian of curve X is defined to be

— P;A0
JXK = PlCXK/K

which is an abelian variety of dimension g over K. Let Picx;s (resp. Picgz) denote

the relative Picard functor for f (resp. f) (cf. [B-L-R, 8.1]). Then since f : X — S'is
a projetive smooth morphism, the functor Picx/s is represented by a smooth separated
S-scheme which is also denoted by Picx/s (cf. [B-L-R, 9-3]).

Moreover one has a decomposition

Picxs = | | Picy/s
nezZ

where Pic’y /s denote the open and closed subscheme of Picx,s consisting of all line
bundles of degree n. The subscheme Picg( /s becomes an abelian scheme over S, which

is denoted by Jx;s ([B-L-R, 9-4]), and moreover S has a canonical S-ample rigidified
line bundle L on J. The abelian scheme 7 : Jx;5 — § is the Néron model of Jx, /K
over S ([B-L-R, 9.5, Th.1]). In particular, we have a canonical isomorhpism

MW (Jx, /K) = Jx(K) = Jx/5(5)

where Jx,s(S) denote the group of regular sections of f.

In order to obtain the Néron model over_g, we have to extend the abelian scheme
7 : Jx;s — S to some group scheme over S.
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For each s € &, let X, = Ei=1miX,~ denote the scheme theoretic fiber of s with the
decomposition into irreducible components. We assume that for all s € ¥, g.c.d(m;) =
1. This condition is satisfied if e.g. f: X — S has a section. In this case by using a

result due to Raynaud theorem (cf. (B-L-R, 9.4, Th. 2]) Picxk /3 is an algebraic space
— o

over S and Pick /5 i

which is defined as the kernel of the degree morphism deg : Picy /5~ Z. Then P can

be locally considered as a scheme theoretic closure of Pic% /s in Picx 3 Moreover let

is a separated S— scheme. Consder a subfunctor P of Picy /3

E denote the scheme theoretic closure of zero section €: .S — Pic‘)’( /s in P.
Now we can state the fundamental result.

Theorem6.2. ([B-L-R, 9.5, Th.4]) Under the above notations and assumptions, we
have the following:

(i) The quotient J = P/E exists as a separated S-group scheme and is the Néron
model of Jx, over S.

= . : —=0
(ii) PicOY /5 is a separated S-scheme and coincides with the identity component J

of the Néron model J of Ixk-
The group of connected components of Néron model.

In [B-L-R, 9.6], they calculated the group of connected component of the singular

fiber of Néron model 7/70by using the intersection number of the singular fiber X,
. We will show that there exists another approach by using the monodoromy on a
nearby fiber. This approach seems to be very hopeful for general abelian scheme which
1s not neccesarily a Jacobian.

Under the same notations and assumptions as in Theorem 6.2, we have the following
exact sequence of the sheaf on S".

(6.3) 0 — R!'f.Z — R'f,0%" — 0% (Jx;s) — 0.

It is easy to show that the identity component J° of the Néron model 7 fits into the
. —=an
following exact sequence on S

(6.4) 0 — jR'f,.Z — R'F,0% — 08 (Jxs) — 0.
Moreover one can define Tor = @ csTors by

(6.5) 0—>73(/5—>7X/5——>T0r—->0.
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Let A denote the small nbd of a critical value s € ¥ with coordinate t. Fix a
point t € A — {0} and consider the monodromy transformation ' = T} : H}(X},Z) —
H'(X:,Z). Note that H'(X}, Z) is a free Z-module of rank 2g. Consider the following

homomorphism '
N:=T - L, : H(X;,Z) — H' (X, 2).

Then one has isomorphisms
(6.6) KerN =~ (juR'f.Zx),, CokerN ~ (R'j.(R'f.Zx))s.

From the above sequence, one has the following theorem.

Theorem 6.7. Under the above notations and assumptions, we have an isomorphism

(6.8) Tor, ~ Torsion part of CokerV

Remark 6.9. A degenerate elliptic curve of type I} has a local monodromy

-1 -b
r-(7 2),
while the g¥roup of connected compnent is one of
Z/2Z/2, or Z/4

depending on the parity of —b. Ueno and Namikawa classified all degenerate curves
of genus 2 with explicit equations and local monodromy. One can try to calculate the
Tor for the stable curve of genus 2

P |

[

with the local monodromy

10 2 -1
01 -1 2
T=100 1 o0
00 0 1
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