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Diophantine problem of algebraic varieties and Hodge theory

KAZUHISA MAEHARA

Tokyo Institute of Polytechnics

Dedicated to Professor Shoshichi Kobayashi on his sixtieth birthday.

§ 1. INTRODUCTION

In this article, we shall discuss some recent results related to Diophantine prob-
lems from point of view of algebraic geometry. Diophantine problems are concerned
with polynomials with integral coefficients and most of these problems have their
origins in the theory of algebraic curves. For example, P. Samuel’s lecture note([S])
provides us a good reference. In the study of curves, the notion of genus is the
most fundamental and indicates some complexity of polynomials which defines the
curve. For higher dimensional algebraic varieties we have the notion of Kodaira
dimension proposed by Iitaka([I]). The variety is said to be of general type if the
Kodaira dimension attains the dimension of the variety.

First, note that the birational automorphisms group is finite if the variety is of
general type. This was shown by H. Matsumura([Mat]), which is considered as a
generalization of a theorem of Hurwitz.

Socond, Kobayashi-Ochiai ([KO])proved finiteness of the set of the genencally
surjective meromorphic maps from a compact complex manifold onto a variety of
general type. In positive characteristic case Deschamps([DM1]) shows finiteness
of the separable dominant rational maps from a variety onto a variety of general
type. This is de Franchis’ theorem in the theory of curves.

Third, fixing an algebraic variety X, we consider the set of separable dominant
rational maps from X onto varieties of general type up to birational equivalence.
We have the following question;

Iitaka’s conjecture based on Severi’s theorem.
Is the set finite?

Thanks to Kobayashi-Ochiai’s theorem([KO]) or Deschamps’([DM1]), it suffices
to show finiteness of birational equivalence classes of the varieties of general type
which are images of the given variety X by separable dominant rational maps. In
the case of characteristic 0, Deschamps and Mengaud([DM3]) have shown finite-
ness if X are surfaces of general type with the condition ¢ > 0 or p, > 2 and
the author([M2]) shows it restricting image varieties to such varieties that can
be birationally embedded by the m-th multicanonical maps for any given m. To
acomplish it, it is enough to show that there exist a minimal model for a variety of
general type and an upper bound for the indexes of the canonical divisorial sheaf.
K.Ueno suggested to the author that a variety of general type can be replaced by
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a polarized non uniruled variety in the problems above. We can consider some
variation of the conjecture above. The author showed finiteness of isomorphism
classes of varieties with ample canonical divisors which are dominated by surjec-
tive morphisms from a fixed variety([M1]) and Deschamps and Mengaud proved
finiteness of birational classes of surfaces of general type which are dominated by
surjective morphisms from a fixed variety([DM2]).

A famous conjecture by Mordell([Mor]) looks like a typical Diophantine problem.
It is now Faltings theorem([Fal]). Bombieri and Noguchi conjecture that Faltings
theorem should be generalized;

Mordell, Bombieri and Noguchi conjecture(resp. analogue).
Does there exist no variety of general type(resp. with exceptions)over a number
field(resp. a function field) which has a dense set of rational points?

Manin([Ma]) and Grauert([Gra]) proved Mordell conjecture analogue over func-
tion fields. MBN conjecture analogue has an exception that is a birationally
isotrivial variety. On the other hand, Lang([L1]) conjectured that the conjec-
tures above hold if the notion of a variety of general type over a number field
be replaced by that of a hyperbolic manifold considered as a complex manifold.
Noguchi([N1],[N2],[N3]) proved Lang conjecture analogue over function fields com-
pletely. )

Shafarevich conjecture which Faltings proved([Pa], [Ar], [Fal]) has classical mod-
els in number theory, i.e., Hermite’s theorem and Minkowsi’s theorem([ZP]);’

(1) finiteness of the number of extensions L/ K of K with fixed degree and fixed
ramification,
(2) there exists no extension unramified over Q.

A generalization of Shafarevich conjecture.
Is the set of birational equivalence classes of varieties of general type with a
fixed set of bad reductions and a fixed pluricanonical function 7

Its analogue over function fields has some exceptions, say, isotrivial varieties,
isotrivial factors, ---. We can study this problem replacing varieties of general
type by polarized abelian varieties of dimension g or K3 surfaces([S],[SZ]) or po-
larized non uniruled varieties of a fixed dimension or polarized variations of Hodge
structures([pe]), or Hodge Modules.

§ 2. RESULTS

Let X be a given variety of characteristic 0 and m any fixed number. We
denote by £(X) a set of the birational equivalence classes of smooth varieties onto
which there exists a dominant rational map from X. We define subsets of £(X),
respectively:

(1) €m(X) consists of varieties of general type such that the m-th pluricanonical
mappings are birational,



(2) Epoi>e(X) consists of varieties of general type with the i-th pluri-genus Poiys
polynomials for all ¢ > £ and fixed a, b,

(3) Enes(X) consists of varieties of general type with the dualizing sheaf wyx
nef,

(4) Eabun(X) consists of varieties with the dualizing sheaf semi-ample.

Theorem 1([M2]).
(1) For all m, £,(X) is a finite set,
(2) There exists an m such that Epef(X) C Em(X),
(3) There exists an m such that Epor>e(X) C Em(X),
(4) Eapun(X) is at most countable.

Theorem 2([M4],[M5]). Let K be a function field over C and X a smooth
variety of general type over K. Let 7 : P(2x) — X denote the projective bundle
over X and Op(1) the fundamental sheaf.

Suppose that one of equivalent conditions

(1) Op(1) is big and semiample,

(2) Op(1) is nef and Op(a) ® T*wy" is nef and big for some a > 0.

Assume that the set of K -rational points is dense in X. Then X is isotrivial.

Proofs of Theorem 1 and 2 are reduced to show local biratinal triviality and
boundedness of parametrizing family.

From geometric point of view, we interpret the situation above. Let ® : X — §
be a surjective morphism between non singular complex varieties with the generic
fibre a variety of general type which is isomorphic to X, where the rational function
field of S is K. We may assume that S is a curve without generality.

Lemma 2.1. ([M4])

Assume that the set of (rational) sections (Cx)xep with the mtersectwn number
of the section Cy and a canonical divisor K ¥ bounded is dense in X'. Then X is
isotrivial.

We propose a generalization of the problem above.

Conjecture 2.2. Let X be a non singular variety and g a fixed number. Consider
the set (Cx)xen of genus g embeded in X. We ask if the intersection number of
(Kx,C)) has an upper bound independent of A.

We can replace curves of genus g by higher dimensional subvarieties of a fixed
multicanonical function P,,.

REMARK.

(1) If X is a surface, Bogomolov and Miyaoka and Umezu (unpublished) using
Miyaoka and Sakai inequality showed Conjecture 2.2.

(2) If Qx is ample, Conjecture 2.2 holds.

(3) S. Kobayashi showed if Qx is ample, X is hyperbolic([Kob2]).
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(4) Peternell-Campana and Kawamata proved that a hyperbolic manifold of
general type has an ample canonical divisor.

Question 2.3. Let X be a non singular complex variety with a canonical divisor
ample and C a fixed curve with genus > 2. Has the intersection number (K x, C\)
with j5 : C — C) an embedding an upper bound < dim X - (2¢(C) — 2)?

Yoga of generalization insists that higher dimensional Shafarevich conjecture
should hold. In any case Minkowsi’s theorem should be studied to the effect
that there exists no smooth complex variety X with some exceptions such that
f:X — Y is smooth with a canonical divisor Kx semiample and Y is complete
with var(f) > 0. Faltings([Fal2]) gave an example non rigid family of abelian
varieties with relative dimension 8 over a curve without isotrivial factors fixing
ramifiation locus. M.Saito classifies non rigid families of abelian varieties with
no isotrivial factors([S],[SZ]). A check point to a generalization of Shafarevich
conjecture over function fields consists in

THE PROBLEM OF LOCAL TRIVIALITY:.

Let ® : X — S be a proper surjective smooth morphism with all fibres of ample
canonical divisors between non singular quasi-projective varieties defined ove C.
Assume S = C; x Cy where C;,Cy are curves. If &, : X|®71(C;) — C, has no
isotrivial factors, ®3 : X|®~1(C3y) — C is locally isotrivial.

¢ 3. METHODS

We restrict ourselves to analogues over function fields over the complex number
field. In these problems the following tools are essential, which come from Hodge

theory to prove local birational triviality and boundedness of degrees.
We recall Viehweg’s Definitions([V2],[V3],[V4],[M3]).

Definition 3. Let Y/S be a scheme and T a functor of the category of coherent
sheaves over Y/S to that of coherent sheaves over X/S. Let f : X — S be a
morphism, F a coherent Oy-Module, L an invertible sheaf over X and U an open
subset of X with depthx\y(Ox) > 2. F is said to be f-weakly positive (with
respect to T, L and U), if for any o > 0 there exists 8y > 0 such that for any
B > By the following canonical homomorphism over U are generically surjective

f*f*T(}'®°’ﬂ ® L®ﬂ) N T(f@t!ﬁ ® L®ﬂ).
IfU = X,T = d, F is said to be f-pseudo-effective. If U = X,T = id and the

canonical homomorphisms are surjective, F is said to be f-numerically effective(f-
nef) or f-semipositive.

Remark

Let f : M — C be a surjective morphism with connected fibres from a Kahler
manifold M onto a curve C. Hinted from Grifiths’s work, Fujita([F1]) found the
semipositivity of f.warc. Kawamata([Kaw2]) and Viehweg([V2]) generalized it.
Kollér([Koll},[Kol2]) found another approach([EV1],[M6]).



Theorem 4. Let f : X — S be a surjection with connected fibres between non
singular varieties over C. Then

(1) f*(wX/s) is weakly positive for all m > 0.

(2) wx/s is pseudo-effective with respect to f..

Definition 5. Let (Varieties)/k be the category of geometrically irreducible,
reduced proper algebraic schemes over the ground field k restricting the morphisms
to surjections. Let X/S,Y/T be surjective morphisms of varieties. We consider
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X/S and X'/S to be equivalent if there exists a biratinal map over S' between .

Xs/S' and X, /S’ where S’ is generically finite extention of S. Moreover X/S
and Y/T are looked to be equivalent if main parts of X7/S x T and Ys/S x T

are equivalent. We denote by var(X/S) the minimal dimension of a base variety
T such that Y/T is equivalent to X/S.

Iitaka-Viehweg Conjecture 6.

(1)
max k(det f*(wX/S)) > var(X/S)

(2) for a general point s € S

k(wxys) — #lwx,) 2 var(X/5)

Remark.

(1) If the generic fibre of X/S is birationally equivalent to a variety with a
canonical divisor semiample, Kawamata([Kaw3]) proves it.

(2) If X/S has a variety of general type as the generic fibre, the conjecture
“above is essentially shown by Kolldr and Viehweg([Kol3],[ V4],[ V5],[V6]).

§ 4. HODGE THEORY

Definition. Let X be a normal variety. Let f : X — S be a smooth morphism
of varieties and D a divisor on X. Assume D has only simple normal crossings. If
for each component C of D, the restriction f : C — S is smooth, then D is said
to have only f-simple normal crossings.

Letting X be a variety, we denote by [D] the integral part of D € Div(X)® @,
{D} =D - [D] and [D] = —[-D].

Theorem 0([M6]). Let X be a non singular variety and f : X — S a projective
smooth morphism of analytic varieties. Let D be a Q-divisor on X and D f-
numerically equivalent to zero. Let A, B be divisors on X. Let D decompose itself
into D' + D" without common component. Assume {D},eq + A + B has only
f-simple normal crossings. Then Hodge-Deligne spectral sequence degenerates at
El:

E}" = R Q% s(A+ {D'}reas B+ {D"}rea)([D] +[D"])) =
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R f,0% s(A+ {D'}rea, B+ {D"}rea)([D'] + [D"])).

We denote by Q) the subring of Q consisting of the irreducible fractionals
without the denominator multiple of p.

THEOREM A(CF. DELIGNE-ILLUSIE([DI])). Let k be a perfect field of character-
isticp > 0, S = Spec k, S = Spec(W,(k)). Let X be a proper smooth scheme
over k of pure dimension d. Let D be a Q(p)-divisor on X. Let A+B be a divisor
on X. Suppose {D}red + A + B has only normal crossings. Assume there exist
liftings X and D, A, B such that X — § is flat and {D}red + A + B has only

normal crossings on X relative to S. Then

(1) Let C be a component of {D}. If D is numerically equivalent zero, the next
sequence is exact for all a,b ~

Hb- 1(09 (A,B + {D},ea — C)([D])) —

H*(X,Q%(4, B+ {D}rea)(=C +[D])) =
H'(X,Q%(4, B+ {D}rea — C)([D])) = 0.

(2) If D is ample, the next cohomologies vanish for a + b > max(dx,2dx — p)

HY(X, Q% (4, B + {D},ea)([D])) = 0.

COROLLARY B.

Let k be a perfect field of characteristic p > 0, S = Spec k, S = Spec(Wy(k)).
Let X,Y be a projective smooth schemes over k of pure dimension. Let f : X —Y
be a surjective morphism whose restriction is smooth over Y° with Y \Y° a normal
crossing divisor. Assume there exists a lifting X such that X — S is flat. Let L
be an ample invertible sheaf over Y. Then

(1) (fawx/y)®* ® L® is generically generated by global sections for arbitrally
a and b > dimY.
(2) fwxyy is f-semiample, f*w?éfy is weakly positive for £ > 0.

CoROLLARY C.

Let k be a perfect field of characteristic p > 0, S = Speck, S = Spec(Wa(k)).
Let X be a variety over k. Let P, (X) be the set of smooth k-varieties {V'} onto
which there exists a dominant separable rational map from X such that V have flat
liftings over Spec(Ws(k)) and ample canonical divisors with a fixed pluricanonical
polynomial P,,.

Then &2, (X) is finite.

Definition of Arithmetic variety.



An arithmetic variety X is a projective flat regular scheme X over Spec Z the
base change to Spec C of whose generic fibre has a Kédhler metric compatible with
complex conjugate action.

Problem D ,

For an arithmetic variety, we want some vanishing theorems.

These Hodge theoretical cosequenses through covering trick give us tools to
attack Diophantine problems, say, vanishings and weak positivity of direct image
sheaves of powers of dualizing sheaves.

Next we explain a covering technique to apply Hodge theory to algebraic geom-
etry.

Definition 1([GM]).
Let X be a scheme and M an abelian group. We denote Spec O x[M| by D(M).
An X-group D(M) is called a diagonalizable group.

Note that for any variable X-scheme T one has
. D(M)(T) = Homgroups(M7 P(T, O;"))

Let Z((n;);c,) denote @;c; Z/n; . We denote an X-group D(Z ((n,y;c;)) BY H((n:)
The py is the usual group of n-th root of unity.

We define a Kummer covering and a generalized Kummer covering according
to Grothendieck- Murre ([GM]). Let X be a scheme and a = (a;);es a finite set
‘of sections of Ox. Let n = (n;);e; be a set of positive integers. We denote
A2 = Ox[(Ty)ier)/(T¥ — ai)ier) and Z& = Spec A%. We give the action of p,
on Z2 with ¢ : A2 — A(pn) ® A2 given ¢(t;) = u; ® ti(z € I).

Definition 2. .

Assuming the a; are regular, a couple (Y, G) consisting of an X -scheme and an
X -group with the action on Y is said to be a Kummer covering of X relative to

the sections a, if (Y, G) is isomorphic to a couple (Z%, un) for a suitable set of
integers n, with every n; prime to the residue characteristics of X.

Lemma ([GM], lemma 1.2.4).
Let a = (a;)ier and b = (b;);er be sets of regular sections on X. Assume that

there exist a set of g; € ['(X,0%) for ¢« € I such that a; = ¢;b;. Then there exists
an etale surjective morphism e : U — X such that one has a p,-isomorphism

(Za)v = (ZR)v.

Here U = Spec Ox[(Vi)ierl/(V]™ — gi)ier). The iéomorphism Ab — A2 is given
by :

ier)*

!
ti = 'Uztz

We will define the generalized Kummer covering due to Grothendieck-Murre

([GM]). Let L be a factor group of pyy, :
Zn — L — 0.
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D(L) C D(Z,) = pn is a diagonal subgroup. The kernel N of Z, — L determines
the quotient p,/K = D(N). ’ v
We construct the quotient space Z2/K . Identifiying A(un) & Ox[Z,], one has

a;
u® = HiEIui .

By the homomorphism ¢ : Ox[Z,] = Ox[L], putting u* = ;s uf® and u} =
#(u;), we have N = {a € Z,, : II;c1(u')* = 1}. The N is said to be the orthogonal
subgroup of pin to K = D(L). Let B denote the O x- subalgebra @, cnt*Ox of
A2. Note that the O x-subalgebra B is identified with the kernel of

p1: A% - Ox[L] Q) Az

Ox

and
p2: A% — Ox[L]R) A2
Ox

with p1(t®) = u' @ @ t*, py(t%) = 1 ® t°.
Lemma 3([GM], Prop.1.3.2).

(1) n/K 2 D(N)
(2) Z2/K = Spec B.

Definition 4.

Given the regular sections a = (a;)ier , a couple (Y, Q) is called a generalized
Kummer covering of X relative to a set of a if there exists a set of positive integers
n = (n;);er each n; prime to the residue characteristics of X and a diagonaliz-
able subgroup K of X such that the couple (Y,G) is isomorphic to the couple
(Za/K, D(N)).

We remark that there exists the canonical morphism
(u,9) : (Zg, 4n) — (Z3/ K, D(N)).

Let L; be a quotient of Zp, and L a quotient of L1. Let K = D(L), K; = D(Ly)
and N = ker(Z, — L), Ny = ker(Z,, — L;). Then the canonical morphism

(Z3/ K, pn/K = D(N)) — (Z3/ K1, pn/K1 = D(Ny1))
induces the isomorphism
(Z3/K)/(K1/K),(4n/K)/(K1/K) = D(N1))

= (Z::/Klnun/Kl = D(Nl))'
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Lemma 5([GM], Prop.1.3.5). Let a = (a;)ier, b = (bi)ier be sets of sections
and n = (n;);er , m = (m;);er Sets of positive integers with m; = n;q; where
gi € Z, and a; = ¢]"'b; with g; € I'(X,0%) for i € I. Let L be a quotient of Z,
and K = D(L). Then the canonical morphism

(Zens i) = (27, pin)
induces the isomorphism
(Zm/K',D(N")) = (Z3/K, D(N)).
Here ¢nm : ftm — pn is given by
Z‘n —Zm

(i) = (gici).
N'={(¢i i) : (a;) € Zn},K' = D(Z;, /N").

Note that the construction and the morphisms above are compatible with arbi-
trary base change.

Lemma 6([GM], Lemma 1.3.10).

Let a = (a;) be a set of regular sections on X and let a; be decomposed into
a; = IIxej,ain. Puttingb = (a;)),n' = (n;)) with ng’,\ = n;, one has the canonical
X -morphism:

(Z:’aﬂn’) - (Z:7 ,un)

which is given by the O x-Algebra homomorphism and the group homomorphism

Aa — A:n

n

such that
ti — Iaegtin

¢n,n’ . Zn - Zn’ !
(@) = (Bir)
such that Bix = a;. Let Z, = {(a;) : 0 < a; < n; } Putting M = ¢ n(Zy), one

has the mduced isomorphism
(Z82/D(Zut M), iz | D(Z s [M) = D(M)) = (Z3, ftm)-

Given each subgroup N of Z,, putting N' = 9y w(N),K = D(Z,/N),K' =

D(Z,//N'), one has, moreover, the canonical morphism

(2, i) = (Z3/K, pn [ K)
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which induces the isomorphism
(Zp /K, pw /K" = D(N'")) > (Z3/ K, pn/ K = D(N)).

Lemma 7([GM], Prop.1.8.5).
Let D = (D;) be a set of divisors on a locally noetherian normal scheme X and
(Y,G) a generalized Kummer covering of X relative to D. Then

(1) if (D;) has normal crossings, Y is normal,

(2) if (D;) are regular divisors with normal crossings, a Kummer covering
(ZD, pin) is regular over the points of | J;; suppD;.

(3) if (D;) are regular divisors with normal crossings a generalized Kummer
covering (Y, G) is regular over the regular points of | J;c; suppD:;.

Example 1. Let X be a locally noetherian normal scheme and a a section

of Ox such that div a has normal crossings. The Kummer covering Zé‘z =
Spec Ox[T]/(T?® — a?) is not normal. The map

Ox[T1/(T? - a*) — Ox[U]/(U® — a)

T — U?

and the isomorphism

23——)23
a— 2a

give a birational morphism

a 2
(Z31ﬂ3) - (Z.';z >ﬂ3)'

The normalization of Spec Ox[T]/(T? — a?) is Spec Ox[U]/(U? — a).

Example 2. Let X be a locally noetherian normal scheme and a a section
of Ox such that div a has normal crossings. The Kummer covering Z% =
Spec Ox|[T]/(T™ — a™) is not irreducible. A morphism

(Z;: = S'pec OX[U]/(Un - a)? /-"n) - (Spec OX[T]/(Tn - an)’ ,u'n)

defined by
Ox[T)/(T" —a™) = Ox[U]/(U" ~ a)
Tw—U" |
and
Z,— 1,

1—n.
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This induces an isomorphism
(Spec Ox[U"]/(U™ — a) = X,0) = (Spec Ox[T]/(T" — a")/ n,0).

Proposition 1. Let X be a locally noetherian normal scheme and a = Il;¢r af‘
a section of Ox. Assume that ¥;cr div(a;) has normal crossings. Let n be a
positive integer such that the greatest common number (n,k;);c;y = 1. Consider a
Kummer covering Z% = Spec Ox[T]|/(T™ — a) and take a map

Ox[T)/(T" — a) = Ox[(Us)iet)/(U" - ai)ier)

T - Hies UF

and a homomorphism

Zn - HiEI zn
a— (ak;),

whose image we denote by M. This gives a birational morphism
(Spec OxIUil/((UF = a))/ D(Tier Zo/M), D(M)) = (Spec Ox[TI/(T™ - a), in).

Hence the normalization of Spec Ox[T]/(T™ — a) is idenified with

Spec Ox[U]/(UF — a:))/D(Mies Zo/M) = Spec @ u*Ox
aEM .

proof: One has an isomorphism
@ t°Ox — @ HieIU?kiox
e 4 a

tHHuf‘.

The integral closure of @, II;eruf KOy is @D oemr u¥Ox. Hence this induces a
birational morphism

(Spec @ u*Ox,D(M)) — (Spec Ox[T)/(T" — a), pin)-
aeM
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Corollary 8. Assume e = (n, k;)icr > 1. One has the isomrphism
(Spec Ox[T]/(T" — a)/D(Zn/ely), D(ely)) =

(Spec Ox[U)/(U™M* —;e; a¥/%), D(Z,/.))

- Theorem 9 ([EV], [K2]). Let X is a locally noetherian regular scheme. Let

L be an invertible sheaf over X. Assume that L®" is represented by a divisor
D = X v;,C; where (C;) are regular divisors with normal crossings. The local
Kummer covering (Z2, u,,) is well defined globally. It has quotient singularieties
over the non regular points on suppD. Let f : ZP — X be a structure morphism
and § : Y — ZP an arbitrary resolution of singularities. Let A be a divisor such
that A + X; C; has normal crossings. Let J C I and £ € Z. One has, then,

(£ 0 6)(Q((f 0 6)*(Sies Ci + A((f 0 )" D)) =

k

n

14

3%, 9%({513} + {g D} + Sies Ci + A)(] D]—£®"+[;D]+(—[£—D]+édiy t))

0<k<n

. The Galois group Gal(R(Y)/R(X)) = Gal(R(Z})/R(X)) = pn acts naturally

on

(0 )u(Q(f 0 )" (Sies Ci+ AN(F 08)'2D))

and its invariant part is a direct factor, i.e.,

HO(pn, ( 0 6)u(05(S 08)"(Sies G5 + A))((f 06)" - D)) =

Q% ({= D} + Sies Ci + (- D))

proof: see the proof of Theorem 17.

Corollary10(Kawamata-Esnault-Viehweg covering).
Let X is a locally noetherian regular scheme. Let (L;);jeck be invertible sheaves
over X. Assume that L?" are represented by divisors D; = X; v;;C; with

(Ci)ier regular divisors with normal crossings. Let D = (Cj)ier,n = (n)ier.

Z((D)f)jex

nj;ek

quotient singularieties over the non regular points on supp D; for each j. Let

f: Z((nD)’J)E’;K — X be a structure morphism and § : Y — Z((TILJ)",)E";K an arbitrary
J

resolution of singularities. Let g = f 0. Let A be a divisor such that A +X; D,

has normal crossings. Let J C I.

The local Kummer covering ( s H(n);ex ) 18 well defined globally. It has



Then p
9+(25(9"(Bies Ci+ D))(9"T; = Dj)) =
@ @ Q4% ( _15@1}4_5_31@0 + A)(
JEK 0Lk;j<n
Yiexk;D Y:4:D; .
(ZiEGD) _ gren 86 4 (ZD0) 4 ([Z20) 4 5,0div 1))

The Galois group Gal(R(Y )/ R(X)) = fi(n);¢x acts naturally on

008 (g"(Dies Ci+ D))(g* 22300

and its invariant part is a direct factor, i.e.,

¥¢;D;

H®(p(n);» 9+ (5 (9% (Bies Ci + A))(g* ) =

24D >.;4iD;
n

Q%({“J;L“—}-inej Ci +A)(] )2

Let Xt denote the site of the category of etale schemes over X endowed with
the etale topology. :

Intuitive Definition 11. Let (X;);es be a set of schemes and the eij : Xij — X
etale morphims such that ¢;; : X;; = X;; are isomorphisms. We identify X;; of
Xiet and Xj; of X et for all4,j € I and obtain a new site. This site is said to be
a scheme in etale topology.

Remark. One can replace the etale topology by arbitrary Grothendieck topology.
This process of enlarging the notion of shemes enables us to take polynomial roots
of divisors

This forms in fact a Gerbe([GM]). We denote by X;i the scheme defined by the
universal property such that T' — X;;,T — X;; are X;-morphisms, T — X, T —
Xji are X;-morphisms and T' — X};,T — X}; are X -morphisms respectively.

Definition 12. Let X be a scheme in etale topology. A sheaf F over X is defined
to be a functor satisfying an exact sequence

F(X) — ILF(X;) = IL; F(X5).

The cohomology groups are calculated by Ceck cohomologies.

We can say a scheme in etale topology is regular or normal and so on if it is of
local property as you can easily imagine.
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Theorem 13(Hodge-Kodaira-Deligne). Let X be a complete non singular
variety in etale topology over the complex number field and D a divisor which is
numerically equivalent to zero. The natural maps '

HY(X,Q%(D)) - H*(X, 0% (D))

are killed and the Hodge spectral sequence degenerates at E,. Furthermore, let
(A;) be a set of regular divisors with normal crossings on X with A = XA;. Then
the natural maps

HY(X,Q%(A)(D)) — HY(X, Q% (A)(D))
are killed and the Deligne spectral sequence degenerates at E;
Ef* = H'(X, Q% (A)(D)) = H*™(X, 0% (A)(D)).

Definition-Proposition 14. Let X be a scheme in etale topology, n = (n;)ier
and D = (D;) a set of divisors on X satisfied the same conditions as in local
Kummer coverings. Then (ZP, u,) is defined globally as a scheme in etale topol-
ogy. (ZD, uy) is said to be a Kawamata covering if the (D;) are a set of regular
divisors with normal crossings. It is said to be an Esnault-Viehweg covering if the
(suppD;) are a set of divisors with normal crossings and I = {1}. It is said to be
a Kawamata-Esnault-Viehweg covering if the (suppD;) are a set of divisors with
normal crossings.

Theorem 15. Let X be a locally noetherian regular scheme in etale topology
and D = (D;) a set of regular divisors with normal crossings. Then a Kawamata
covering (ZP, uy,) is a regular scheme in etale topology.

Theorem 16. Let X be a locally noetherian regular scheme in etale topology,
n = (n;)ier and D = (D;);er a set of regular divisors with normal crossings on
X. Let 7 : Z = ZP — X be the structure morphism of a Kawamata covering
(ZD uy). Let A be a divisor such that A + X D; has normal crossings. Let £; € Z
and J C I. Then

r( Q% (7" (Sies Di+ A)(r*(Sier > D)) =
2

n
a k; £; .
@ Q% (Zier{ =} Di+ Tier {—} Di+ Bies Di+ A)(Bier — ki div ti+
(ki)€ELn ) ' '
£; 4; . —
Yier [n—] D; + {n—} n; div t,').
The Galois group Gal(R(ZP)/R(X)) = un acts naturally on

R {n* (Bies Di+ A (Ties - Di)

n;
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, the invariant part of which is a direct factor

HO (i, 7o (37" (Bies D+ D)) (" (Sier = D)) =

n

f,’ Ei
Q% (Ties Di+ Tier {—} Di+ A)(Zier [~] D).
proof: The problem is a local question and so X can be seen an affine regular

scheme in etale topology. Let D; = div z; such that the z; are a part of regular
parameters for X. Let t7¥ = z;. One has as Ox-modules

Oz= @ MiertiOx

(k:)ezn
and
(1) fori e J
i _ d
ti oz
(2) foreeI\J
dt; = 1, 3
23

(3) as Ox-modules

£; . s
Oz(n*Zier—D;) = @ Miert} - Miest; % Ox

n
! (ki)EZn

(4)

[55] — {5 )

—¢;
t t;

i = zi_
Corollary 17. Let X be a locally noetherian regular scheme in etale topology and
D = (C))ier a set of regular divisors with normal crossings and D = X;¢r v;C;, ,
n = (n)icr . Let Y be the normalization of an Esnault-Viehweg covering ZP and
n:Y — X the structure morphism. Let A be a divisor such that A+ ¥;¢; C; has
normal crossings. Let J C I and ¢; € Z. Let M =im(Z,, — Z,, (1 — (v;)). Then
one has
Oy = @ OcufOx
(ki)eM

and

0.9 (n*(Sies Ci+ A))(n"(% D)) =
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D %L D+ (L Dy 4 mies Gt ANAE DI -k div o)+
0<k<n

[ D] + (¢ div ¢~ [ D) =

k; ¢; ki .
@ Q% (Zier{=} Ci + Zi{=1Ci + Zics Ci + A)(Zier ([E]Cz — kidiv u;)+
(ki)EM n n ; :
J4 el/,'
[~ DI+ Tier(—|

The Galois group Gal(R(Y)/R(X)) = pun acts naturally on

] Ci + Lvidiv u;)).

n

1@ (0" (Sies Ci+ A)(r*(= D))

, the invariant part of which is a direct factor
. o £
HO (i, n+(Q% (0" (Zies Ci+ A)(n*(= D)) =

% (Ties Ci+ {5 D} +A)([= D))

proof: Let Z be a Kawamata covering ZP2 and 7 : Z — X the structure mor-
phism. Then letting D = div d,C; = div ¢;,

A(Zp) = Ox[T)/(T" — d) — A(Z) = Ox[(Us)ierl /(U = ci)ier)

T — Wi UV,

one has the canonical morphism f : Z — Z} which factors 7 : Z — X and Let
M =im(Z, — Z,(1 — (v;)). Then the structure sheaf of the normalization of
the Esnault-Viehweg covering relative to D i1s

OY: @ Hie[’df‘@x.
(k;)eM

Making account of

@)
Ox(5D) = Ox({2} div(t™) +[=D])
= 1= (En0x([-D))
@ k k k
= =[=)+{=}
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(3) )
M= ({ i }n)zebk - kV:
(4) k |
uf{ ™ "0x = Ox(~{="} div(u})) =
ox([ﬂ]c _ @ div(u™).
Thus " "
Ox(Siexl i]c _ —”—' div(u™))) = ox([— D] — k div(2)).

Hence one has

109 (n" (Sies Ci + A)(0' (> D)) =

k,’ 14 ki .
P % Eier(2) Ci+{=D}+ Sies Ci+ A)(Sier ([Z1Ci = kudiv ) +
(ki)eM

Lv;

([— D] + 3, ( [ ] C; + bv; div u,;)).

Corollary 18. Let X be a locally noetherian regular scheme in etale topology,
D = (C;); = (div ¢;); a set of regular divisors with normal crossings on X,

n = (n;)ier and D; = div d; = Z;v;; C;. Let 7 : Z((D) i)i _, X be the structure

morphism of a Kawamata-Esnault-Viehweg covering (Z((n))’, K(ny;)- Let A be a

divisor such that A + X; C; has normal crossings. Let Y be the normalization of
Kawamata-Esnault-Viehweg covering which factors Zfy — X andn:Y — X the
structure morphism. Let Z = Z) be a Kawamata covering. Let

M =im(Z(ny; = Ly, (kj = (mi = T; kjvgi))s.
Let ¢
A(Z ) = Ox[(T);1/(T] - dj);) = A(Z) = Ox[(U) /(U] - e:)s)
be a O x-homomorphism defined by T;  II; U,-”j"‘. Then
Oy = Ompenm ILi v Ox

and ‘
12 (0" (Bicq Ci + AN (252 D;)) =
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;k,;D;

n

D @ o (2D (BP0 A2 - 5hidiv )+

[“ i (2242 ’]+z:edwt))_

D oyt z{””f'

(m;)eM

}C + E:EQ C; +A>(

Y;4;D; 2,-12,-1/,-,-
n

i (2] € = ma div ug) + ((F2=2) + 2| 1C; + (2,6;7;5) div uy)).

The Galois group Gal(R(Z(Dj.)j )/ R(X)) = p(n); acts naturally on

(n)J

(0 1" (Biea Ci + A (n*(ZEiDi )

, the invariant part of which is a direct factor

H (i, »1+(% (n*(Zieq Ci+ A))(n* ( J))))

5 KD]}+A>([2€D

Q% (Zico Ci +{ ) )2

Theorem 19(Deligne-Illusie, [DI]). Let k be a field of characteristic p > 0,
S = Spec k, § = Spec W,(k) and X an S-scheme in etale topology. Let D and
D be divisors which are numerically equivalent to zero on X and X, respectively.
Associated to any flat S-scheme in etale topology X lifting X an isomorphism is
determined canonically:

$x: P % s(D)—d] = 7, F.0%,5(D)
a<p

in D(X') such that H*¢ ¢ = C~! for a < p.

Corollary 20. Let k be a field of characteristic p > 0, S = Spec k, § =
SpecWs(k) and X an S-scheme. Let D = (D;);e; be a set of smooth divisors
with normal crossings on X. Let A be a divisor on X such that A + ¥;D; has
normal crossings. Let (n;) be a set of positive integer prime to p and the k;
integers. .

(1) Assume that X;¢ Ifz—';D,‘ is numerically equivalent to zero.

Associated to any flat S-couple of scheme and relative divisor (X' D+ A) lifting
(X,D + A), an isomorphism is determined canonically:

. k; k; N
605 p42) D) Vool + ies i+ (Sier 2 DN((Sier - Dil—a] =

a<lp i



. kz‘ k,‘
T<p Pl 5(A + TiesDi + {EiEI;Di})([ZiEI;Di])

in D(X') such that H*¢ 3z = C~* for a < p.

Corollary 21. Let (E;);jes be a set of reduced divisors different from each other
and any sum of D;’s. Instead of (i), we assume that EiEI%Di + EJ‘EJ%EJ' is
numerically equivalent to zero and that [¥;¢ J%Ej] = 0. Assume moreover that
(E;) has a lifting property. Then
) a ' ' ki ki, -
P (%, D+A)* @ Q% /s(A" + ZiesD; + {EtEI;Di})([EiEI;Di])[_a] =
a<p 1 1
° kz’ ki
T<pFuQ% s(A + BiesDi + {Zier—Di})([Zier—Di)).

n n;

Further the Hodge-Deligne spectral sequence degenerates at E; fora+b < p

k; ki
Ef* = HY(X,Q%(A + SieyDi + {EieI;Di}X[EieI;DiD =
a+b . ki k,‘
H(X, Q% (A + ZiesD; + {EiEI;Di})([EieI;Di])-

Remark 22. We can take the coefficients of divisors in real numbers or adic
numbers.
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