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TOPOLOGICAL INVARIANTS OF VARIETY AND THE

NUMBER OF IT’S HOLOMORPHIC MAPPINGS.
T.Bandman
The College of Judea and Samaria, Bar Ilan University, Israel

Let X, Y be two complex nonsingular quasiprojective varieties and H(X,Y)
the set of all proper surjective holomorphic mappings. This set is [finite
provided that Y is of hyperbolic type, i.e. the logarithmic Kodaira dimension

k(X) = dim X ([T],[K-O]). The following question is discussed in this talk. ‘

Question 1. Are there any topological restrictions on the possible number

#H(X,Y) of the mappings feH(X,Y)?

This means that we are looking for the bounds for #H(X,Y) depending on
topology of variety X only. In compact case the answer to the Question 1 is
affirmative, at least for the varieties X, Y with ample canonical line

bundles K(X), K(Y). Parameter Kx)4m X

(or (-1 cl(X)n ) is the topological
invariant in question. Further we shall not make difference between

divisors and line bundles corresponding to them if no confusion may arise.

Theorem 1. There is such a function ¢:ZxQ — Z that for any pair of
nonsingular projective varieties X, Y with ample canonical bundles K(X), K(Y)

the number #H(X,Y) = ¢ (dim X, K(x)*™).
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This estimate is not effective, but for Riemann surfaces (dim X=1) there
is an explicit formula (A. Howard and A.J. Sommese [H-S]) for the upper bound
of #H(X.Y) depending on the genus g, of the surface X only.

Theorem 1 is the immediate consequence of the existing estimate of

#H(X,Y), depending on Hilbert polynomial PK(X= x(X,mK(X)) of variety X ([B1])

)
and the Lemma, belonging to J. Kollar and T. Matsusaka ([K-M]).

Lemma (Kollar-Matsusaka). For every n there is a polynomial P(x,y) such that
if VU is a nonsingular projective variety and X a semi-ample divisor with the

Hilbert polynomial x(V,0(rX)) = Z‘:; dlr‘ then Idil =< P(dn’dn-1)'

In the case considered dn= KX)"/n!, d . K(X)"/2(n-1)!. From the Lemma

follows that I[P (m)] = (n+1)n-1P(d ,d )=M for m=l,...,n+l. Since the
K(X) n n-1

Hilbert polynomial is integervalued, there may be at most s = (2M)n+1

possible Hilbert polynomials Pl""’Ps with given dn= K(X)". For each of Pl
there exists a number bl(Px)’ which is the upper bound for #H(X,Y) for all
nonsingular projective varieties X, Y with ample canonical line bundles K(X),

K(Y) provided PK(X)= Px ([B1]). We may assume
¢ (K(X)") = max { b(P), i=l,...,s}

The non-compact case is much more complicated. There is a very interesting
and illustrative special case: Y=C\{0,1}. The problem of evz;luation of the
amount of holomorphic functions omitting two values was first aroused by E.
Gorin and V. Lin ([Z-L]) while investigating the algebraic equations on
algebraic variety X. Any completely reducible polynomial P(x,z) = 23 al(x)zlb,

xeX, with non coinciding ZEeros Al(x) defines n-2 functions
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ul=(7ti(x)-7\1(x))/(Al(x)—hz(x)) which omit values O and 1. E. Gorin and V. Lin

offered the following

Conjecture. The number #H(X,C\{0.1}) of holomorphic functions omitting two
fixed values on affine variety X has an upper bound, depending on hl(X) =

dim HX,Z) only.

The only two facts that are known in this direction concern one- and
two-dimensional cases:
1. (V.Lin) If on affine variety X with h'(X) = r there is a function omitting
r-1 values, th'en #H(X,C\{0,1}) = (3r)%;
2. ([B2]) If dim X = 2, then

2(h1(X)+h2(X))

#H(X,C\{0,1}) = 6h'(X) ,

where h'(X)= dim H(X,Z).

For arbitrary variety Y, there is a theorem ([B2]) generalizing

Theorem 1. Instead of ampleness of canonical bundles we . introduce

Definition 1. The quasiprojective variety Y is called to be "good", if it
possesses the nonsingular projectivization ?, Y=§\D(Y), such that:
1) E(Y)=K(Y)+D(Y) is ample;

2) D(Y) has only normal crossings.

Definition 2. We denote by A(n,d,u) the sef of all n-dimensional
quasiprojective varieties X with nonsingular projectivization i, X=-X-\D(X),
such that

1) E(X)=K(X)}+D(X) is ample;

2) E(X)"=d;
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3) (K(X),E(X)" Y)=u.

Theorem 2. There is such a function Y:ZxQxQ — Z, that for any "good" variety

Y and for X € A(n,d,u)

#H(X,Y) = y(n,d,u).

Contrary to the Theorem 1, this one does not give an answer to our main
Question 1, because the numbers d and u are not known to be topological
invariants of the variety X. Nevertheless, in some cases these parameters may
be estimated by h'(X) (see Theorem 3 below). The proof of Theorem 2 consists

of five steps.

Step I is based on the above cited Lemma of J. Kollar and T. Matsusaka.
The consequence of it is that for given n, d, u there is a finite set of
polynomials (Pl, Pz’ cees P’), such that if X € A(n,d,u), then x(X,rnE(X))=P1

for some i, O=siss.

Step II. Let n-dimensional variety Y be "good" , H(X,Y) # o, feH(X,Y) and
f : X —Y be it’s rational extension. Consider the resolution of singularities
of the mapping ?, i.e. sucﬁ nonsingular projective variety X and it’s biratio-
nal projection u:f(—-))-z, that
1) 1t'1!X is isomorphic;

2) divisor D = X \ ' (X) has only normal crossings as singularities;

3) in the commutative diagram

mappings f and w are holomorphic. Since the divisors D and D(Y) have only
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normal crossings,
~ ~ ~
f I:'.(Y)=I:'.(X)-—Rf

where E(X)=K(X)+D and divisor Rf is effective ([I]). Hence for m=z1

dim H°(Y,(m+1)E(Y)) =

A

(-1)x(Y,-mE(Y)) = dim H°(Y,(mE(Y)+K(Y))

(m+1)"E(X)™+n.

1A

H2(X, (m+1EX)) = H(X, (m+1)E(X))

As x(?,mE(Y)) is the integer valued polynomial, from this inequality
follows that for given d = E(X)" there may be only finite set of polynbmials

(Ql,..,Qr) such that x(:Y-,mE(Y))=QJ(m) for some j, O=<j=r.

Step III. As the result of two previous steps, the finite set
(P1""’P3’Qi""’Qr) of possible characteristic polynomials is obtaingd, and
due to the big Matsusaka Theorem ([M]), for some integer k all the divisors
kKE(X), KkE(Y) ar'c%/‘”zr':x;le for all the varieties XeA(n,d,u) and for "good" Y with
H(X,Y) # @. Note that integer k is defined only by values of parameters n,d,u.

Therefore we may assume that varieties X and Y are imbedded in the projective

spaces CPN, CIPM ,respectively, and

N = k"d+n
M = k"d+n

d(X) = deg X = kd

d(Y) = deg Y = k'd

r(X) = deg D(X) = K" '(d+u)

r(Y) = deg D(Y) = k"~ (d+u).
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Step IV. Considering varieties X and Y embedded as above, it is not
difficult to prove, that the degree deg I"f of the graph 1"f c CIPN X CIPM of any
mapping feH(X,Y) does not exceed (n+1)k" d:.?:[‘o prove this we show by inducti-

on in i that
(EX™, TEMY = EX™
For i=0 it is obvious. If it is valic; for i-1 > O, then for i we obtain
EXLTEMY = aEXLFEMY = (n*E(X)"",E(i)—Rf,?'E(Y)“1)5
E™ LT EWTY = BN

The first inequality holds because the bundles E(X) and E(Y) are ample
and mappings ?, T - holomorphic and divisor Rf effect ive. Hence the

intersection numbers for any i = n

@E0 " R, FENT )= 0.
Any plane section of variety XxYs CIPN X cP” is equivalent to the sum L =
Y Li b% L;—l where L1~ kKE(X) and L2~ kKE(Y). Consequently for degree degI‘f
of the graph I"f < cP" x cPM of any mapping f € H(X,Y) we have

_ _ n 1 n-1 - = n-1
deg I’f = (I‘[,L) = }:O(I'f, L1 X L2 ) =% (Ll,f (L2 )

=L k" (EX)', TEN™Y s (elk” EO"= g
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This estimate makes it possible to use the following Proposition ([B’2>], see
also [Z-LD. Since the proof of this Proposition is rather technical and
complicated we present it in the separate Appendix after the main text in

full detail.

Proposition 1. Let X € A(n,d,u), Y is "good" and dim Y =n, X = X \ D(X)
C CIPN, Y=Y \ DY) c CIPM, and the degrees deg X = dl, deg Y= dz' deg D(X) =
r, deg D(Y) = r, are fixed. Let HYX,Y) be the set of all feH(X,Y), for which
deg I"f =< q. Then the number #Hq(X,Y) of all feH!(X,Y) is bounded from above by

constant t(n,q‘,dl,dz,rl,rz,N,M), depending on parameters in brackets only.

Since all the parameters in our case are completely defined by n,d,u we
may conclude that #H(X,Y) = l/lo(n,d,u) = t(n,q,dm'dm‘r()(l)rmy,M), and ' this

finishes the proof in case dim X = dim Y.

Step V. Let now dim Y = n-r. Consider the hyperplane section S ~ (KE(X)"
of )-E, and let S = S \ D(X)Ig. Without loss of generality we may assume that S

is non-singular and #H(S,Y) = #H(X,Y). Then
K(S)~((K(X)+rkE(X),S)

E(S) = K(S+D(X)|S = (4rk)E(X)|S

n-r. r

d = (E(SN™ "= (rk+1)" " "k"E(X)" = (rk+1)" "k"d

n~-r-1
)

u_ = (K(S),ES)™ "1 = (K(XWrkE(X)|S,E(S)

K (k)™ tuark” ek )™ " L,
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Therefore
#H(X,Y)= #H(S,Y) = max (wo(n—r,dr,ur), 0 =r = n} = y(n,d,u)

for any X € A(n,d,u) and "good" Y.
As it is mentioned above, this Theorem is not the answer to the main
question. The next thing to be done is to find out whether there are

E(X)" and u =(K(X),EX)"Y by

any restrictions imposed on values d

the topology of variefy X.

The one-dimensional case is clear. For Riemann surface R of genus g with

k punctures

d = 2g-2+k =h'(R),

u = 2g-2.

If dim X = 2, there are only some partial results. Consider the nonsingular

projective surface S with K = K(g) and divisor D on g, such that line bundle

K+D is ample. Let S = S \ D.

Proposition 2. If D has only normal crossings and surface S is not ruled,

o
I

= (K+D)? = 4x(S),

[
I

= (K,K+D) = 4x(S).

Proof. The first inequality is well-known ([S]). On the non-ruled surface
the intersection number (K,L)20 for any ample divisor L ([SH]). As K+D is

ample and D is effective, we have
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v

(K,K+D) = 0,

(D,K+D)

v

o,
(K,K+D) = (K,K+D) + (D,D+K) = (K+D)>.
Q.E.D.
The requirement that D has normal crossings may be weakened, provided
that D2 = 0. We shall say that divisor D has transversal crossings, if all his
singularities ar~e non-tangent intersections and self-intersections. Any number

of components is permitted to meet at one point.
Proposition 3. If D% = 0 and divisor D has only transversal crossings, then
(K+D)%= ’14+120(h1(S)+h2(s))2,
_ & o(h'(S)+ )12(57)25(K,K+D) = (K+D)%

Proof. Let D = Yy D, D#D, G=y D, I1l=ism, c =(D,G). There are two
1 1 1#] J S

J 1

possibilities: 1) Component Dl has only normal self-intersections. 2)It has
some point where multiplicity of self-intersection is not less then three. In
case 1) we have hl= hl(Dl) z p; if 2) hl = 2, (h1)2+h12 P where P, denotes
the arithmetic genus of the component Dx' Let s be the number of components of

the first type. Then

1 >
= sz.((Dx’K+D1)+ Cx) + (m-s) =

_ sl v e
r‘—hl(D)ZZhlm+Zchz2

1 1
2(215.(D1’K+D)+(m_5)) = -m,

as (L,K+D) > O for any effective divisor L. On the other hand,
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(D,K+D) = ¥ (D K+D) = 2(f h + h?) = 4L b’ = 4(F h)* = 4(r+m)” = 40r”

From the exact sequence of the homology groups of the pair (E,D) we obtain
h (S) = h'(S);

hZ(s) + hi(s);

-
1A

h(S) s m + h%(S) = 2h'(S) + 3h°(S)

Hence, arithmetic genus of surface s, |pa[5 1+3h'(8)+3h%(S).
From the Neuther formula: IKZIS 12|pa|+|x(-S—)| =< 14+40(h*(S)+h%(S)).

So,

(K+D)?=K?-D%+2(D,K+D)= 14+40(h(S)+h%(S))+80r> = 14+120(h}(S)+h%(S))2.

- (D,(+D) < ®KsD) = (+DY’,
Q.E.D. |
It is possible thatv for solving the problem in general case more
delicate topological characteristics (homotopy groups, for example) are

needed. There is a vast field for further investigations in this field.

The author is extremely grateful to Professor V. Lin for the constant
attention to her work , to Professor D.Markushevich for interesting discus-
sions, to Professor L. Hanin for his assistance in preparing the manuscript. I
am most grateful to Professor S. Shnider and I. Alahmi for their invaluable
help.

This work was supported by the Bar-Ilan University, the Ministry of
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Absorption and the Ministry of Science and Technology, the State of Israel.

APPENDIX. The proof of Proposition 1.

Let X = X \ DX) € €', Y = Y \ DY) £ CPy be n-dimensional
quasiprojective varieties; 5—(, Y their non-singular pro jectivization.é, F X—Y
- the rational extension of the mapping f € H(X,Y) and rf cXxYe<cPtxcPM
- the graph of f. Remind, that by H%(X,Y) we denote the set of such f e
H(X,Y), that deg I"f = q.

The proof of the proposition is ‘based on the following fundamental fact.
For any projective variety V e cPV all it’s n-dimensional projective subsets
W s Vg P with deg W = q form an algebraic family (Wt) and for all te T
subset Wt is defiﬁed in cP" by one and the same system of algebraic equa-
tions, whose coefficients are homogeneous polynomials in variable t € T

Using the fact, we obtain the following diagram of algebraic families and

mappings.
-1 h h byl hpd 1
pA(h)—Dxnyc XaXYaDrr_pF(f)
n n n
A B rec FxcP®xcpM
Pp l g l prl Pry l
H — A « Fe FxcP'
n n pr
H F 2

In this diagram

(B,nB,A) is the family of all the products of n-dimensional nonsingular

projective varieties X scP, Y < CIPM, deg X =r, deg Y =r;
a a a 1 a 2

(H,nH,A) is the family of all bases n '(a) of all the families (Aa,pA,n;l(a))
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of all the products p&l(h) = D: X D: of divisors D; c ia, D}; c §‘,

h h _ - -1,_,.
deg DX - 1"1, deg DY - rzo Al (pA°T[H) (a))

(F,m_,A) is the family of all the bases of the families (I, P, n;‘a)) of

. . v .v _ - -1
all the irreducible subsets I“fc Xlea, degI‘[ = q, I‘aL (pronx__) (a).

pr, pr, are the natural projections.

Lemma 1. If the set G = {(f,h) €F x H such that
l.nH(h) = nF(f) = a;

2p M) = r.c ia x Y is a graph of some mapping

9,3 hg hy, ~h h_ -1
feH (Xa\ Dx’Ya\ Dy), Dx x DY = P, (h)},

then it is algebraic.

Proof. If I defines a map f € HY(X ,Y ), X = X\ D", Y = Y \ D", then
f a. a a a X a a Y

there is Zarisky opened subset Zr c -)Ea of the points z € }-(‘, such that
intersection (I'f, (z)xCPM)=1, i.e. the mapping f is defined in this point. ‘At
first we show that the set & = {f € F : dim zf = n} is algebraic. But the
sets [ = { yeI' : dim pr;I(prl(w))=0, deg prllpr11[7)=l) and I‘2=pr1(1‘1) are
obviously algebraic; since & = {fe F: f € prz(l“z) and dim pr:(f)=n), it is
algebraic too.

Now, f € & defines the map f € H“()‘(a\ D:, Y:\ D:) if the following

conditions hold

h h _ -1 _ .
1. Dx X DY = Py (h), nH(h) = nF(a),

“ o _h M, _h h
2.I'fn(DxxCIP)CDxny,
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3.7 n{cPx D" cD"x D%
f Y X Y

4. {zeX_: dim (T n {z x cP)) >0 ) c D).
The meaning of this inclusions is clear:

LD"xDPecX xY;
X Y a a

\S]

. f ]()-Ea\ D:) is proper and surjective;

W

v h o h
. f(Xa\ Dx) c Ya\ Dy,

4. f](ia \ D:) is holomorphic.

In order to show that the set G £ F x H of all pairs (f,h) for which
1)-4) hold is quasiprojective, we are to prove that these conditions may be
formulated as a system of algebraic equations and inequalities. We shall show

this for 2); 3) and 4) are treated in a similar way and 1) is obvious. Let

{ s‘:(z,w) =0, o=l2,..k, (L
B8 _ -
(Ve (@ =0 B=l2..k, 2)
7 _ _ B
{Wiw) = o, r=1,2,..k , (3)

be the system of homogeneous in variables z € CIPN, w € C[PM, feF, heH

equations, defining the sets I‘f, D;, D: respectively. Let

3
(Qh'f(w)—o, 6=1,2,...k4 (4)

be the system of resultants of the systems (1,2). Polynomials Qa(h,f,w) are
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homogeneous in all their variables. The set Ly c cP" defined by (4) consists
of all the points w € cP™ for which there exists z € cP" such that (z,w) € I‘f.
The 2) is equivalent to relation

L, < D,

that is W:lLy= 0 for all 7:1,...1(4. Denote by da, AY degrees of @i f(W) and

WZ(W) respectively. By the Hilbert theorem on zeros , there exist such numbers

q'ar defined by (da, Aw) and polynomials Ai’z_’ of degrees na"’r that
s
7 _ % 4 S _ ‘
Wh(W) =Y Ah,{(w) @h’f(w) , -1,...k3 (5)
3 =1
and n5’7 = q"rda.

System (5) may be considered as a system of linear equations for the
coefficients of polynomials Ai:z . . It’s solvability means that the ranks of
coefficients and extended matrices coincide, and this fact may be clearly
expressed by the finite number of algebraic equations and inequalities for the
coefficients of Wi and @: o which itselft are homogeneous polypomials in

h, f, Q.E.D.

Proof of the proposition. Any pair of varieties X = X \.D(X), Y =Y\
D(Y) considered in proposition defines points a € A, h € H, so that nH(h) =
a, D:: = D(X), D:= D(Y), X = ia, Y = ?a. Since the set HY(X,Y) is finite, it is
in one-to-one correspondence with the points of the set pr;l(h) where prG:G——>H
is the natural projection of G ¢ F x H to H. Since both the sets G, H are
algebraic and pr, is rational, the number #pr(—;l(h) is bounded from aboye for
all h € prG(G) by some constant b(G) .The construction of the set G is
absolutely determined by parameters n, q, d1’ dz’ T T, N, M and we may

define t(n,q,,dl,dz,rl,er,M) = b(G), Q.E.D.
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