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Analytic Zariski Decomposition

Hajime Tsuji

1 Introduction

Let $X$ be a projective variety and let $D$ be a Cartier divisor on $X$ . The
following problem is fundamental in algebraic geometry.

Problem 1 Study the linear system $|\nu D|$ for $\nu\geq 1$ .

To this problem, there is a rather well developped theory in the case of
$\dim X=1$ . In the case of $\dim X=2$ , in early 60-th, $0$ . Zariski reduced this
problem to the case that $D$ is $nef$($=numerically$ semipositive) by using his
famous Zariski decomposition ([12]).

Recently Fujita, Kawamata etc. generalized the concept of Zariski de-
compositions to the case of $\dim X\geq 3([2,4])$ . The definition is as follows.

Definition 1 Let $X$ be a projective vareety and let $D$ be a R-Cartier divisor
on X. The expression

$D=P+N(P, N\in Div(X)\otimes R)$

is called a Zariski decomposition $ofD$, if the following conditions are satisfied.
1. $P$ is $nef_{J}$

2. $N$ is effective,

3. $H^{0}(X, \mathcal{O}_{X}([\nu P]))\simeq H^{0}(X, \mathcal{O}_{X}([\nu D]))$ holds for all $\nu\in Z_{\geq 0_{f}}$ where
$[]s$ denote the integral parts of divisors.
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In the case of $\dim X=2$ , for any pseudoeffective divisor $D$ on $X$ , a Zariski
decomposition of $D$ exists ([12]). But in the case of $\dim X\geq 3$ , although
many useful applications of this decomposition have been known ([2, 4, 7]),
as for the existence, very little has been known. There is the following (rather

optimistic) conjecture.

Conjecture 1 Let $X$ be a normal projective variety and let $D$ be a pseudoef-

fective R-Cartier divisor on X. Then there exists a modification $f$ : $Yarrow X$

such that $f^{*}D$ admits a Zariski decomposition.

The purpose of this paper show how to construct an analytic counterpart
of Zariski decomposition. Please see $[9, 10]$ for detail and further applications.
In this paper, all algebraic varieties are defined over C.

2 Statement of the results

The main idea in this paper is to use d-closed positive $(1, 1)$-currents, instead
of divisors. d-closed positive currents is far more general object than effective
algebraic cycles. The advantage of using d-closed positive currents is in the
flexibility and completeness of them.

Definition 2 Let $X$ be a normal projective variety and let $D$ be a R-Cartier
divisor on X. $D$ is called big if

$\kappa(D)$ $:= \lim_{\nuarrow+}\sup_{\infty}\frac{\log\dim H^{0}(X,\mathcal{O}_{X}([\nu D]))}{\log\nu}=\dim X$ .

holds. $D$ is called pseudoeffective , if for any ample divisor $H_{f}D+\epsilon H$ is big

for every $\epsilon>0$ .

Definition 3 Let $M$ be a complex manifold of dimension $n$ and let $A_{c}^{p,q}(M)$

denote the space of $C^{\infty}(p, q)$ forms of compact support on $M$ with usual
Frechet space structure. The dual space $D^{p,q}(M)$ $:=A_{c}^{n-p,n-q}(M)^{*}$ is called
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the space of $(p, q)$ -currents on M. The linear operators $\partial$ : $D^{p,q}(M)arrow$

$D^{p+1,q}(M)$ and $\overline{\partial}:D^{p,q}(M)arrow D^{p,q+1}(M)$ is defined by

$\partial T(\varphi)=(-1)^{p+q+1}T(\partial\varphi),$ $T\in D^{p,q}(M),$ $\varphi\in A_{c}^{n-p-1,n-q}(M)$

and

$\overline{\partial}T(\varphi)=(-1)^{p+q+1}T(\overline{\partial}\varphi),T\in D^{p,q}(M),$ $\varphi\in A_{c}^{n-p,n-q-1}(M)$ .

We set $d=\partial+\overline{\partial}$ . $T\in D^{p,q}(M)$ is called closed if $dT=0$ . $T\in D^{p,p}(M)$

is called real if $T(\varphi)=T(\overline{\varphi})$ holds for all $\varphi\in A_{c}^{n-p,n-p}(M).$ A real current
$(p,p)$ -current $T$ is called positive if $(\sqrt{-1})^{p(n-p)}T(\eta\wedge\overline{\eta})\geq 0$ holds for all
$\eta\in A_{c}^{p,0}(M)$ .

Since codimension $p$ subvarieties are considered to be closed positive $(p,p)-$

currents, closed positive $(p,p)$-currents are considered as a completion of the
space of codimension $p$ subvarieties with respect to the topology of currents.
For a $R$ divisor $D$ on a smooth projective variety $X$ . We denote the class of
$D$ in $H^{2}(X, R)$ by $c_{1}(D)$ .

Definition 4 Let $T$ be a closed positive $(p,p)$ -current on the open unit ball
$B(1)$ in $C^{n}$ with centre O. The Lelong $number\Theta(T, O)$ ofT at $O$ is defined
$by$

$\Theta(T, O)=\lim_{r\downarrow 0}\frac{1}{\pi^{n-p}r^{2(n-p)}}T(\chi(r)\omega^{n-p})$ ,

where $\omega=\frac{\sqrt{-1}}{2}\sum_{i=1}^{n}dz_{i}\wedge d\overline{z}_{i}$ and $\chi(r)$ be the charcterristic function of the
open ball of radius $r$ with centre $O$ in $C^{n}$ .

It is well known that the Lelong number is invariant under coordinate
changes. Hence we can define the Lelong number for a closed positive $(p,p)-$

current on a complex manifold. It is well known that if a closed positive
current $T$ is defined by a codimension p-subvariety the Lelong number $\Theta(T,x)$

coincides the multiplicities of the subvariety at $x$ . In this sense the Lelong
number is considered as the multiplicity of a closed positive current.

We note that thanks to Hironaka resolution of singularities, to solve the
conjecture, we can restrict ourselves to the case that $X$ is smooth. Our
theorem is stated as follows.
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Theorem 1 Let $X$ be a smooth projective variety and let $L$ be a line bundle
on X. Then there exists a closed positive $(1, 1)$ -current $T$ such that

1. $T$ represents $c_{1}(L)$ in $H^{2}(X, R)$ ,

2. For every modification $f$ : $Yarrow X\nu\in Z_{\geq 0}$ and $y\in Y$ ,

$mult_{y}Bs|f^{*}(\nu L)|\geq\nu\Theta(f^{*}T,y)$

holds.

We call $T$ an Analytic Zariski decomposition(AZD) of $L$ . Let

$T=T_{abc}+T_{sing}$

be the Lebesgue decomposition of $T$ , where $T_{abc},$ $T_{sing}$ denote the absolutely
continuous part and the singular part of $T$ respectively. As you see below,
this decomposition corresponds to Zariski decomposition.

The relation between Zariski decomposition and AZD is described by the
following corollary and proposition.

Corollary 1 Let $X$ be a smooth projective variety and let $D$ be a $nef$ and
big $R$ divisor on X. Then $c_{1}(D)$ can be represented by a closed positive
$(1, 1)$ -current $T$ with $\Theta(T)\equiv 0$ .

Proposition 1 Let $X$ be a smooth projective variety and let $D$ be a $R$ divisor
on $X$ such that $2\pi c_{1}(D)$ can be represented by a closed positive $(1, 1)$ current
$T$ with $\Theta(T)\equiv 0$ . Then $D$ is $nef$.

Let $X,L$ be as in Theorem 1. Suppose that there exists a modification
$f$ : $Yarrow X$ such that there exists a Zariski decomposition $f^{*}L=P+N$ of
$f^{*}L$ on Y. Then by Cororally 1 there exists a closed positive $(1, 1)$ current $S$

such that $c_{1}(P)=[S]$ and $\Theta(S)\equiv 0$ . Then the push-forward $T=f_{*}(S+N)$ is
a AZD of L. The main advantage of AZD is that we can consider the existence
without changing the space by modifications. One may ask whether AZD
substitutes ZD(Zariski decomposition). In some case the answer is “Yes”. In
this paper, I would like to show some applications, too.
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3Outline of the proof of Theorem 1

Now I would like to show the outline of the proof of Theorem 1. Let $X,L$ be
as in Theorem 1. Let $h$ be a $C^{\infty}$-hermitian metric on $L$ and let $\omega_{\infty}$ be the
curvature form of $h$ . Let $\omega_{0}$ be a $C^{\infty}$ K\"ahler form on $X$ such that

$\omega_{0}-\omega_{\infty}>0$

holds on $X$ . We set
$\omega_{t}=(1-e^{-t})\omega_{\infty}+e^{-t}\omega_{0}$ .

Let $\Omega$ be a $C^{\infty}$ volume form on $X$ . Now we consider the following initial
value problem.

$\frac{\partial u}{\partial t}$

$=$
$\log\frac{(\omega_{t}+\sqrt{-1}\partial\overline{\partial}u)^{n}}{\Omega}-u$ on $X\cross[0,t_{0}$ ) (1)

$u$ $=0$ on $X\cross\{0\}$ , (2)

where $n=\dim X$ and $t_{0}$ is the maximal existence time for the $C^{\infty}$ solution $u$ .
By the standard implicit function theorem $T$ is positive. Since $\omega_{0}-\omega_{\infty}>0$ ,
by direct calculation we have the partial differential inequality

$\frac{\partial}{\partial t}(\frac{\partial u}{\partial t})\leq\tilde{\Delta}\frac{\partial u}{\partial t}-\frac{\partial u}{\partial t}$ ,

where $\tilde{\Delta}$ dnotes the Laplacian with respect to the K\"ahler form $\omega_{t}+\sqrt{-1}\partial\overline{\partial}u$ .
Hence by maximum principle, there exists a positive constant $C_{0}^{+}$ such that

$\frac{\partial u}{\partial t}\leq C_{0}^{+}e^{-t}$

holds on $X\cross[0, t_{0}$ ). But unfortunately, we do not have uniform lower bound
for the solution $u$ . Actually we cannot expect the uniform lower bound for
$u$ .

The above equation corresponds to the following Hamilton type equation:

$\frac{\partial\omega}{\partial t}$ $=$ $-Ric_{\omega}-\omega+(Ric\Omega+curvh)$ on $X\cross[0, t_{0}$ )

$\omega=\omega_{0}$ om $X\cross\{0\}$ .
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This equation preserves the K\"ahlerity of $\omega$ . Hence it is meaningful to take
the de Rham cohomology class $[\omega]$ . By a calculation, we see that

$[\omega]=(1-e^{-t})2\pi c_{1}(L)+e^{-t}[\omega_{0}]$

holds. Let $A(X)$ denote the K\"ahler cone of $X$ . By the above equation, we
see that $[\omega]\in A(X)$ , if $t\in[0,t_{0}$ ). Conversly we have:

Lemma 1 $T= \sup$ { $t$ I $[\omega]\in A(X)$ }.

But this means that unless $2\pi c_{1}(L)$ sits on the closure of $A(X)$ , we cannot
expect $T=\infty$ .

Hence we should consider a current solution

$\omega_{t}+\sqrt{-1}\partial\overline{\partial}u$

instead of a $C^{\infty}$ solution, where $u:Xarrow[-\infty, \infty$ ) To construct a current
solution we need to find the place where the estimate of the solution $u$ breaks.
We set

$S= \bigcap_{\nu>0}$ { $x\in X|H^{0}(X,$ $\mathcal{O}_{X}(\nu L))$ does not separate $TX_{x}$ }

and we expect that the solution $u$ is $C^{\infty}$ on $X-S$.
The natural way to construct such a singular solution is to construct

the solution by as a limit of the solution of Dirichlet problems on relatively
compact subdomains in $X-S$ which exhaust $X-S$. So we would like to
apply the theory of Dirichlet problem for complex Monge-Amp\‘ere equations
developped recently ([1]).

But in fact, we need to subtract a little bit larger set because $X-S$ is not
strongly pseudoconvex. Otherwise the theory does not work (this phenomena
is caused by the lack of good barriers for the estimates, if the domain is not
pseudoconvex). Let $f_{\nu}$ : $X_{\nu}arrow X$ be a resolution of Bs $|\nu L|$ and let

$|f_{\nu^{*}}(\nu L)|=|P_{\nu}|+N_{\nu}$

be the decomposition into the free part and the fixed part. The following
lemma is well known and very useful.
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Lemma 2 (Kodaira’s lemma) Let $X$ be a smooth projective variety and let
$D$ be a big divisor on X. Then there exists an effective Q-divisor $E$ such
that $D-E$ is an ample Q-divisor.

Then by Kodaira’s lemma, we can find an effective divisor $R_{\nu}$ on $X_{\nu}$ such
that for every sufficiently small positive rational number $\epsilon,$

$P_{\nu}-\epsilon R_{\nu}$ is an
ample Q-divisor.

Let us take $\nu$ sufficiently large so that the free divisor $P_{\nu}$ is nef and big.
Let $\Phi$ : $X_{\nu}arrow P^{N}$ be an embedding of $X_{\nu}$ into a projective space and let

$\pi_{\alpha}$ : $X_{\nu}arrow P^{n}(\alpha=1, \ldots,m)$

be generic projections and we set

$W_{\alpha}$ : the ramification divisor of $\pi_{\alpha}$

$H_{\alpha}$ $:=\pi_{\alpha}^{*}(z_{0}=0)$ ,

where $[z_{0}$ :.. . : $z_{n}]$ be the homogeneous coodinate of $P^{n}$ . For simplicity
we shall denote the support of a divisor by the same notation as the one, if
without fear of confusion. If we take $m$ sufficiently large, we may assume the
following conditions:

1. $\bigcap_{\alpha=1}^{m}(W_{\alpha}+H_{\alpha})=\phi$ ,

2. $D$ $:=(F_{\nu}+\Sigma_{\alpha=1}^{m}(W_{\alpha}+H_{\alpha}))_{red}$ is an ample divisor with normal cross-
ings,

3. $D$ constains S U $R_{\nu}$ ,

4. $K_{X_{\nu}}+D$ is ample.

Then $U=X_{\nu}-D_{\nu}$ is strongly pseudoconvex and is identified with a Zariski
open subset of $X$ . Let $K$ be a relatively compact strongly pseudoconvex
subdomain of $U$ with $C^{\infty}$ boundary. Thanks to the condition 1 above, for
$K$ , we can apply the theory in [1] developped on strongly pseudoconvex
domains with $C^{\infty}$ boundary in a complex Euclidean space, although $K$ is
not inside $C^{n}$ .
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Hence we can solve a Dirichlet problem for a complex Monge-Amp\’ere
equation on $K$ . In our case the equation is parabolic, so we need to modify
the theory. To get the $C^{0}$-estimate for the solution, we shall change the
unknown. Let $\tau$ be a section of $\mathcal{O}_{X_{\nu}}(F_{\nu})$ with divisor $F_{\nu}$ and let $\lambda$ be a
section of $\mathcal{O}_{X_{\nu}}(R_{\nu})$ with divisor $R_{\nu}$ . Then there exists a hermitian metrics
$h_{F},h_{R}$ on $\mathcal{O}_{X_{\nu}}(F_{\nu}),$ $\mathcal{O}_{X_{\nu}}(R_{\nu})$ respectively such that

$f_{\nu^{*}} \omega_{\infty}-\frac{1}{\nu}$curv $h_{F}-\epsilon$ . curv $h_{R}$

is a K\"ahler form on $X_{\nu}$ for every sufficiently small postive number $\epsilon$ . Let us
change $u$ by

$v=u-(1-e^{-t})( \frac{1}{\nu}\log h_{N}(\tau,\tau)-\epsilon h_{R}(\lambda, \lambda))$.

Then since

$\omega_{t}’=(1-e^{-t})$ ( $f_{\nu^{*}} \omega_{\infty}-\frac{1}{\nu}$curv $h_{F}-\epsilon$ . curv $h_{R}$ ) $+e^{-t}f_{\nu^{*}}\omega_{0}$

is uniformly positive on $U$ , we can solve the O-Dirichlet boundary value prob-
lem for $v$ on $K\cross[0, \infty$ ) for any relatively compact strongly pseudoconvex
subdomain $K$ with $C^{\infty}$ boundary.

Remark 1 Here we need to worry about the Gibb’s phenomena for the parabolic
equation. But this is rather thechnical and not essential. Hence we shall omit
$it$ .

Let us take an strongly pseudoconvex exhaustion $\{K_{\mu}\}$ of $U$ and consider
a family of Dirichlet problems of parabolic complex Monge-Amp\’ere equation
(1).

The next difficulty is the convergence of the solutions of this family
of Dirichlet problems. Here we note that there exists a complete K\"ahler-

Einstein form $\omega_{D}$ on $U$ thanks to the conditions 3, 4 above and [6]. Then if
we choose the boundary values properly, we can dominate the volume forms
associated with the solutions from above by a constant times $\omega_{D}^{n}$ by maximum
principle. This ensures the convergence.

Let $u\in C^{\infty}(U)$ be the solution of (1) on $U$ . Then by the $C^{0}$-estimate of
$u$ , we see that $u$ extends to a $L^{1}$ -function on $X$ for every $t$ .
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Now we set
$T=_{tarrow}m_{\text{科}}(\omega_{t}+\sqrt{-1}\partial\overline{\partial}u)$ ,

where $\partial\overline{\partial}$ is taken in the sense of current.

Remark 2 On the first look, $T$ seems to depend on the choice of $\nu$ . But
actually, $T$ is indpendent of $\nu$ . This follows from the uniqueness property of
the equation (1).

Then we can verify that $T$ is an AZD of $D$ by using the $C^{0}$-estimate of $u$ .

4 Basic properties of AZD

As a direct consequence of the construction, an AZD has following properties.

Proposition 2 Let $X$ be a smooth projective variety and let $L$ be a big line
bundle on X. Let $T$ be an $AZD$ of $L_{f}$ then $T$ has the following properties.

1. Let $T=T_{abc}+T_{\epsilon ing}$ denote the Lebesgue decomposition of T. Then
there exists a reduced very ample divisor $D$ on $X$ such that $T_{abc}$ is $C^{\infty}$

on $X-D$ .

2. $T_{a^{n}bc}$ is of Poincare‘ growth along D. In particular $T_{a^{n}bc}$ is integrable on
X.

3. $T$ is offinite order along $D,$ $i.e.$ , only polynomial growth along $D$ .

Remark 3 $D$ need not be of normal crossings. Hence the word “Poincar\’e

growth “ means a little bit generalized sense, $i.e$ . if we take any modification
such that the total transform of $D$ becomes of normal crossings, the pull-back

of $T_{a^{n}bc}$ is of Poincar\’e growth along the total transform.

Remark 4 I think the third property of $AZD$ should be the key to solve the
conjecture in the introduction.

By using Kodaira’s lemma and H\"ormander’s $L^{2}$-estimate for $\overline{\partial}$-operator,

we can easily get.



212

Proposition 3 Let $X,L,T$ be as in Proposition 1. Then for every modifica-
tion $f$ : $Yarrow X$ and any $y\in Y$ ,

$\Theta(f^{*}T, y)=\lim_{\nuarrow+}\inf_{\infty}\nu^{-1}mult_{y}Bs|\nu L|$

holds.

Proposition 2 means that although an AZD is not unique, but the singular
part is in some sense unique and the AZD controlles the asymptotic behavior
of the base shemes of the multilinear systems.

Instead of using AZD itself, sometimes it is more useful to use the “po-
tential” of AZD.

Definition 5 Let $L$ be a line bundle on a complex manifold X. $h$ is called a
singular hermitian metric on $L_{f}$ if there exist a $C^{\infty}$ -hermitian metric $h_{0}$ on
$L$ and locally $L^{1}$ -fuction $\varphi$ such that

$h=e^{-\varphi}h_{0}$

holds.

We note that for a singular hermitian meric it is meaningful to take curvature
of it in the sense of current.

One of the most useful property of AZD is the following vanishing theo-
rem.

Theorem 2 Let $X,L$ be as in Theorem 1 and let $T$ be an $AZD$ of $D$ con-
structed as above. Let $h$ be a singular he$7mitian$ metmc on $L$ such that
$T=curvh$ . For a positive integer $m$ we set

$\mathcal{F}_{m}$ $:=sheaf$ of germs of local $L^{2}$ -holomorphic sections of $(\mathcal{O}_{X}(mD), h^{\otimes m})$ .

Then $\mathcal{F}_{m}$ is coherent sheaf on $X$ and

$H^{p}(X, K_{X}\otimes \mathcal{F}_{m})=0$

holds for $p\geq 1$ .
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By Corollary 1, we get the following well known vanishing theroem.

Corollary 2 ([5]) Let $X$ be a smooth projective manifold and let $L$ be a $nef$

and big line budnle. Then

$H^{p}(X, K_{X}\otimes L)=0$

holds for $p\geq 1$ .

5 Some direct applications of AZD

In this section, we shall see that we can controle the asumptotic behavior of
the multilinear systems associated with big line bundle in terms of its AZD.

Definition 6 Let $L$ be a line bundle over a projective n-fold X. We set

$vol(X, L)= \lim_{\nuarrow+\infty}\nu^{-n}\dim H^{0}(X, \mathcal{O}_{X}(\nu L))$

and call it the L-volume of $X$ or the volume of $X$ with respect to $L$ .

We can express the volume in terms of AZD.

Theorem 3 Let $L$ be a big line bundle over a smooth projective n-fold $X$

and let $T=T_{abc}+T_{sing}$ be an $AZD$ of $L$ constructed as in Section 3. Then
we have

$vol(X, L)= \frac{1}{(2\pi)^{n}n!}\int_{X}T_{abc}^{n}$

holds.

The following therem follows from the existence of AZD and Lebesgue-
Fatou’s lemma.

Theorem 4 Let $\pi$ : $Xarrow S$ be a smooth projective family \‘of projective
varieties over a connected complex manifold $S$ and let $L$ be a relatively big
line bundle on X. For $s\in S$ , we set $X_{s}=\pi^{-1}(s)$ and $L_{s}=L|X_{s}$ . Then
$vol(X_{s}, L_{s})$ is an uppersemicontinuous function on $S$ .

The following theorem follows from Theorem 2.
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Theorem 5 Let $\pi$ : $Xarrow S$ be a smooth projective family of projective
varieties over a connected complex manifold $S$ and let $L$ be a line bundle on
X. Suppose that $aL-K_{X}$ is relatively big for some $a>0$ . Then $vol(X_{s}, L_{8})$

is a constant function on $S$ .

Proof of Theorem 2. Let $X,$ $L,$ $T$ be as in Theorem 3. Let$D$ be as in
Proposition 1. By taking a modification of X-, we may assume that $D$ is a
divisor with simple normal crossings. By Kodaira’s lemma there exists an
effective $Q$ divisor $E$ such that $L-E$ is an ample Q-line bundle. Let $\overline{\omega}$ be a
K\"ahler form on $X$ which represents $c_{1}(L-E)$ . Let $\sigma$ be a section of $\mathcal{O}_{X}(D)$

such that $(\sigma)=H$ and let $h$ be a $C^{\infty}$ -hermitian metric on $\mathcal{O}_{X}(D)$ . Then for
a sufficiently small positive number $c$ ,

$\omega=\overline{\omega}+c\sqrt{-1}\partial\overline{\partial}\log(-\log h(\sigma, \sigma))$

is a complete K\"ahler form on $X-D$ . We note that there exist positive
constants $C_{1},$ $C_{2}$ such that

$-C_{1}\omega<Ric_{\omega}<C_{2}\omega$

on $X-D$ by direct computation (actually $\omega$ has bounded geometry). Then
by the $L^{2}$-Riemann-Roch inequality ([8]), we have that for every $\epsilon>0$ we
have the inequality

$\frac{1}{(2\pi)^{n}n!}\int_{X-D}(T_{abc}+\epsilon\omega)^{n}\leq vol((1+\epsilon)L-\epsilon E)\leq(1+\epsilon)^{n}vol(X, L)$ .

Letting $\epsilon$ tend to $0$ , we have the inequality

$\frac{1}{(2\pi)^{n}n!}\int_{X-D}T_{abc}^{n}\leq vol(X,L)$ . (3)

Let $f_{\nu};X_{\nu}arrow X$ be a resolution of Bs $|\nu L|$ and let $|P_{\nu}|$ denote the free
part of $|f_{\nu^{*}}(\nu L)|$ . Assume that $\nu$ is sufficiently large so that $P_{\nu}$ is nef and
big. Let $\omega_{\nu}$ denote a semipositive first Chern form of $\mathcal{O}_{X_{\nu}}(f_{\nu}^{*}(\nu L))$ . We set

$T_{\nu}=\nu^{-1}(f_{\nu})_{*}(\omega_{\nu})$ .

Then since $|P_{\nu}|$ is free, by Bertini’s theorem, we get the sequence of in-
equalities:

$T_{abc}^{n}\geq T_{abc}^{n-1}T_{\nu}\geq\cdots\geq T_{\nu}^{n}$
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on $X-D$ . Hence we see that

$\int_{X_{\nu}}(T_{\nu})_{abc}^{n}=(2\pi)^{n}\nu^{-n}c_{1}^{n}(P_{\nu})\leq\int_{X}T_{abc}^{n}$

holds. We need the following proposition.

Proposition 4 (Fujita) Let $L$ be a big line bundle on a projective manifold
X. Let $f_{\nu}$ : $X_{\nu}arrow X$ be a resolutiona of $Bs|\nu L|$ and let

$|f_{\nu}^{*}(\nu L)|=|P_{\nu}|+F_{\nu}$

be the decomposition into the free part and the fixed part. Then the equality

$vol(X, L)= \frac{1}{n!}\lim_{\nuarrow+\infty}\nu^{-n}P_{\nu}^{n}$

holds.

By Proposition 4, we have that

$vol(X, L) \leq\frac{1}{(2\pi)^{n}n!}\int_{X}T_{abc}^{n}$ (4)

holds.
Combining (3) and (4), we complete the $pro$of of Theorem 3.

Corollary 3 $LetX,$ $L,T$ be as in Theorem 1 and let $\omega$ be a Kahler form on
X. Then $\int_{X}T_{abc}^{k}$ A $\omega^{n-k}$ is finite on $X$ .

Proof of Theorem 4.
We may assume that $S=\{s\in C||s|<1\}$ .
Step 1. For the first we shall consider the case that $L$ is relatively big. Let
$T_{s}=(T_{s})_{abc}+(T_{s})_{sing}(s\in S)$ be the family of AZD’s constructed by the flow
for the positive current $\omega$ ,

$\partial\omega$

$\overline{\partial t}$

$=$ $-Ric_{\omega}-\omega+(Ric\Omega+curvh)$ on $X_{s}\cross[0, \infty$ )

$\omega=\omega_{0}$ on $X_{s}\cross\{0\}$ ,
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where
$Ric_{\omega}$ $:=-\sqrt{-1}\partial\overline{\partial}\log\omega^{n}$ : the Ricci current of $\omega$

$h$ : a (relative) $C^{\infty}$-hermitian metric on $L$ ,
$\omega_{0}$ : a relative $C^{\infty}$-K\"ahler form on $X$ ,
$\Omega$ a relative $C^{\infty}$-volume form on $X$ .
Since $L$ is relatively big, as in Section 3, there exists a reduced divisor $D$ on
$X$ such that

1. $D$ is equidimensional over $S$ ,

2. $(X-D)$ admits a complete relative K\"ahler-Einstein metric $\omega_{D}$ of con-
stant Ricci curvature—l,

3. $\omega$ is $C^{\infty}$ on $X-D$.

Then by Lebesgue’s bounded convergence theorem, we see that

$vol(X_{s}, L_{s})= \int_{X_{s}}(T_{s})_{abc}^{n}$

is an uppersemicontinuous function with respect to $s$ . This completes the

proof of Theorem 4.
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