ON SOME SUFFICIENT CONDITIONS FOR STARLIKENESS AND CONVEXITY MILUTIN OBRADOVIĆ (ベオグラード大学) SHIGEYOSHI OWA (近畿大・理工 尾和重義) M. K. AOUF (マンスール大学) #### **ABSTRACT** For a function $f(z) = z + a_2 z^2 + \dots$ analytic in the unit disk, we consider the conditions of the form |f'(z) + zf''(z) - 1| < j which imply starlikeness or convexity of it. ## I. INTRODUCTION AND PRELIMINARIES Let A denote the class of functions f(z) analytic in the unit disk $U = \{z: |z| < 1\}$ with the conditions f(0) = f'(0) - 1 = 0. As usual, we denote by K, K, and K the subclasses of A whose members are convex, starlike, and close-to-convex, respectively. All these classes are subclasses of univalent functions in the unit disk U (see, for example [1]). Let f(z) and F(z) be analytic in the unit disk $|| \cdot ||$. Then we say that f(z) is subordinate to F(z), written by $f(z) \prec || F(z)$ or $f \prec || F(z)$ or $f \prec || F(z)$ there exists a function w(z) analytic in $|| \cdot ||$ such that w(0) = 0, || w(z) || < 1 ($z \in || \cdot ||$), and f(z) = F(w(z)). If F(z) is univalent in $|| \cdot ||$, then $f \prec || F(z)|$ and only if f(0) = F(0) and $f(|| \cdot ||) \subset F(|| \cdot ||)$. If for a function $f(z) \in A$ we have $$|f'(z) + zf''(z) - 1| < 2$$ $(z \in \bigcup),$ which is equivalent to $$(zf'(z))' \prec 1 + 2z$$, then by applying Lemma 1, given below, we get $$(1) f'(z) \prec 1 + z,$$ i.e. $Re\{f'(z)\} > 0$ (z ϵ U), and f(z) ϵ (. But, as Mocanu [4] showed, ¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45. the condition (1) doesn't imply $f(z) \in S^*$. In that sense, we may ask a question on a constant j, j < 2, such that the condition $$|f'(z) + zf''(z) - 1| < j$$ (z $\varepsilon \downarrow$) implies $f(z) \in S_{\epsilon}^{*}$ or $f(z) \in K$. It will be the object of this paper. But previously, we cite the following lemmas that will be used further. LEMMA [([2]). Let F(z) be a convex function in U (i.e. F(z) is univalent and F(U) is a convex domain). If $Re\{\gamma\} > 0$ and f(z) is analytic in U, then $$f(z) \prec F(z) \Rightarrow \frac{1}{z^{\gamma}} \int_0^z f(t) t^{\gamma-1} dt \prec \frac{1}{z^{\gamma}} \int_0^z F(t) t^{\gamma-1} dt$$. LEMMA 2 ([4]). If $f(z) \in A$ and $$|f'(z) - 1| < \frac{2}{\sqrt{5}} = 0.894...$$ (z ε U), then $f(z) \in S^*$. LEMMA 3 ([3]). Let Ω be a subset of the complex plane (and suppose that the function $\psi\colon$ ($^2x\ \cup \longrightarrow$ (satisfies the condition $\psi(ix,y;z)\not\in\Omega$, for all real x, $y\leq -(1+x^2)/2$ and all $z\in U$. If the function p(z) is analytic in U, p(0)=1 and $\psi(p(z),zp'(z);z)\in\Omega$ ($z\in U$), then $Re\{p(z)\}>0$. #### 2. RESULTS AND CONSEQUENCES We start with the following statement which easily follows from Lemma 1 and Lemma 2. THEOREM I. Let f(z) ϵ A satisfy the condition (2) $$|f'(z) + zf''(z) - 1| < \frac{4}{\sqrt{5}} = 1.788...$$ (z \in \bigcup), then $f(z) \in S^*$. PROOF. Since the condition (2) may be rewritten in the form $$(zf'(z))' \prec 1 + \frac{4}{\sqrt{5}}z,$$ an application of Lemma 1 gives that $f'(z) \prec 1 + (2/\sqrt{5})z$, i.e. $$|f'(z) - 1| < \frac{2}{\sqrt{5}}$$ $(z \in \bigcup).$ Therefore, by using Lemma 2, we have $f(z) \in S^*$. But we can get the precise result for a stronger condition than (2). Namely, we have THEOREM 2. If $f(z) \in A$ satisfies (3) $$|f'(z) + zf''(z) - 1| < \frac{3}{2}$$ $(z \in U),$ then $f(z) \in S^*$ and $$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \qquad (z \in \bigcup).$$ PROOF. At the begining, we note that we use the method given by Mocanu [4]. From (3) we have $(zf'(z))' \prec 1 + (3/2)z$, and by using Lemma 1, $f'(z) \prec 1 + (3/4)z$, and so (by using the same lemma once again) $$\frac{f(z)}{z} < 1 + \frac{3}{8}z.$$ If we put (6) $$\frac{zf'(z)}{f(z)} = \frac{2p(z)}{p(z)+1}$$ and $g(z) = \frac{f(z)}{z}$, then the inequality (3) is equivalent to (7) $$\left| g(z) - \frac{2zp'(z) + 4p(z)^2}{(p(z) + 1)^2} - 1 \right| < \frac{3}{2}$$ $(z \in U).$ To prove (4) from (7), it is enouth to prove that $Re\{p(z)\} > 0$ ($z \in U$). By Lemma 3, it is sufficient to prove that (8) $$\left| g(z) - \frac{2y + 4(ix)^2}{(ix + 1)^2} - 1 \right| \ge \frac{3}{2}$$ for all real x, $y \le -(1 + x^2)/2$ and all z $\varepsilon \parallel$. Later, if we let g(z) = u + iv, then (8) is equivalent to (9) $$16(u^2 + v^2)y^2 - 16\{(4(u^2 + v^2) - u)x^2 + 2vx + u\}y + \{64(u^2 + v^2) - 32u - 5\}x^4 + 64vx^3 + (32u - 10)x^2 - 5 \ge 0.$$ From the relation (5), we have (10) $$u^2 + v^2 - 2u + \frac{55}{64} < 0.$$ Also, from (10), we easily obtain the following inequalities which we will be used: (11) $$4(u^2 + v^2) - u > 0$$, $10(u^2 + v^2) + 3u > 0$, $20(u^2 + v^2) - 8u - 1 > 0$, $\frac{5}{8} < u < \frac{11}{8}$. By using (11), we deduce that $${4(u^2 + v^2) - u}x^2 + 2vx + u > 0$$ for all real x. Therefore, if we denote by L the left-side of (9) and if we use $y \le -(1+x^2)/2$, then we obtain (12) $$L \ge Ax^4 + 2Bx^3 + cx^2 + 2Dx + E = M(x)$$, where $A = 5\{20(u^2 + v^2) - 8u - 1\}$, $B = 40v$, $C = 40(u^2 + v^2) + 32u - 10$, $D = 8v$, and $E = 4(u^2 + v^2) + 8u - 5$. If we write $M(x) = x^2M_1(x) + M_2(x)$, where $M_1(x) = Ax^2 + 2Bx + C_1$, $M_2(x) = C_2 x^2 + 2Dx + E$, $C_1 = 40(u^2 + v^2) + 12u = 4\{10(u^2 + v^2) + 3u\}$, and $C_2 = 10(2u - 1)$, then we shall prove that $M_1(x) \ge 0$ and $M_2(x) \ge 0$ for all real x. First, from (11) we get A > 0, $C_2 > 0$, and after that if we put $u^2 + v^2 = 2u - a$ with $55/64 < a \le 1$, then we have $$B^2 - AC_1 = -20\{816u^2 - (183 + 780a)u + 90 + 200a^2\} < 0$$ and $$D^2 - C_2E = -2\{192u^2 - 2(97 + 20a)u + 52a + 25\} < 0.$$ Hence we have $M_1(x) > 0$ and $M_2(x) > 0$, and we conclude that M(x) > 0. REMARK I. In the paper [4], Mocanu has proved that if $\alpha \geq 1/2$, $f(z) \in A$ and $$|f'(z) + \alpha z f''(z) - 1| < 1$$ (z ϵ U), then f(z) ϵ S* and |zf'(z)/f(z) - 1| < 1 (z ϵ U). This means that we improved Mocanu's result for α = 1. The following theorem gives the results on convexity problem. THEOREM 3. Let f(z) be in the class A. (i) If f(z) satisfies (13) $$|f'(z) + zf''(z) - 1| < \frac{2}{\sqrt{5}}$$ $(z \in U),$ then $f(z) \in K$. (ii) If f(z) satisfies (14) $$|f'(z) + zf''(z) - 1| < j \text{ and } |arg(f'(z))| \le arctg(\frac{\sqrt{1 - j^2}}{j})$$ for some $2/\sqrt{5}$ < j \leq 1 and for all z ϵ U, then also f(z) ϵ K. PROOF. (i) The condition (13) is equivalent to $$\left|\left(zf'(z)\right)' - 1\right| < \frac{2}{\sqrt{5}} \qquad (z \in \bigcup),$$ and by Lemma 2 we obtain $zf'(z) \in S^*$, that is, $f(z) \in K$. (ii) Let f(z) ϵ A satisfies the conditions in (14) and let 2/ $\sqrt{5}$ < j < 1 Then from the first condition in (14) we have (15) $$\left| f'(z) \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 \right| < j \qquad (z \in \mathbb{U}).$$ If we put g(z) = f'(z) and p(z) = 1 + zf''(z)/f'(z), then we write |g(z)p(z) - 1| < j ($z \in U$) instead of (15). To prove that $Re\{p(z)\} > 0$ ($z \in U$), by Lemma 3, it is enough to prove that $$|g(z)(ix) - 1|^2 - j^2 \ge 0$$ for given j (2/ $\sqrt{5}$ < j < 1), for all real x, y \leq -(1 + x²)/2, and for all z ϵ U. In that sense, let's put g(z) = u + iv. Then from the second inequality of (14), we have u/v $\leq \sqrt{1-j^2}$ /j (z ϵ U), and so $$|g(z)(ix) - 1|^2 - j^2 = |(u + iv)(ix) - 1|^2 - j^2$$ = $(u^2 + v^2)x^2 + 2vx + 1 - j^2$ > 0. Then, by Lemma 3, we obtain $Re\{p(z)\} > 0$ ($z \in U$), i.e. $f(z) \in K$. For j = 1 from (14), we get arg(f'(z)) = 0 ($z \in U$), which gives f'(z) = const., i.e. $f(z) \equiv z$. COROLLARY I. Let $f(z) \in A$ satisfy $$|f'(z) + zf''(z) - 1| < j$$ and $|f'(z) - 1| < \sqrt{1 - j^2}$ for some j (2/ $\sqrt{5}$ < j < 1) and for all z ϵ \forall . Then f(z) ϵ \not (. REMARK 2. If we consider the functions $$f(z) = z + \frac{j}{n^2} z^n$$ $(n > 2, 2/\sqrt{5} < j \le n/\sqrt{n^2 + 1}),$ then we have that $$|f'(z) + zf''(z) - 1| = j|z|^{n-1} < j$$ (z ε $|j|$), and by Part (i) we don't conclude that $f(z) \in K$. But since $$|f'(z) - 1| = \frac{j}{n} |z|^{n-1} < \frac{j}{n} \le \sqrt{1 - j^2}$$ (z \varepsilon \mathfrak{J}), by Corollary 1, we have f(z) ϵ K. In that sense, the part (ii) of Theorem 3 is justified. Finally, if we make a summary of all the previous results and considerations we can easily derive COROLLARY 2. Let f(z) be in the class A with f(z) = z + $\sum_{n=2}^{\infty} a_n z^n$ Then the following implications are true: (ii) $$\sum_{n=2}^{\infty} n^2 |a_n| \leq \frac{4}{\sqrt{5}} \implies f(z) \in \S^*;$$ (iii) $$\sum_{n=2}^{\infty} n^2 |a_n| \leq \frac{3}{2} \implies f(z) \in S^* \text{ and } \left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \ (z \in U);$$ (iv) $$\sum_{n=2}^{\infty} n^2 |a_n| \le j \text{ and } \sum_{n=2}^{\infty} n|a_n| \le \sqrt{1-j^2} \qquad (\frac{2}{\sqrt{5}} < j \le 1)$$ $$\implies f(z) \in K;$$ (v) $$\sum_{n=2}^{\infty} n^2 |a_n| \le \frac{2}{\sqrt{5}} \implies f(z) \in K.$$ # **ACKNOWLEDGMENT** This work of the first author was supported by the Science Fund of Serbia under Grant No.0401A through Matematički institut. ## REFERENCES - [1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1983. - [2] D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52(1975), 191 195. - [3] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 167 171. - [4] P. T. Mocanu, Some starlikeness conditions for analytic functions, Rev. Roumanie Math. Pures Appl. 33(1988), 117 124. M. Obradović: Department of Mathematics Faculty of Technology and Metallurgy University of Belgrade 4 Karnegieva Street 11000 Belgrade Yugoslavia S. Owa: Department of Mathematics Kinki University Higashi-Osaka, Osaka 577 Japan M. K. Aouf: Department of Mathematics Faculty of Science University of Mansoura Mansoura Egypt