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ON QUASI-CONVEX FUNCTIONS
OF COMPLEX ORDER

OH SANG KWON (BE KAX%)
and

SHIGEYOSHI OWA (F# Kk -BT EBREZX)

Abstract

The class Q of quasi—convex functions was studied by K.I.Noor.
The authors, using the Siilligean differential operator, introduce the class
Q(b) of functions quasi-convex of complex order b , b*0 and the class Qn(b)
which is the generalization of Q(b), where n is a nonnegative interger.
Sharp coefficient bounds are determined for Qn(b). The authors also obtain
some sufficient conditions for functions to belong to Qn(b) and a distortion theorem.

1. Introduction

Let A denote the class of functions f(z) analytic in the unit disk ’
E={z: |z] <1} having the power series

)
f(z) =z + 2> amz™ , z € E . (1.1)
n=2

Aouf and Nasr [2] introduce the class S*(b) of starlike functlions of
order b, where b is a non zero complex number, as follows @

S*(b)‘={f=fEAandRe[ b[i‘fz§2) ]])O,ZEE} (1.2)
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We define the class K(b) of close-to—convex functions of complex order b
as follows ¢ f € K(b) iff f € A and

1 ¢ zf' (z) »

for some starlike function g.

And we define the cléss Q(b) of quasi-convex functions of complex order b
as follows ¢ f € Q(b) iff f € A and

(2f’'(2))’
[ —[g(z) -1]])p.zeE (1.4)

for some convex function g.
The class Sn, n € No = { 0,1,2,+-- }, was introduced by Silsigean [7],
that is, f € Sn iff f € A and

Dn-H f(z)
e {0 . zEE (1.5)

where the operator f —> D" f is defined by

(1) p° £(z) = £(2) ,
(2) Df(z) = zf'(2) ,
(3) D £(z) = D(D"-1£(2)) (ne N={1,2,-}).

It may be noted that So is the class S* of starlike functions while S5y
is formed with all convex functions. More, it is known [7] that Sn+1 C Sn ,
n € No .

1]
aQ

Let Qn(b), n € No , b Is a nonzero complex number, denote the class
of functions f & A satisfying

1 pr+if(z)
Re{1+~l;[Dng(z)—]})o,z€E (1.6)

for some g € Sn . Here Qo(b) = K(b), Qi1 (b) = Q(b).
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In this paper, we determine coefficient estimates of functions in Qa(b),
n € No . Further, we obtain some sufficient conditions for f € Qn(b) and a
distortion theoren.

2. Coefficient Inequalities

We determine coefficient estimates of functions in @n(b), n € No.
First, we need the following lemmas.

oo
Lemma 2.1 Let g(z) =z + > cmz™ € Sn , where n € No .
’ ‘ n=2 ~
Then |c..|s—m—f,:; (m>2).
proof. Noting that
w ’
Drg(z) = z + >, m"cmz™ . (2.1)
n=2 ‘

Since g € Sn , ﬂ"g(z) € S* . Thus, using the well known coefficient estimates
for starlike functions one gets, :

mlce] <M , m > 2

Lemma 2.2 For n € No , let

z(1 + (2b - 1)2)
Dl‘l"" f(z) - .
(1-2)3

0 1 )
Then £ € Qu(b) and f(z) =z + >, — [(m - 1)b + 1] 2zm in E.
n=2 n"
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proof. Let g € A be defined so that

D g(2) z
n b A [
8 (1 -2)2

The definitions of Sn implies g € Sn .  Therefore,

1 [ pr+if(z) ] 1+2 :
1+ -1 = s 2 € E.,
b pr g(z) 1-2z
This proves that f € Qu(b).
00 .
Lemma 2.3 let f(z) =z + > amz™ . If f € Qu(b), n € No , then
m=2

m—1
Imam — cm]2 £ 4 Ib| {Ibl + 3 k2o [|kak - ok|lok] + |bllck|2] } (2.2)
k=2

mZn

)
proof, Let f(z) =z + 3 amz™ be in Qn(b). Then (1.6) implies
m=2

1 [ DE(z) ] _lrw@ 2.3

1+ =
b pn =(z2) 1 - w(z)

for some g € Sn and where w € A such that w(0) = 0, w(z) 1 and

1)
jw(z)] (1 forz € E. Let g(z) =z + 2 cm2"
n=2

Then (2.3) and (2.1) imply

o .
w(z) [ 2bz + sz" (2bcm + mam - cm)z™ }

)
= >, n" (mam - Cm)z™ (2.4)
_ m=2
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Using clunie’s method[3], that is to examine the bracketed quantity of
the left-hand side in (2.4) and keep only those terms that z® for m < k-1
- for some fixed k, moving the other terms to the right side one obtains

k-1
w(z) { 2bz + >, n"[ mam + (2b-1)cm ] z® }
n=2

00
= Zmn (mam — Cm)z™ + z Amz™

m=2 m=k+1
Let
‘ ¢ k-1 ’ b
¢ (z) = w(z) i 2bz + > m°[ mam + (2b~1)cm ] 2z }
: n=2
k oo
= >Im" (mam — Cm)Z™ + . Amz™ (2.5)
m=2 m=k+1

and z=relo , 0<r 1,

1

2
Computing “om jo" d(z) $(z) d6

for both expression of ¢(z) in (2.5) and using Iw(z)| (1, we get

k
> n2"| mam — Cm |2 r2m
n=2
k-1 .
< 4|bl?rz + > w2 | mam + (2b-1)om |2 r2m
m=2

We let r—>1- and find that

1 " k-1
( \
lkak - ck|2 < 4|b| ’llbl + 3 m2[|mam - cm|lcm] + |bllcm|2]} .
k2n mn=2 J

In particular, when m = 2 we have

1

|28a2 - c2] < ——Zn_-l— |b] k' (2.6)
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00

Theorem 2.4 let f(z) =z + > amz" . If f € Qu(b) where n € No ,
m=2 .

then

1
lam| < —— [ (m-1)|b] + 1] (m2>2).
mn

This result is sharp, An extremal function is given by

oo 1
f(z) = z+ X [ (m-Db+ 1]z ., (2.7
mn=2 "
00 , 00
proof, Let f(z) =z + 3. amz™ be in Qu(b) and g(z) =z + 2. cmz™.
m=2 m=2
We claim that for m > 2 and n € No,
1 mj}
'Mn - le < 2|b' 1+ Z k"le, . (2.8)
mn k=2

We use the second principle of Induction on m on (2.9).

For m=2, [2az - c2| £ Ib] is true as shown in (2.6). Now assume that

zn-l

(2.8) is true for all m < p .faking m=p+1in (2.2), we get

1
|(p+1)ap+s ~ cp+1|2 < 4 ——— |b] {lbl + i k2n[ |kak —- ck||cx| + |b||0k|2]}
(p+1)2n k=2

1
=4 ——— Ibl {Ibl + 3 kenUlkax - oxllox] + Ibl 3 kenox]? } .
(p+1)2n k=2 k=2

Now using (2.8), we have

1 k-1
[(p+1)ap+s — cpar|* < 4 ————|b|2 {1 + 2)5 k"lckl[l* > Jrley l] + ZE kz“lckl"’}
(p+1)2n k=2 J=2 k=2
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1 ) k-1 p
= 4 ——|b|2 {1 + 2 )i% ke|ck| + 2§J,(" [Ickl 2. drley l] + > kz“lelz}
(p+1)2n k=2 k=2 J=2 k=2

4 b2 [1 3 kn| ']z
= R + 2, nic
(p+1)2n k=2 N .

This show that (2.8) is valid for m = p + 1, Hence, the claim is correct.
From Lemma 2.1 and (2.8) it follows that

1 m-1
|mam - cm| < 2|b] | 1+ EE kn|ck|
=2

< m(m - 1)‘|b| , m > 2 (2.9)

mn
Finally from Lemma 2,1 and (2.9),
. . ;
lam| K —— [m-1DIb] +1']1 , m>2
mn
Puttingvn = 1 in Theorem 2.4, we have the following corollary.

w 4
Corollary 2.5 If f(z)=z + 2. amz™ is quasi-convex function of complex
© m=2
order b, then

|| s—%—[(m-nlblul

This result is sharp,

Remark 2.6 For b=1, Corollary 2.5 is reduced to coefficient bounds for
the quasi—convex functions due to Noor [5].
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Taking n = O in Theorem 2.4 ,

00
Corollary 2.7 If f(z2) =z + 2. amz™ is a close-to-convex function of
m=2

complex order b, then
Jan] < (m-1)|b] + 1

This result is sharp.

This corollary may be found in [1] .

Remark 2.8 For b = 1, Corollary 2.7 is rqduced to the coefficient bounds
for the close-to—convex functions due to Reade [6].

Lemma 2.9 ([4]) Let w(z) be regular in the unit disk E and such that w(0)=0.
If |w(z)| attains its maximum value on the circle |z| =r ‘at a point zo , then
~ we have zo w'(zo) = k w(zo) where k is real and k > 1. )

Theorem 2.10 If a function f(z) belonging to A satisfies

a Dn+2f(z) Dn+lf(z) Dn#ig(z) 6( 'b'a+/3
D g(z) [Drg(z) ]2

(z€E) (2.10)

for some ¢ 2 0, 8 > 0 and g(z) € Sn, then f(z) € Qn(b).

proof. Defining the function w(z) by

n+i f
~D—-—~(-i)-— - l] (2.11)

1
wiz) = b [D" g(z)

for g(z) € Sn. We see that w(z) is regular in E and w(0) = 0.
Noting that



174

Dn+2f(z) D"'“f(Z) Dn-l-lg(z)

bzw' (z) = (2.12
Drg(z) (b g(z))2 ‘
We know that (2.10) can be written as
a B a+p
Ibw(z)| |bzw' (z)]  { |b] . (2.13)
Suppose that there exists a point zo € E such that
Max |wz)| = |wzo)| =1 . (2.14)
lzls)zol .
Then, Lemma 2.9 leads us to
o B a+BRB a+f
Ibw(zo)| Ibzow’ (zo)| = |b] k > |b} (k>1)
which contradicts our condition (2.10). Therefore, we conclude that
Iw(z)| ¢ 1 for all z € E, that is, that
1 Dnt+if(z) ‘~
—_— . = .
l b [D" 22) 1} I (’17 (z E)
This implies that
1 Dr+if(z)
_— -1 0 € E
which proves f(z) € Qn(b).
3. Distortion Theorem
Theorem 3.1 Let £ € Qn(b), n € No . Then for |z} =r (1, and
'Zb - ll S 1 ’
- - 2 - 2
rolzb - lr? g gy ¢ S22 oL 3.1)

(1+r)3 (1-r)3



This result is sharp for the function f(z) given by

z(1 + (2b - 1)2)
(1 -2)3

Dn+l f(z) =

proof. Let f € Qn(b). Then (1.6) implies for some g € Sn

Dt f(z)  _ 1+ (2b-1)w(z)
D 8(2) 1 - w(z) '

where w € A and |w(z)| £ |z] in E. This gives for |z] ( r = 1

1-1]2b - 1jr
1+r

D"+l f(Z)
D &(2)

1+ |2b-1]r
1-r

(3.2)

| <

The definition of Sn implies Drg(z) is starlike . Hence by the well
known bounds on functions which are starlike in E, we get for |z] =r (1

—‘?I—i:—r—)'z' < | bg(z) | < ﬁ . - ' (3.3)

Using (3.2) and (3.3), one can get (3.1).

Taking (1) n=0, (i1) n=0,b =1, (ili) n=1 and (iv) n=1,b=1
in Theorem 3.1, we have the following corollaries, respectively.

Corollary 3.2 If f is a close-to—convex function of complex order b,
where |2b - 1] <1 , then for |z] =r (1

1+ ]2b-1]r
(1 -r)3

1-12b-1]|r

T +1)3 (3.4)

< f'(2)] <

Corollary 3.3 If f is a close-to—convex function, then for |z] =r (1

Lofe < 1@l € o5 . (3.5)

(1 +r)3



Corollary 3.4 If f is a quasi-convex function of complex order b,
where [2b - 1] <1 , then for |zl =r (1

(2 +r)-1|2b-1jr (2-r) + |2b-1]|r

2(1 + )2 < IF@l < 2(1 - r)2 (3.8)
proof. By n =1, in Theorem 3.1, we have
1-[2b~1]|r , , 1+ |2b-1]r
1+ D)3 < [z (2)'] < TEESE . (3.7)
Intergrating the right hand side of (3.7) from O to z, we obtain
|28 )] < [(1GE @) |dz
r 1+ |2b-1|r r{(2-r) + [2b-1]|r}
J dr = . 3.8
0 (1-r)3 2(1 - r)2

In order to obtain a lower bound for |f’(z)|,we proceed as follows.
Let dy be the radius of the open disk contained in the map of E by zf’(z).
Let zo be the point of [z| = r for which |zf’(z)|assumes its minimum value.
This minimum increases with ( r the image of |z| = r by w = zf’ (z) expands )
and is less than di. Hence the line segment connecting the origin with the point
zof’' (zo) will be covered entirely by the values of zf'(z) in E. Let 1 be the arc
in E which is mapped by w = zf’ (z) onto this line segment. Then

1z£" (2)| = Jll(zf'(z))’lldzl

jr 1-|2b - 1ir dr = r{(2+r) + |2b-1]|r} (3.9)

0 (1-n® o7 2(1 + r)2

Using (3.8) and (3.9), 6ne can get (3.6).

Corollary 3.5 If f is a quasi—convex function, then for |z] =r (1

1
(1 +r)2

1

< If' @) <L '—(1—_—;—)7" .
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