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Abstract

Dualistic properties of a gradient flow on a manifold $M$ associated with a dualistic

structure $(g, \nabla, \nabla^{*})$ is studied from an information geometrical viewpoint. Statistical

significance of the gradient flow is also investigated.

1 Introduction

Motivated mainly by classical mechanics, completely integrable dynamical systems have

been investigated by many researchers. Furthermore, some authors have sought contacts

with other fields such as linear programming [4] and eigenvalue problems of matrices [5],

see also [6] and the references cited therein.

On the other hand, some physicists have studied nonequilibrium or dissipative processes

from a geometrical viewpoint [3]. Obata et al. also examined some nonequilibrium pro-

cesses by using information geometry [9]. They showed the Uhlembeck-Ornstein process

is a geodesic motion with respect to the exponential connection on a Gaussian model.

Quite recently, Nakamura pointed out that certain gradient flows on Gaussian and

multinomial distributions can be characterized as completely integrable Hamiltonian sys-

tems [8]. This is the first suggestion of the connection between two seemingly unrelated

fields, i.e., information geometry and completely integrable dynamical systems.

In this paper, general dualistic properties of a gradient flow on a manifold $M$ associated

with a dualistic structure $(g, \nabla, \nabla^{*})$ is studied from an information geometrical point of

view. Statistical significance of the gradient flow is also investigated.
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2 Dualistic geometry

We first give a brief summary of dualistic geometry. For details, consult [2]. Let $M$ be a

Riemannian manifold with metric $g$ . Two affine connections $\nabla$ and V’ on $M$ are said to

be dual with respect to $g$ if for any vector field $A,$ $B$ , and $C$ on $M$ ,

$Ag(B|C)=g(\nabla_{A}B|C)+g(B|\nabla_{A}^{*}C)$ ,

where $g(B|C)$ denotes the inner product of $B$ and $C$ with respect to the metric $g$ . If the

torsions and the Riemannian curvatures of $M$ with respect to the connections $\nabla$ and V’

vanish, $M$ is said to be flat, and a pair of divergences on $M$ are defined in the following

way. We first construct mutually dual affine coordinates on $M$ , i.e., $\nabla$-affine coordinate

$\theta=[\theta^{i}]$ and V’-affine coordinate $\eta=[\eta_{i}]$ which satisfy

$g(\partial_{i}|\partial^{j})=\delta_{i}^{j}$ , (1)

where $\partial_{i}=\partial/\partial\theta^{i}$ and $\partial^{j}=\partial/\partial\eta_{j}$ . Then there exist such potential functions $\psi(\theta),$ $\phi(\eta)$ on

$M$ satisfying

$\theta^{i}=\partial_{i}\phi(\eta)$ , $\eta_{i}=\partial^{i}\psi(\eta)$ , $\psi(\theta)+\phi(\eta)-\theta\cdot\eta=0$ ,

where $\theta\cdot\eta=\theta^{i}\eta_{i}$ . By using these potentials, we define the V-divergence $D$ as

$D(p_{1}||p_{2})=\psi(\theta_{2})+\phi(\eta_{1})-\theta_{2}\cdot\eta_{1}$ ,

where $\eta_{1}$ and $\theta_{2}$ are the $\eta$ and $\theta$ coordinates of points $p_{1}$ and $p_{2}$ respectively. According to

the duality, the V’-divergence $D^{*}$ is given as

$D^{*}(p_{1}||p_{2})=D(p_{2}||p_{1})$ .

For instance, let $M$ be a set of positive probability distributions on a set $\mathcal{X},$ $g$ the Fisher

metric, $\nabla$ and V’ the exponential and mixture connections, respectively. Then the expo-

nential divergence $D$ is given by

$D(p_{1}||p_{2})= \int_{\mathcal{X}}p_{1}(x)\log\frac{p_{1}(x)}{p_{2}(x)}dx$ ,
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which is identical to the Kullback-Leibler divergence $K(p_{1},p_{2})$ . Note that our manner of

naming of divergences is different from Amari’s one.

Next, we tackle the converse problem, i.e., let us construct a natural dualistic structure

for an arbitrary manifold $M$ on which a potential $U(\theta)$ is given, where $\theta=[\theta^{i}]$ is a local

coordinate system of $M$ . In the following, we restrict ourselves to a domain $0$ in which the

potential $U(\theta)$ is a convex function with respect to $\theta$ . We first define another coordinate

system $\eta=[\eta_{i}]$ and the corresponding potential $V(\eta)$ by a Legendre transformation as

$\eta_{j}=\partial_{j}U(\theta)$ , $V( \eta)=\max\theta\in\Theta\{\theta^{i}\eta_{i}-U(\theta)\}$ .

Then $\theta^{j}=\partial^{j}V(\eta)$ holds, and the pair $(\theta, \eta)$ satisfy the identity

$U(\theta)+V(\eta)-\theta\cdot\eta=0$ .

The metric $\hat{g}$ on $M$ is defined by

$\hat{g}_{ij}=\partial_{i}\partial_{j}U(\theta)$ .

This definition can be rewritten as
$\hat{g}_{ij}=\frac{\partial\eta_{j}}{\partial\theta^{i}}$

which readily leads to the relation

$\hat{g}^{ij}=\frac{\partial\theta^{j}}{\partial\eta_{i}}=\partial^{i}\partial^{j}V(\eta)$.

This indicates that the coordinate systems $\theta$ and $\eta$ are mutually dual with respect to $\hat{g}$ in

the sense of Eq. (1). Further let us set

$T_{ijk}=\partial_{i}\partial_{j}\partial_{k}U(\theta)$ ,

and define the $\alpha$-connection by

$\Gamma_{ijk}^{\langle\alpha)}=[ij;k]-\frac{\alpha}{2}T_{ijk}$ ,

with $[ij;k]$ the Levi-Civita connection, then $\theta$ and $\eta$ become $\alpha=+1$ and $-1$ affine co-

ordinates respectively, which can be affirmed by a straightforward computation. In this
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way, a dualistic structure $(\hat{g}, \nabla^{\langle+1)}, \nabla^{(-1)})$ on $M$ is derived in a natural manner from the

potential $U(\theta)$ . The $(+1)$-divergence is defined as follows:

$D^{\langle+1)}(p_{1},p_{2})$ $=$ $U(\theta_{2})+V(\eta_{1})-\theta_{2}\cdot\eta_{1}$

$=$ $U(\theta_{2})-U(\theta_{1})-(\theta_{2}-\theta_{1})\cdot\partial_{\theta}U(\theta_{1})$ ,

where $(\theta_{1}, \eta_{1})$ and $(\theta_{2}, \eta_{2})$ are the dual affine coordinates of points $p_{1},p_{2}\in M$ , respectively.

Note that the point whose $\eta$ coordinates vanish corresponds to the minimum of the potential

$U(\theta)$ .

3 Dualistic Dynamical Systems

In this section, we examine dualistic structures of a gradient system on a flat manifold.

Theorem 3.1 Let $M$ be a flat manifold with respect to the dualistic structure $(g, \nabla, \nabla^{*})$ ,

$U(p)$ a potential function on $M$ with respect to an arbitmrily prefixed point $q\in M$ defined
$by$

$U(p)=D(q||p)$ ,

where $D(q||p)$ is the $\nabla$ -divergence. Then the gradient flow [7, p. 205]

$\dot{\theta}^{i}=-g^{ij}\partial_{j}U(\theta)$ (2)

converges to the point $q$ along the $\nabla^{*}$ -geodesic, where $\theta$ is the $\nabla$ -affine coordinates ofpoint

$p$ , and $U(\theta)=U(p(\theta))$ .

Proof Since V-divergence $D(q\Vert p)$ is rewritten as

$D(q||p)$ $=$ $\psi(\theta(p))+\phi(\eta(q))-\theta(p)\cdot\eta(q)$

$=$ $\psi(\theta(p))+\{-\psi(\theta(q))+\theta(q)\cdot\eta(q)\}-\theta(p)\cdot\eta(q)$

$=$ $\psi(\theta(p))-\psi(\theta(q))+\{\theta(q)-\theta(p)\}\cdot\eta(q)$ ,

the gradient flow can be expressed in the form

$\dot{\theta}^{i}(p)=-g^{ij}\{\partial_{j}\psi(\theta(p))-\eta_{j}(q)\}$ .
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By multiplying $g_{ji}$ to both sides and using the identity

$g_{ji} \dot{\theta}^{i}=\frac{\partial\eta_{j}}{\partial\theta^{i}}\frac{d\theta^{i}}{dt}=\frac{d\eta_{j}}{dt}$

we have

$\dot{\eta}_{j}(p)=-\{\eta_{j}(p)-\eta_{j}(q)\}$ ,

which can readily be integrated to obtain

$\eta_{j}(p(t))=\eta_{j}(q)+\{\eta_{j}(p(0))-\eta_{j}(q)\}e^{-t}$ .

This proves the proposition. $\blacksquare$

Example 3.1 Here we give two examples of Theorem 3.1. Let us consider a Gaussian

family with mean $\mu$ and variance $\sigma^{2}$ :

$p_{\theta}(x)= \frac{1}{\sqrt{2\pi}\sigma}\exp[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]$ .

This is a typical example of exponential family since it can be represented in the form

$\log p_{\theta}(x)=\theta^{1}f_{1}(x)+\theta^{2}f_{2}(x)-\psi(\theta)$

where

$\theta^{1}=\frac{\mu}{\sigma^{2}’}$ $\theta^{2}=\frac{1}{2\sigma^{2}}$

are e-affine pammeters and

$f_{1}(x)=x$ , $f_{2}(x)=-x^{2}$ , $\psi(\theta)=\frac{\mu^{2}}{2\sigma^{2}}+\log\sqrt{2\pi}\sigma$ .

Throughout this example, $g$ is the Fisher metric.

We first let $\nabla$ and V’ be exponential and mixture connections, respectively. Further let

us set $q$ as a $\delta$ -distribution concentrated on the origin. Then the potential becomes

$U(\theta)=D^{(e)}(q||p_{\theta})=K(q,p_{\theta})=\psi(\theta)$ ,

and the corresponding gradient flow coincides with Nakamura’s dynamics [8], which con-

verges to the $\delta$ -distribution $q$ along an m-geodesic.
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Conversely, let $\nabla$ and $\nabla^{*}$ be mixture and exponential connections, respectively. Further

let us set $q$ as a uniform distribution on $\mathcal{X}$ , then $\theta^{2}(q)$ vanishes and $\theta^{1}(q)$ remains indefinite.
In this case, $\nabla$ -affine pammeters are the expectation pammete $rs\eta_{i}=E_{\theta}[f_{i}(x)]$ where $E_{\theta}[\cdot]$

denotes expectation at $p_{\theta}$ , and the dynamics takes the form

$\dot{\eta}_{i}=-g_{ij}\Psi U(\eta)$ . (3)

Since the potential becomes

$U(\eta)=D^{(m)}(q||p_{\theta})=K(p_{\theta}, q)=-$ [ $entropy$ of $p_{\theta}$ ] $+const.$ ,

the dynamics is a steepest ascent flow of entropy, which converges to the uniform distribu-

tion $q$ along an e-geodesic. Moreover, if we rescale the time logarithmically such as

$t\dot{\eta}_{i}=-g_{ij}\partial^{j}U(\eta)$ , (4)

then the dynamics can be integmted easily and expressed in the e-affine pammeters as

$\theta^{j}(t)=\theta^{j}(q)+\frac{\theta^{j}(0)-\theta^{j}(q)}{t}$,

where $\theta^{j}(0)$ is the e-affine coordinates of the initial point. This solution can be expressed

also in the $(\mu, \sigma)$ space as

$\mu(t)$ $=$ $\frac{\theta^{1}(t)}{2\theta^{2}(t)}=\frac{\theta^{1}(0)-\theta^{1}(q)}{2\theta^{2}(0)}+\frac{\theta^{1}(q)}{2\theta^{2}(0)}t$ ,

$\sigma^{2}(t)$ $=$ $\frac{1}{2\theta^{2}(t)}=\frac{1}{2\theta^{2}(0)}t$ .

Here we used the relation $\theta^{2}(q)=0$ . If we set

$\mu_{0}=\frac{\theta^{1}(0)-\theta^{1}(q)}{2\theta^{2}(0)}$ , $v= \frac{\theta^{1}(q)}{2\theta^{2}(0)}$ $D= \frac{1}{4\theta^{2}(0)}$

then we have

$\mu(t)=\mu_{0}+vt$ , $\sigma^{2}(t)=2Dt$ ,

which shows that the dynamics (4) is nothing but a Uhlembeck-Ornstein process [9].

Next, we consider another situation. Given a manifold $M$ and alocally convex potential

$U(\theta)$ , then we can induce a natural dualistic structure $(\hat{g}, \nabla^{\langle+1)}, \nabla^{(-1)})$ on $M$ by the



38

procedure mentioned in the previous section. Let us examine a gradient flow on $M$ of the

form

$\dot{\theta}^{i}=-\hat{g}^{ij}\partial_{j}U(\theta)$ , (5)

which can be reexpressed in the dual affine coordinates as

$\dot{\eta}_{t}=-\eta_{i}$ . (6)

In case $\dim M$ is even, this dynamical system can be characterized as a completely integrable

Hamiltonian system [1, p. 392], which is a generalization of Nakamura’s results [8], as

follows.

Theorem 3.2 If $\dim M$ is eve $n$ , say $2m$ , then the dynamical system (6) is a completely

integrable Hamiltonian system with position $Q_{k}=\eta_{2k}$ , momentum $P^{k}=-1/\eta_{2k-1}$ , and

Hamiltonian $H=-Q_{k}P^{k},$ $(k=1, \cdots, m)$ . The $m$ quantities $?f_{k}=\eta_{2k}/\eta_{2k-1}$ are mutually

independent constants of motion.

Proof By using (6), we have

$\dot{\mathcal{H}}_{k}=\frac{1}{\eta_{2k-1}^{2}}(\dot{\eta}_{2k}\eta_{2k-1}-\eta_{2k^{\dot{7}}}\rho_{k-1})=0$ .

Independency and involutiveness of $\{H_{k}\}_{k=1}^{m}$ are trivial. By straightforward computation,

Hamilton’s equations

$\frac{dQ}{dt}=\frac{\partial H}{\partial P^{k}}$ $\frac{dP}{dt}=-\frac{\partial \mathfrak{X}}{\partial Q_{k}}$

are reduced to

$\dot{r}_{hk}=-\eta_{2k}$ , $\dot{\eta}_{2k-1}=-\eta_{2k-1}$ ,

which reproduce the original gradient flow (6). $\blacksquare$

Note that if $\dim M$ is odd, then the dynamical system (6) can be regarded as a subdy-

namics of a higher dimensional completely integrable Hamiltonian system by combining it

with an independent odd dimensional gradient system.
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4 Constrained Dynamics on a Parametric Model

In this section, we examine a dynamical system which is induced on a parametric statistical

model. Let $M=\{p_{\theta}\}_{\theta\in\Theta}$ be a parametric model embedded in the set of probability

distributions $\varphi$ on $\mathcal{X}$ . Theorem 3.1 indicates that the gradient flow in $\varphi$ with respect to the

potential $U(p)=K(q_{n},p)$ with $q_{n}$ the empirical distribution is a dynamical system whose

gradient vector is m-tangent vector from the point $p$ toward the empirical distribution

$q_{n}$ which in general falls out of the model $M$ . Therefore we can construct a constrained

dynamics on the model $M$ by projecting the gradient m-tangent vector onto the tangent

space $T_{p}(M)$ of the model with respect to the Fisher metric.

Theorem 4.1 Such an induced dynamical system is also a gradient flow on $M$ of the form

$\dot{\theta}^{i}=-g^{ij}\partial_{j}K(q_{n},p_{\theta})$ , (7)

where $g$ is the Fisher metric on M. This flow converges to a locally maximum likelihood

estimate.

Proof Let us define a bilinear form $\langle\cdot, \cdot\rangle$ on $T_{p}(M)$ by

$\langle f(x),g(x)\rangle=\int_{\mathcal{X}}f(x)g(x)dx$ ,

where $f(x)$ and $g(x)$ are an m-tangent vector and an $e-tangent.vector$ , respectively. Note

that this value is identical to the conventional Fisher inner product in information geom-

etry. Then the projection of the m-tangent vector from the point $p$ toward the empirical

distribution $q_{n}$ onto the tangent space $T_{p}(M)$ , expressed as $a^{i}\partial_{i}p_{\theta}(x)$ , satisfies

$\langle q_{n}(x)-p_{\theta}(x),$ $\partial_{j}\log p_{\theta}(x)$ } $=\langle a^{i}\partial_{i}p_{\theta}(x), \partial_{j}\log p_{\theta}(x)\rangle$ .

This leads to

$a^{i}$
$=$ $g^{ij}\langle q_{n}(x)-p_{\theta}(x), \partial_{j}\log p_{\theta}(x)\rangle$

$=$ $g^{ij}\langle q_{n}(x), \partial_{j}\log p_{\theta}(x)\rangle$

$=$ $-g^{ij}\partial_{j}K(q_{n},p_{\theta})$ .
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Hence the induced dynamical system becomes

$\dot{p}_{\theta}(x)=\dot{\theta}^{i}\partial_{i}p_{\theta}(x)=a^{i}\partial_{i}p_{\theta}(x)$ ,

or

$\dot{\theta}^{i}=a^{i}=-g^{ij}\partial_{j}K(q_{n},p_{\theta})$.

Every equilibrium point of this flow satisfies $a^{i}=0$ for all $i$ , which is nothing but foots of

the m-geodesic perpendiculars from $q_{n}$ onto the model $M$ . $\blacksquare$

Lemma 4.1 Suppose the potential $U(\theta)$ on $M$ is given by the Kullback-Leibler divergence,

$i.e.,$ $U(\theta)=K(q_{n},p_{\theta})$ . The induced metric $\hat{g}_{ij}(\theta)$ is identical to the Fisher metric $g_{ij}(\theta)$

for every $q_{n}\in\varphi$ iff the model $M$ is an exponential family.

Proof If $\hat{g}_{ij}(\theta)$ is identical to $g_{ij}(\theta)$ for every $q_{n}\in\varphi$ then

$g_{ij}( \theta)-\hat{g}_{ij}(\theta)=-\int_{\mathcal{X}}\{p_{\theta}(x)-q_{n}(x)\}\partial_{i}\partial_{j}\log p_{\theta}(x)dx=0$.

This shows that $\partial_{i}\partial_{j}\log p_{\theta}(x)$ does not depend on $x$ , i.e., there exists a function $\psi(\theta)$ such

that

$\partial_{i}\partial_{j}\log p_{\theta}(x)=-\partial_{i}\partial_{j}\psi(\theta)$

holds. This equation can readily be integrated to yield

Iog $p_{\theta}(x)=c(x)+\theta^{i}f_{i}(x)-\psi(\theta)$,

which shows that the model $\{p_{\theta}(x)\}$ is an exponential family. The converse statement is

evident from the calculations above. $\blacksquare$

Theorem 4.2 If model $M$ is an exponential family, then the induced gradient flow (7)

converges to the unique maximum likelihood estimate with respect to the empirical dis-

tribution $q_{n}$ along m-geodesic. Moreover, if $\dim M$ is even, say $2m$ , then the flow is a

completely integmble Hamiltonian system with position $Q_{k}=\partial_{2k}K(q_{n},p_{\theta})$ , momentum

$P^{k}=-1/\partial_{2k-1}K(q_{n},p_{\theta})$ , and Hamiltonian $\mathcal{H}=-Q_{k}P^{k},$ $k=1,$ $\cdots,$ $m$ .

Proof Straightforward from Theorems 3.1, 3.2, 4.1, and Lemma 4.1. $\blacksquare$
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5 Concluding Remarks

We have constructed a gradient flows on a flat manifold $M$ with respect to a dualistic

structure $(g, \nabla, \nabla^{*})$ which converges to an arbitrarily prefixed point along V-geodesic. If

$\dim M$ is even, this flow can be also characterized as a completely integrable Hamiltonian

flow.

We have also derived a constrained dynamics on a submanifold $M$ embedded in a

statistical manifold $\varphi$ which converges to the locally maximum likelihood estimate. If $M$

is an exponential family, then the flow evolves along m-geodesics. In case $\dim M$ is even,

the flow can also be considered as a completely integrable Hamiltonian system. However,

ststistical meaning of such characterization as a Hamiltonian system is not clear.

In a basic sense, a $2n$ dimensional Hamiltonian system is equivalent to a $n$ dimensional

Lagrangean system. From this analogy, we can imagine a 2nd order dynamics of the form

$\ddot{\theta}^{k}+t^{k}ij\}\dot{\theta}^{i}\dot{\theta}^{j}=-g^{kj}\partial_{j}U(\theta)$ ,

which is the equation of motion of a particle constrained on a manifold $M$ associated with

a potential $U(\theta)$ . It is well known that this dynamics can be derived by the variational

principle with Lagrangean

$L= \frac{1}{2}g_{ij}\dot{\theta}^{i}\dot{\theta}^{j}-U(\theta)$.

In the same way, if we consider a dynamical system of the form

$\ddot{\theta}^{k}+\Gamma_{ij}^{\langle-1)k}\dot{\theta}^{i}\dot{\theta}^{j}=-\hat{g}^{kj}\partial_{j}U(\theta)$ ,

then we have

$\ddot{\eta}_{i}=-\eta_{i}$

in the dual affine coordinates, which indicates that the system is composed of $n$ independent

harmonic oscillators and can be regarded as a completely integrable Hamiltonian system.

In this case, however, it is not clear whether the system can be derived by a certain

variational principle.
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