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1. INTRODUCTION AND PRELIMINARY

In the last ten years, cohomological dimension theory has striking development. A
motivation of the development is surely the Edwards-Walsh theorem, [24], as follows:

1.1. Theorem. Every compact metric space X of cohomological dimension c-dimz X <
n (integer coefficient) is the image of a cell-like map f: Z — X from a compact metric

space Z of dim Z < n.

Not only the result but also techniques of the proof gave an important influence to the
development. After them, L. R. Rubin and P. J. Schapiro [22] showed the noncompact
version of the Edwards-Walsh theorem and S. Mardesié¢ and L. R. Rubin [17] gave the
nonmetrizable version. On the other hand, A. N. Dranishnikov, [5] and [6], characterized
cohomological dimension with respect to Z, by the Edwards-Walsh’s way and showed
the Edwards-Walsh-like theorem:

1.2. Theorem. Every compact metric space X of cohomological dimension with re-
spect to Zy, c-dimz, X < n, is the image of a map f: Z — X from a compact metric

space Z of dim Z < n whose fibers are acyclic modulo p.

Motivated above results and Mardesié’s characterization of ¢-dimz X < n, we will
show a characterization of ¢-dimz, X < n for noncompact case. Using the characteri-
zation, we will give the existence of an acyclic resolution modulo p. In fact, our charac-
terization suggests a dimension-like function, called approximable dimension, and can
obtain the following more general results.

1.3. Theorem. Let X be a metrizable space having approximable dimension with
respect to an arbitrary coefficients G <'n. Then there exists a map f: Z — X from a
metrizable space Z of dim Z < n and w(Z) < w(X) onto X such that H*(f~(z); G) =0
forallz € X.

As its consequence, we have noncompact verstons of Theorems 1.1 and 1.2. We may

call such a mapping f an acyclic resolution of X (with respect to G), specially, in the
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case of G = Z,, an acyclic resolution of X modulo p. Finally we will note that there
exists a compact metric space X of c-dimg X = 1 which does not admit an acyclic
resolution with respect to Q [11,12]. Thereby we can see that approximable dimension
is different from cohomological dimension and Theorem 1.3 is a good property obtained
from approximable dimension. '

In this paper, we mean the definition of cohomological dimension as follows: the
cohomological dimension of a space X with respect to a coefficient group G is less than
and equal to n, denoted by c- dimg X < n, provided that every map f: A — K(G,n) of
a closed subset A of X into an Eilenberg-MacLane space K(G,n) of type (G, n) admits a
continuous extension over X (c.f. [10]). The dimension of a space X means the covering
dimension of X and denotes by dim X. Z is the additive group of all integers and for
each prime number p, Z, is the cyclic group of order p.

By a polyhedron we mean the space | K| of a simplicial complex K with the Whitehead
topology. In section 5, the topology of | K| may be generated by a uniformity [Appendix,
22].

If v is a vertex of a simplicial complex K, let st(v, K) be the open star of v in |K]|
and st(v, K) be the closed star of v in |K|. If A C |K]|, then we define st(4, K) =
U{Into : 0 € K,o0NA # 0} and st(A,K) = J{o : 0 € K,0 N A # 0}. The symbol
Sd; K means the j-th barycentric subdivision of K. We define the symbols S; and S;
for a simplicial complex K; with an index to be the cover {st(v, K;): v € K (0)} and the
cover {st(v, K;):v € K( )} respectively.

We use the symbol < both to mean ‘refine’ for covers and ‘subdivides’ for subdivisions

- of a complex. The symbol <* is used for star refines.
Let U be an open cover of a space X. Then for U € U,
st(U,U) = st' (U, U) = J{U' : U' eU,U' T # 0},
st/ 1 (U, U) = | J{U' : U' e U, U' nsti(U,U) # 0}.
By st/ (U) we mean the cover {st/(U,U) : U € U}. If f and g are maps from a space Z to
a space X, (f,g) < U means that for each z € Z, there exists U € U with f(z),g(2) € U.
If X is a metric space with a metric d, we write (f,g) < € instead of (f,g) < U., where
U, is the cover whose consists of all €/2-neighborhoods in X. By the symbol N (¥)
- we mean the nerve of the cover U. For covers U, V, the symbol « AV is used for the

following cover {U NV,U,V : U €U,V € V}.

2. EDWARDS-WALSH COMPLEXES

In the latter section, we need Edwards—Walsh complexes for arbitrary simplicial com-
plexes.

2.1. Lemma. Let |L| be a simplicial complex with the Whitehead topology, p be a
prime number and n be a natural number. Then there exists a combinatorial map (i.e.
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w7 (L') is a subcomplex of EWz,(L,n) if L' is a subcomplex of L) .: EWz,(L,n) —
|L| such that
(i) foro € L withdimo > n+1,¢7'(0) € K (®]° Zp,n), where r, = rank m,(c(™),
(i1) for o € L with dimo < n, vi'(o) =,
(i) EWgz,(L,n) is a CW-complex,
(iv) ¥7'(0) is a subcomplex of EWz_ (L,n) with respect to the triangulation in (3),
(v) v7 (o) ® is a finite CW-complex for k > n,
(vi) for any subcomplex L' of L and map f: |L'| — K(Zp,n), there exists an exten-
sion of f o ¢L'¢21(IL’I)'

Sketch of Proof. We give its proof by using Edwards-Walsh’s modification by Dranish-
nikov [6]. By the induction on dim L, 9, is constructed to satisfy the following:
(1) v H(L™) = L(™ is a subcomplex of EWz,(L,n) and L ||pm| = id|L0))-
Let o be a simplex of L with dimo = n + 1. Let K (o) be an Eilenberg-MacLane
space of type (Z,,n) obtained from 8o by attaching an (n+1)-cell by a map of degree
p. Hence .
(2) K(0)™ = o and K(o)("*V) = 9o U, B™*!, where a: 0B"t! — 9o is a map
of degree p.

If dimo >n+2and n > 2, then K(0) = K1(6) U K2(o)U... such that

(3) Ki(o) = UT;U K(1), where the union is taken over all proper faces 7 of o,

(4) fori=2,3,..., K;(0) is obtained from K;_; (o) by attaching to K;_;(c)(»+i—1)
a finite collection of (n + i)-cells killing the (n + ¢ — 1)-th homotopy group.

If dimo > n+2 and n =1, then K(0) = Ky1(0) U K3(o)U... such that

(5) Ki(o)is obtained from U‘réa K(7), by attaching finite collection of 2-cells abeliz-
ing the fundamental group,

(6) fori=2,3,..., K;(o) is obtained from K;_,(o) by attaching to K;_; (o)t~
a finite collection of (n + 7)-cells killing the (n + ¢ — 1)-th homotopy group.

Then we construct as

(7) ¥;'(o) is the mapping cylinder M, of the embedding j,: ¥} (0) — K(o),

(8) ¥r|m, is the cone of ¢L|¢;1(aa) such that ¥ (K (o)) is the barycentre of o.

Hence for each simplex ¢ of dimo > n + 1, we have the property:

(9) iftn>2,
¥ (@)™ = ot % [0,1] Ua, B! Ua, -+ Ua,, B,

where for each (n+1)-dimensional face ; of o, a;: B! — 97; x {1} is a map

of degree p,
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(10) if n =1,

P (0)® =™ % [0,1] Ua, B* Uq, -+ Ua,, B2 Ug, B® Ug, -+ Ug, B?,

r k

where for each 2-dimensional face 7; of o, a;: dB? — 87; x {1} is a map of
degree p and the collection {[31],...[B%,]} generates the commutator ‘subgroup
of 1 (6 x [0,1] Uay B2 Uq, -+ Us,, B%). O

r

3. CHARACTERIZATIONS FOR METRIZABLE SPACES

Let us establish definitions. Let K be a simplicial complex and f,¢g: X — |K]| be
maps. We say that g is a K-modification of f if for each z € X and 0 € K, f(z) € o
implies g(z) € 0. Let U be an open cover of X. Then a map b: X — |N(U)] is called
U-normal map if b~(st(U,U)) = U for each U € U and b is essential on each simplex
of N(U) (i.e. bly-1(5y: b1 (0) — 0 is a essential map for each o € A(U)). Note that if
U is a locally finite, then U-normal map exists.

3.1. Definition. Let @, P be polyhedra, G be an abelian group, U be an open cover of
P and n be a natural number. We say that a map ¢: Q@ — P is (G,n,U)-approzimable
if there exists a triangulation L of P such that for any triangulation M of () there is a
PL-map 9': |M(™| — |L(™)| satisfying the following conditions:
1) (@ ¥l <U,
(ii) for any map a: |L{™| — K(G,n), there exists an extension §: |[M(+D| —
K(G,n) of a0’ '

3.2. Definition. Let G be an abelian group and n be a natural number. A map
f: X — P of a metrizable space X to a polyhedron P is called (G,n)-cohomological if
for any open cover U of P there exist a polyhedron ) and maps ¢: X — Q, v: Q — P
such that ‘

(i) (Yoo, f) <U,
(i1) ¢ is (G, n,U)-approximable.

3.3. Theorem. Let X be a metrizable space, p be a prime number and n be a natural
number. Then X has cohomological dimension with respect to Z, of less than and equal
to n if and only if every map f of X to a polyhedron P is (Zp, n)-cohomological.

Proof of necessity. Suppose that c-dimz, X < n. Let f: X — P be a map of X to a
polyhedron P and U be an open cover of P. Then take a star refinement Uy of U.

First, we show that there exist a simplicial complex K and maps ¢: X — |K]|,
¢: |K| — P such that

(1) if 0 € K, there exists U € U, with (o) C U,
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(2) foreach x € X if p(z) € Int 0, 0 € K, there exists U € Uy with ¢ (o)U{f(z)} C
U,

(3) there exist a triangulation L of P and a PL-map 9': |[K(™| — |L(| such that
(1) (¥',%lixmy) <Uo
(ii) for any map a: |[L(™| — K(G,n) there is an extension g: |[K(*t1)| —

K(G,n) of a0, '

By J. H. C. Whitehead’s theorem [25], take a triangulation L of P such that

(4) st {st(v,L) :v € LO} <U,.

We will construct a map ¢: X — EWz,(L,n) such that

(3) le—1(|L(n>|) = f|f—1(|L(")|)7
(6) c(f~%(0)) € ¢ (o) for o € L, where r.: EWg,(L,n) — L is the map con-
structed in Lemma 2.1.

We define the map ¢, = flf‘l(lL(")l): L™ - |L™)| C EWz,(L,n). Inductively,
suppose that for n < k we have defined the function c;: f~1! (IL(’“)I) — EWgz,(L,n)
such that cil|s-1(0): (o) — 7 (¢) € EWgz, (L,n) is continuous and cklg-10) =
cklf-1¢ry on f7(o) N f71(7) for 0,7 € L. Now, let ¢ € L with dimo = k+ 1. By
the construction of ¢t and EWz,(L,n), ck|f-1(50): 00 — '¢Zl(0') is continuous. Hence
by ¢-dimz, f~!(¢) < ¢-dimz, X < n and (i) in Lemma 2.1, we have an continuous
extension ¢, : f~1(0) = ¥ () of ck|-1(s0)- Define cx11 to be ¢, on f~1(0) for o € L
with dimo = k + 1. Finally, we define c to be |J;-,, ck. Then since X is compactly
generated, the function ¢ is continuous.

We define an open cover B = {B, : ¢ € L} in the following way:
B, =EWgz,(L,n)\ U{tﬁ,—jl(r) conT=0}.

Then note that we have

(7) 417 (0) S B,
(8) if z € By and z € ¢ (1), o N1 £ .

Since EWg, (L, n) is LC", for a star refinement B; of B, there exists an open refinement
B, of By such that if K is a simplicial complex of dim K < n + 1, then every partial
realization of K in EWz, (L, n) relative to By extended to a full realization relative to
B; [2]. Select a star refinement B3 of Bs.

Then by [21, Lemma 9.6], there exist an open cover V of X refining f~1(Uo)Ac™1(B3)
and maps ¢: X — [N (V)|, ¥: |IM(V)| — P such that

(9) ¢ is V-normal,
(10) 9 o ¢ is L-modification of f,
(11) if 0 € N(V), there exists U € Uo with f (p71(c)) Utp(c) C U.
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Then these N(V), ¢ and 3 sat1sfy the conditions (1)-(3).

It is easily seen that (11) implies (1) and (2). It remain to prove that (3) holds.

We shall construct a map o : |V (V)("+)| » EWg (L,n) in the following way: note
that if (U) € N(V)("*D| there exists By € B with U C ¢~1(By). %o on [N (V)]
is defined by an element v ((U)) € By for each (U) € N(V)©. Let (Up,...,Un) €
NV Thenby 0 £ UpN---NUp C ¢} (By,)N---Nc Y (By,,), we have

Yo ({{Us), .., (Um)}) C st(By,,Bs) C B for some B € B,. ’

It show that t, is a partial realization of A (V)("*1) in EWg (L,n) relative to B,.
Therefore, by the construction of B;, we may define ¢y to be a full realization relative
to By. Then by the same way in [21, p245 (8)] we can show that

(12) if t € |M(V)(™ D] with ¢(t) € Int § and 1o(t) € ;' (7) for 6,7 € L, then there
exist 0,A € Lsuch that § <ocand o NA# D #ANT.

Now, by the property (v) in Lemma 2.1, we can choose

(13) a cellular map %;: [N(V)"*D| — EWgz, (L, n)"*) such that for each t €
IN(V)HD| ] if 4po(t) € 1 (7), then ¢y (¢) € p* (1)),

By the simplicial approximation theorem, we assume that ; is PL.
If n > 2, by the properties (9) and (1) in Lemma 2.1, we have

EWz, (L,n)"*) = |L(M| U U{@U % [0,1] Uy, B®* 0 € L,dimo =n + 1},

where a,: BBZ‘H — 0o is a map of degree p. For each (n+1)-simplex o of L, choose a

~ point z, € B}t \ B2*!, and take the retraction

r: EWg, (L, n)" Y\ {2, :0 € L,dimo =n+ 1} — |L™)]

induced by the compositions of the radial projection of B?*! \ {z,} onto 8¢ x {1} and
the natural projection of 8¢ x [0,1] onto do x {0} C |L(™)|.

If n = 1, for every simplex o of dimo > 2, ¢Zl (0(2)) may be represented as the
form (10) in Lemma 2.1:

$71(0)® = 0™ x [0,1] Ug, B? Ug, -+~ U, B2Up, B2 Ug, -+~ Ug, B

To

Then choose points uf,...,u; ,v{,...,v7 of 7 (M@ N\ 6™ x [0, 1] for each B? and
the retraction r: EWgz (L, n)® \ {uf,...,uZ ,v{,...,v{ :0 € L,dimo > 2} — |LY)|

induced by the compositions of the radial projections of B?\ {uf} or B2\ {v7} onto S"
and the natural projection of o1 x.[0,1] onto ™) x {0} C |LM]|.
In both cases, we put

1/)’ =To ¢1||N(V)(")|: IN(V)(n)I — |L(n)|
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Then the map ' holds the conditions (i),(ii). First, we show the condition (i). Let
t € IN(V)(™|. By (12), there exist o, \,7 € L such that o N X # 0 # AN 7 and ¥(¢) € o,
$o(t) € Y7 (7). Then since 1(t) is an element of ' (7)™ we have ¢'(t) € 7. Hence,
we have 9(t),y'(t) € st(A\,L) C U for some U € U, (see (4)). Next, we must show the
condition (ii). But, it is easy to show that. Hence, we omitted it here. '

Now, we shall show that f is (Z,, n)-cohomological . By (2), we can easily see that
(Yo, f) <U. So, we show that 9 is (Zp,ﬁ,L{)—approximable .

Let M be a triangulation of |K|. Note that for a simplicial approximation j of
id)py): |[M| = |K| — |K| with respect to K, we have that

i (1M@D]) K™D and j (IM®]) C K],
Then by (1) and (3), we can easily see that the map
Y=o MM - L]

holds the conditions. 0O

The reverse implication is proved by the standard way [21]. First, we need some
notations. : _ A

We may assume that the Eilenberg-MacLane space K(Z,,n) is a metrizable, locally
compact separable space. Then by the Kuratowski-Wojdyslawski’s theorem, we can
consider that K(Zp,n) is a closed subset of a convex subset C' of a normed linear space
E. Note that C is AR(metrizable spaces). Since K(Z,,n) is ANR, there exist a closed
neighborhood F' in C and a retraction r: F — K (Zp,n). Further, we can choose an
open cover Wy of Intc F' such that

(1) for any space Z and any maps «,3: Z — F with («,8) < W, the maps
roa,rof: Z — K(Zp,n) are homotopic in K(Zp,n).
Then we take an open, convez cover W of C such that
(2) if W € W with W N K(Zy,n) # 0, there exists U € Wy with st(W, W) CU.

Select a star refinement V of W. ,

Let hg: C — |N(V)| be a Kuratowski’s map with respect to V and define a map
hi: [N (V)| = C in the following way: a map k; on [NV(V)(?] is defined by an element
h1((V)) € V for each (V) € IN(V)(9]. Next, by using the convexity of C, we extend h;
linearly on each simplex [V'(V)|. Let 0 = (Vo,..., V) € |IN(V)|. Then by VoN---NV,, #
0,

R ({(Vo)s .-, (Vi) }) C st(V,,V) C W, for some W, € W.

Thus, by the construction of hy, we have hi(c) C W,.
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Let Ay be a subcomplex N'({V € V : VN K(Zp,n) # 0}) of N(V). Let Ny be a
simplicial neighborhood of Ay in (V) such that if (Vo) € No, there exists (Vi) € Ny
with Vo NV} # 0. Then we can easily see the followings:

(3) for each z € K(Z,,n), there exists W € W with z, hy 0 ho(z) € W,

(4) h1(Nol) S st(K(Zp,n), W) C F,

(5) ho (K(Zp,n)) C |N1] C |Nol-
Proof of sufficiency. Let A be a closed subset of X and h: A — K(Z,,n) be a map.
We consider the above-mentioned nerve M (V) and maps ho, h1. We take an open cover
U of IN(V)| such that

(6) st® (JV1],U) C |Nol,

(7) st*@U) < hy* (W),
and choose a subdivision A of N (V) such that if 0 € N there exists U € U with o C U.

Since C' is AE, there is an extension H: X — C of h. Then by the assumption, the
map hg o H: X — |[N(V)] is (Z,, n)-cohomological. Hence, there exist a polyhedron Q
and maps ¢: X — @, ¢: Q@ — |V (V)] such that

(8) (Yowp,hgo H)<U,

(9) 4 is (Zp,n,U)-approximable.
By using the simplicial approximation theorem, we obtain a triangulation M of @) and
a simplicial approximation 1/)*: M — N of 1. Then by (8),(9), we have

(10) (p* o, hgo H) < stU, '

(11) 4* is (Zp,n, st U)-approximable.

Now, by (11) with respect to M, there exist a tnangulatmn L and a PL-map ¢': |M®™| -
|L(™| such that

(12) (¥",¥*||pem)) < stld,

(13) for any map a: |L(™| — K(Z,,n), there exists an extension B: [M("tV| —

K(Zy,n) of a0y ’
Claim. There exists amap €: Q — K(Zj,,n) such that €] ye-1(jar,]) = T0R10%*|gu-1(jarg|
Construction of €. First, we shall see that
(14) for each z € D = ¥* 1 (|[Ny]) N |M(")| there exists U € Wy such that h; o
Y*(z),hyop'(z) € U. :
By (12), there exist Uy, Uz, Us € U such that Uy N Uy # 0 # U, N Us and 1[)*(:17) € Uy,
Y'(z) € Us. Then by (7), we have W € W with hy(U; UU; NU;3) € W. Since 9*(z) €
|Mol, by (4), there exists W' € W such that hy 0o 9*(z) € W and W' N K(Z,,n) # 0.
Hence by (2), we obtain U € Wy such that hy o ¥*(z),h1 0 ¢'(z) € st(W', W) CU.
Therefore by (14) and (1), we see the followings:
(15) hyo9'(D) C F,
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(16) r o hy 0o ¢p*|p ~ 1 0 hy 0 ¢'|p in K(Zp,n).
Since D is a subpolyhedron of |[M (™| and ¢' is PL, /(D) is subpolyhedron of |L(™)|.
Hence, from 7, (K(Zy,n)) = 0 for ¢ < n (if n = 1, the path-connectedness of K(Z,,n)),

there exists an extension
& [L®| = K(Zyyn)

of r o ha|y(py: ¥'(D) = K(Zp,n).

Then by (13), we have an extension
B |1MTHD| = K(Z,,n)

of o,
Now, put

R= IM("+1)|\U {Into:0 € M,dimo=n+1,0 Cy* "1 (|No])}.
Then since for each z € D C R we have B(z) = aoyp'(z) =rohyoy(a),
(17) Blp~rohioy'(z)p~rohioy*|p in K(Zy,n).

By the homotopy extension theorem, there exists an extension {g: R — K(Z,,n) of

r o hy o ¥*|p. .
Since for ¢ € M with dimo = n + 1 and ¢ C ¥* 1 (|JN,|), we have ér|s, =
r o hy 0 ¥*|s,, there exists an extension £py1: |[M™H)| — K(Z,,n) of £€g such that

Ent1lys=1 (oA e+D] = T 0 R 0 PT|gums pr pripantn)-
Hence, we can define a map £': 1*~! (|Vo|) U|M" D | — K(Z,,n) by the following:

€' = (rohy o™ ye-1(nr5))) U ént-

Therefore from 7q (K(Zp,n)) = 0 for ¢ > n, we obtain an extension £: Q — K(Z,,n)
of ¢’ such that {|y=-1(jaro]) =7 0 k1 0 ¥*|ye-1(|a7,))- It completes the construction.

Now, we put
B=¢foyp: X — K(Zp,n).

Then to complete the proof it suffices to prove
(18) . R4~ hin K(Z,,n).

First, we shall see that
p*op(A) S [No.
Let a € A. By (10), there exist Uy, U,, Us € U such that
(19) Uy NU;z # 0 # Uy NUs and ¢* 0 p(a) € Uy, ho o H(a) € Us.
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Then since hg o H(a) = hg o h(a) € ho (K(Zp,n)) C |N1]|, we have ¢* 0 p(a) € [Ny]| by
(6).

Hence, by Claim, we have for each a € A h'(a) = £ o p(a) = r o hy 0 P* 0 p(a).
Therefore, by (1), it suffices to see that

(20) there exists U € W, such that ky étﬁ* op(a),h(a) €U.

Let U1,U;,Us € U with the property (19). By (7), there exists W € W such that
U, UU, UU; C hTH(W). By (3) we choose W' € W such that h(a), by o hg o h(a) € W'.
Therefore, since h(a) € K(Zp,n), there exists U € W, such that

hy o ¢* o p(a), h(a) € st(W', W) CU.
It completes the proof. O

4. APPROXIMABLE DIMENSION

4.1. Definition. A space X has approzimable dimension with respect to a coefficient
group G of less than and equal to n (abbreviated, a-dimg X < n) provided that for
every polyhedron P, map f: X — P and open cover U, there exist a polyhedron @} and
maps ¢: X — @, ¥: @ — P such that

() (Wow, f) U,
(ii) ¢ is (G, n,U)-approximable.

First, we state fundamental inequalities of a- dimg.
4.2. Theorem. For a metrizable space X and an arbitrary abelian group' G, we hold

the following inequalities:

c-dimg X < a-dimg X < dim X.

Proof. The second inequality is trivial. We can see the first inequality by the strategy
similar to the proof of the sufficiency in Theorem 3.3. [

As we will show in latter sections, our approach of a- dimg gives useful applications.
In general, a- dimg is different from ¢-dimg. However, in special cases of coefficient
group G, a-dimg coincides with ¢- dimg.

4.3. Theorem. If G = Z or Z,, where p is a prime number, for every metrizable space
X, we have ,
a-dimg X = ¢-dimg X.

Proof. From Theorem 3.3, 4.2, we see the fact. [
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5. RESOLUTIONS FOR METRIZABLE SPACES

By a polyhedron wé mean the space | K| of a simplicial complex K with the Whitehead
topology (denoted by |K|,). We may define a topology for |K| by means of a uniformity
in [Appendix, 22] (denoted by |K|,).

5.1. Theorem. Let X be a metrizable space having approximable dimension with
respect to an abelian group G of less than and equal to n. Then there exist an n-
dimensional metrizable space Z and a pérfect UV™ ! _surjection n: Z — X such that
for z € X, the set [n~1(z), K(G,n)] of homotopy classes is trivial.

Proof. The strategy is like the construction of Walsh-Rubin [24,22].

Let d be a metric for X and let {i4; : i € N U {0}} be a sequence of open covers of
X where each U; consists of all 1/(:-+ 1)-neighborhoods.

First, we shall construct the followings:

open covers V; of X whose nerves NV (V;) are locally finite dimensional, maps b;: X —
IW(V;)| for i >0, fF, fi: IN(V;)| = IN(Vi_1)] for i > 1 and sequences N7, j € N U {0}
of subdivisions of N (V;) for : > 0 such that

(1) 8F <+ 8% for j >0,

(2) b; is normal with respect to b;1(8?) and A for j > 0,

(3) fi: NT — N?_, is simplicial for i > 1,

(4) fiob;is ./\/'z -modification of b;_;, 0 < j <3 fori>1,

(5) fi; maps each compact set in |[V;|, onto a compact set in |[N;_;|, which is

contained in a finite union of simplexes of Nj_1,

(6) 80 < fTU(S3_,) for i > 1,

(7) 8¥ < f71(S**3) for k > 1 and SF < f* 1(s’°+f”) for k > 4,

(8) Vi < Ui ANb(ST1) A b 25(ST0) A N b (SD),
where we regard |NV;|, as the uniform space with the uniform topology induced by the
uniform base {57 G20-

Further, we shall construct continuous (w.r.t. the Whitehead topology), uniformly
continuous (w.r.t. the uniform topology) PL-maps g;: |[(N3)™| — |[(N3_)™| such
that ,

(9) for each t € |(N?)(™)|, there exist 0,7 € N7_, such that fi(t) € o, gi(t) € T and

oNT#0,

(10) for any map a: |(N?_,)(™|,, — K(G,n), there exists an extension : |(N73)("+1)]|

— K(G,n) of aog;: (W)™, — |(V_ )M, — K(G,n),

(11) for each z € [N}, g (st(:c, 33) n I(N?)(")D is a Whitehead (i.e. finite) compact

polyhedral subset of |NV;_1].

Let us start the construction. We take an open refinement Vo of Uy in X whose
nerve N (Vo) is locally finite dimensional and Vo-normal map by: X — |[N(Vy)]. We
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define AJ to be a subdivision of Sdz; M(Vy) for j = 0,1,2 with S'g = §27!. By using
[22, Proposition A.3], for the cover £y = {st(w,S'g) 1T € IN(VO)I}‘, we obtain an open
cover By of |M(V)| and a PL, AV2-modification rq: |NZ| — |N?| of the identity such
that
(12)p ro(ClB) is compact for B € By,
(13)p Cl1BUro(ClB) C E for some E € &,.
Since by is (G, n)-cohomological, from the similar argument to the proof of the ne-
cessity in Theorem 3.3 we can take the followings:
subdivision N3 of Sdy N2, locally finite open cover V; of X and maps b;: X —
INV)I, fi: INV1)| = V3] such that
(14); 8i <* 82 A Bo,
(15); Vi <* Uy Aby(SY),

- (16); by is Vy-normal,

(17)1 fF o by is N3-modification of by,
(18)1 for each o € N(V1), there exists U € st S§ such that b (b7 (0)) U fi(c) C U,
(19); for any triangulation M of |V (V;)|, there exists a PL-map p': |[M (™| — |(N3)(™)]
such that
(1) (' flppaeny) < {st(, N3): X e N3},
(ii) for any map a: |[(N3)(®| - K(G,n), there exists an extension ﬁ |M(+1))
— K(G,n) of a0 p'.
Let N2 denote a subdivision of Sd, N with S{;“ <* 8) for j > 3.
Now, let |NV3|n denote |NV3| with the metric topology [19, p301]. Then there is
a N3-modification jo: [N3|m — |N3|w of the identity function [19, p302]. By the
simplicial approximation theorem, we obtain a subdivision /'y of N (V;) and a simplicial
approximation fi: N3 — N of jo o ff. Let N denote N';. Then by the simpliciality
of f; and (17);, we have
(20) 87 < fi(So),
(21) f1 0 by is N3-modification of by.
We take a subdivisions NJt! of A for j = 0,1 such that
(22) 83! <* 8] for j = 0,1,
(23) 81 < fH(S5T%) for j = 1,2,
(24) N < Sdy; M) for j = 1,2.
By using Lemma [22, Proposition A.3], for the cover £, = {st(:c, 3?) 1z € |N1|}, we
obtain an open cover B of |N(Vy)| and a PL, N'?-modification ry: [N?| — |[A?| of the
identity map such that

(12); r1(ClB) is compact for B € By,
(13); C1BUr1(ClB) C E for some E € &;.



67

Since b; is (G, n)-cohomological, from the similar argument to the proof of the ne-
cessity in Theorem 3.3 we can take the followings:
subdivision N3 of Sdy N2, locally finite open cover V; of X and maps by: X —
IN(V2)|, f: IN(V2)| = |NV3] such that
(14); 87 <* STABy A FTNST),
(18)2 V3 <* Uz AbTH(S3) A by (SS),
(16), by is Vy-normal,
17)s f¥ 0 by is N 3-modification of b;
( 2 1 ’
(18); for each o € N(V3), there exists U € st S} such that by (b5 (o)) U f5(0) C U,
(19); for any triangulation M of |[N'(V;)|, there exists a PL-map p’: |M(™| — |(N3)(®)|
such that
() (@', f5liaey) < {5t NT) X € M3,
(ii) for any map a: |(NV3)(™| = K(G,n), there exists an extension 3: |M(*+1)]|
— K(G,n)of aop'.
Now, by. using (19); about the triangulation A% of |N(V;)|, we obtain a PL-map
g1+ V™| = [(V2)™)] such that |
(25)1 (g5, filjveyom)) < {stLND) = A e MVG3, - o
(26); for any map a: [(NV3)(™M| — K(G,n), there exists an extension g: |(N3)(»+1)]|
K(G,n) of aogr.

Consider the inclusion map ig: |(A3)(™]| < |N5| and the composition
ro 0dg 0 g7 : [(W])™| = (V) ™] = NG| = IN(Vo)| = IN(Vo)l.

The image A of the PL-map rg o 29 o ¢ has dimension < n. Then we can take a
N3-modification sg: A — [(N3)(™| of the inclusion map A — |N3|. Let g: [(V3)™] -
|(V3)(™)| denote the composition map sq 0 rg 04g 0 g}.

Then this has the following properties:

Claim 1.

(9); for each t € [(N3)(™|, there exist 0,7 € N2 such that fi(t) € o, ¢1(t) € T and
anNT#40, ’
- (10); for any map a: ((N3)™| - K(G,n), there exist an extension B: |(N3)(tD| —
K(G,n) of ao g,
(11), foreachz € [Ny|, g1 (st(:c,gi) N [(J\/’?)(")D is a Whitehead (i.e. finite) compact
polyhedral subset of |Ny|.

Proof of Claim 1. We show the property (9);. Let t € [(N3)(™|. By (25);, there exist
o, \, 7 € N§ such that fi(t) € o, g¥(t) € T and e N X # 0 # AN 7. We may assume that
A = |vo,v1], vo € 0 and vy € T.
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Since jo is M3-modification of the identity function, we have jo o ff(t) € 0. Since f;
is simplicial approximation of jg o f{', we have fi(¢) € 0.

Select ¥ € N2 with 7 C 7. Since r¢ is N'2-modification of the identity map, we have
ro 049 0 g}(t) € 7. Further since sq is N'§ —mod1ﬁcat1on of A= |N3| and N§ < NVE, we
have g1(t) = s org 049 0 g1 (t) € 7.

Case 1. vy € (N2)® (ie. vy € 79,

By N§ < Sdy N%, we have vy & (N3)(®. Hence, there exists v € NE such that
lvg,v1| C v and vy € Inty. Then if & € Nﬁ with o C &, we have ¥ < &. Therefore we
have 6 N7 # 0, fi(t) € & and ¢1(¢t) € 7. |

Case 2. vy & (N3)O,

If vo € (N2)©, the proof is similar to Case 1. Let vy ¢ (N2)(®. By N3 < Sd, N2,
there exist 9,71 € N, (2) such that vy € Int vy, v1 € Int4; and 40 < 71 or 91 < 4. Then
if & € N2 with 0 C &, we have vy < &. Similarly, we have 4; < 7. Therefore we have
N7 #0, fi(t) € 5 and g1(t) € 7. |

By g7 ~ g1, we can see the property (10); by the homotopy extension theorem and
(26)1.

We show the property (11);. First, we shall see that

(27) g7 (st(x,gi) N I(N?)(")I) C B for some B € B,.

Let st(z,S7) be represented by U{st(va,./\fz) o € A}. There exists 0, € N3 with
z € Into;,.

For each a € A, we choose o, € N? 1 such that 0, < 04 and v, € 04. Further we select
minimum and maximal dimensional simplexes Tz, To € N} 9 with 7, < 7o respectively
such that o, C 7, and o, C 7.

If o, C Int 7, we have st(vq, N f) C 74 from v, € Int 7,. Then there exists a vertex
v € N? such that |J, 7o C st(v,NV}). Since f; is the simplicial map from N9 to N3,
we have f; (U, 7a) C fi(st(v,N])) C st(fi(v),N}). By the nearness between f; and
g7 (see proof of (9);) and (14);, we obtain

@) of (st(=, 5D WD) S st (S(f1(2), ¥3),57) € B for some B € Bo.

If o, NOr; # 0 and o, NInt7, # 0, we choose a face 7, with ¥, X 7, such that
0z N 07, C 7,. Then there exists a vertex v € 7, such that (J, st(va,N7) C s_t(v,./\f(l)).
Hence we have (28) in the same way.

Since st(z,82) N |(V3)™)] is a subpolyhedron of IN 1| and ¢7 is a PL-map, we see
that g} (st(:c,Sl) N |(N?)(")|> is a subpolyhedron of |[Ny|. Then by (27) and (12),,

ro 09 O g} (st(a:,gf) njVH™ I) is a subpolyhedron of |Vy| and a compact set of
|Mo|w. Since sq is a PL-map, we have see the property (11);.
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Now, we shall take a base for a uniformity for |A;|. We choose a subdivisions A’
for j > 4 of Ny such that

(29) M < Sdy N for j > 8,

(30) 87 <* 84 for j > 3,

(31) 817 < FTHSE) ARSI AF for 2 3,
where FJ is defined as follows. g7 (S§+4 N INVH™ |) is the open cover of |(AV3)(™],,.
Extend it to an open cover .7:{"'4 of |[Ny]w. Then clearly the uniformity make f, f

and ¢g; uniformly continuous.
We shall show that f; holds the property (5). First, note that the composition

]OOZdofl INllu INolu_‘)lNOIm_)INO|w7

where id: |[Ng|y — |[No|m is the identity map, is continuous.

Let K be a compact set of |[N1|,. There exist a1,...,0; € N such that jpo ff(K) =
Jooido ff(K) C o1 U---Uo;. Since f; is a simplicial approximation of jo o ff', we have
fi(K) C o1 U---Uo;. By the continuity of fi, fi(X) is a compact set of |Ng|y.

As we proceed in this work, we have V,, f*, f;, Nz] and g; with the properties (1)-(11).

From now on, we consider X to be the uniform space with the uniformity generated
by the sequence {V;}32, of open covers of X and |V;| to be the uniform space with the
uniformity generated by the sequence {S{ }‘]?‘;0. Then by the construction, the topology
induced by {V;}2, and the original metric topology are identical. -

We shall construct the resolution of X. The construction essentially depends on
Rubin’s way [22]. Hence, the detail is omitted here.

For j > 0, let f;; denote the identity on N and let f;; denote the composition
fig10---0 fi [N = |N| for i > j.

The functions

bi: (X, {Vi}20) = (Wil 871220
and ‘

fiva,it (IN1+1| {Sz+1}oio)_’ (|Nl {S] 720)

are uniformly continuous for 7 > 0. Then since the sequence {f; o},
the uniform space C' (X, [N |,) with the uniformity of uniform convergence, we have a

is Cauchy in

uniformly continuous, limit map
foo,j = Hm foj0bg: (X, {Vi}iZo) = (W51, {85320 ,

such that
(32) foo,j is N?-modiﬁcation of b;,

(33) (foo,srb5) < S,
(34) foo,j is a topological irreducible (i.e. surjective) map relative to N/ ?,

(35) fit1,i © foo,it1 = f;o,i for : > 0.
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We consider [[io, |Vi|u to be the uniform space by the product uniformity. Note
that ELH{INqu, fi+1,i} is a non-empty subspace by the property (34).

Then by (35), there exist a uniformly continuous map f,: X — lg_r_n |Nily with foo i =
pr;o f, and especially the map f,, is a uniformly embedding onto a dense subset f.,(X)
in lim ||y, where pr;: [I5=0 Wjlu = |Nily is the natural projection.

Let Z denote the limit of the inverse sequence {|(A D™, it }. Then we consider
Z to be the sub-uniform space of the uniform space [[2,|Vils. Note that Z has
dimension < n. '

We begin with a description of the map 7. For ;7 > 0, a uniformly continuous map

mj: Z — [[i2y NVilu is defined by

mi(2) = (fi0(25), fi1(25)s -+, fi-1(25), 255 241, -+ )
for z = (z;) € Z and let mo be the inclusion map. Then since the sequence {r;}52,
is Cauchy in C(Z,]I;2, |Nilu), there is a uniformly continuous, limit map n: Z —
[I:2o INilu. Then the map = is proper from Z onto 1(_i£1_1{|./\/',~|u,f,-+1,,~}. We must
show that 7=1(x) is a UV™ !-set and the set [r~1(x),K(G,n)] is trivial for x €
Um{|Nilu, fit1,i}-

For x = (z;) € @{INilu,fi+1,i}, let 6N (z;) and eN(z;) denote st(z;,8;) and
st(m,-,gf), respectively. Then we have the following properties [22]: for x = (z;) €
Hm{|Nilu, fi+1,i},

(36) gi,i—1 (8N (zi) N |(VF)™M]) C eN(zi-n),

(37) lim {eN(z:) N |(N)™], gii-a]..} = 771 (x) = Lim {§N(2:) N [(N)™], gii-a]...}

By 3’? <* S}, there exists F; € S} such that st(wi,g.?) C F;. Further, by S} < 87,
thereisa S € S ? such that F; C S. Hence we have the contractible set F; such that
(38) eN(z;) C F; C8N(z;).

Claim 2. 7 (x) is a UV"™ 1 _set for for x = (z:) € I(E_n{l./\leu, fit1,i}-
Proof of Claim 2. It suffices to show that the map
Gitnil..: BN (2ig1) NN P| = 6N(2:) 0 (V™)
induces a zero homomorphism of homotopy group of dimension less than n. By (36)
and (38), we have ‘

girri (N (@i1) N IVED™]) S B0 WD € 8N () 0 (VD).
Since Fj is contractible, we have
Tk (F, n I(Nf)(")]) =0 fork<n.

Therefore g;41,;|... induces a zero homomorphism of homotopy group of dimension less
than n.
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Claim 3. [~ 1(x), K(G,n)] =~ H"(x~(x); G) is trivial for x € @{|Ni|u,fi+1,i}.

Proof of Claim §. By (11),(36),(37) and the continuity of Cech cohomology, we have
H"(n7(x); G) ~ lim { H™ (gi,i-1(eN(2:) 0 IV 1) G, giima 1}

Hence it suffices to show that

giimal% s H™ (9iim1(eN (@) NNVD™)); G) = B (giri(eN (@i1) 0 (M) )5 G)

is the zero homomorphism.

Let G; ;-1 denotes g; ;1 (6N(:1:,~) N I(./\/'::’)(”)]u) Then by (11) the subspace G; i—1 of
|(N2_,)™]|, and the subspace G;i—1 of |(N?_;)(™|, is identical. Hence from now on,
we may consider that G;;_; is the subspace of |(N3_,)(™|,.

Let [a] € [G;i—1,K(G,n)]. Then from m, (K(G,n)) = 0 for ¢ < n, there ex-
ists an extension &: [(NV?_;)™], — K(G,n) of a. By (10), we have an extension
ﬂ: I(N:i;)(n-l-l)'w - K(G7 n) of &o gi,i—-1 |G’.’+1,i°

Since F; is the contractible set, F; N I(N?)(")|w is contractible in F; N I(N?)("+1)|w.
Hence, there exists a homotopy H : (F: N |(NVHM|y) x I — F;n|(N3)FD)], such that
H, is the inclusion map and H; is a constant map. Since G;4;,; C 6N(a§,~)ﬁ (VH)], C
F;n |(V)(™)],, we can define the following compositions:

H=poizoHoiy: Giyyi x I — (F n |(N?)<">|w) x I — F;n |V,
= |V, - K(G,n),

where 77 and 29 are the inclusion maps.

Then we have Hy = BlGitr: = @0 giji-1lGiy,,; and H, = a constant . It completes

the proof of Claim 3. Then the map
Tx E@)px): 7 (X)) » X
is a desired one for Theorem. O

5.2. Corollary. Let X be a metrizable space having cohomological dimension with
respect to Z, of less than and equal to n. Then there exist an n-dimensional metrizable
space Z and a perfect UV™ ™! -surjection n: Z — X such that for x € X, the set
[r=(z), K(Z,,n)] of homotopy classes is trivial. .
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