距離空間における COHOMOLOGY 次元について

横井 勝弥 (KATSUYA YOKOI)

筑波大学数学系

1. Introduction and preliminary

In the last ten years, cohomological dimension theory has striking development. A motivation of the development is surely the Edwards-Walsh theorem, [24], as follows:

1.1. Theorem. Every compact metric space X of cohomological dimension c-dim $_{\mathbb{Z}} X \leq n$ (integer coefficient) is the image of a cell-like map $f: \mathbb{Z} \to X$ from a compact metric space \mathbb{Z} of dim $\mathbb{Z} \leq n$.

Not only the result but also techniques of the proof gave an important influence to the development. After them, L. R. Rubin and P. J. Schapiro [22] showed the noncompact version of the Edwards-Walsh theorem and S. Mardešić and L. R. Rubin [17] gave the nonmetrizable version. On the other hand, A. N. Dranishnikov, [5] and [6], characterized cohomological dimension with respect to \mathbf{Z}_p by the Edwards-Walsh's way and showed the Edwards-Walsh-like theorem:

1.2. Theorem. Every compact metric space X of cohomological dimension with respect to \mathbb{Z}_p , $c\text{-}\dim_{\mathbb{Z}_p} X \leq n$, is the image of a map $f\colon Z\to X$ from a compact metric space Z of dim $Z\leq n$ whose fibers are acyclic modulo p.

Motivated above results and Mardešić's characterization of c-dim_{**Z**} $X \leq n$, we will show a characterization of c-dim_{**Z**_p} $X \leq n$ for noncompact case. Using the characterization, we will give the existence of an acyclic resolution modulo p. In fact, our characterization suggests a dimension-like function, called approximable dimension, and can obtain the following more general results.

1.3. Theorem. Let X be a metrizable space having approximable dimension with respect to an arbitrary coefficients $G \leq n$. Then there exists a map $f: Z \to X$ from a metrizable space Z of dim $Z \leq n$ and $w(Z) \leq w(X)$ onto X such that $H^*(f^{-1}(x); G) = 0$ for all $x \in X$.

As its consequence, we have noncompact versions of Theorems 1.1 and 1.2. We may call such a mapping f an acyclic resolution of X (with respect to G), specially, in the

case of $G = \mathbf{Z}_p$, an acyclic resolution of X modulo p. Finally we will note that there exists a compact metric space X of c-dim $_{\mathbf{Q}} X = 1$ which does not admit an acyclic resolution with respect to \mathbf{Q} [11,12]. Thereby we can see that approximable dimension is different from cohomological dimension and Theorem 1.3 is a good property obtained from approximable dimension.

In this paper, we mean the definition of cohomological dimension as follows: the cohomological dimension of a space X with respect to a coefficient group G is less than and equal to n, denoted by c-dim $_G X \leq n$, provided that every map $f: A \to K(G, n)$ of a closed subset A of X into an Eilenberg-MacLane space K(G, n) of type (G, n) admits a continuous extension over X (c.f. [10]). The dimension of a space X means the covering dimension of X and denotes by dim X. Z is the additive group of all integers and for each prime number p, Z_p is the cyclic group of order p.

By a polyhedron we mean the space |K| of a simplicial complex K with the Whitehead topology. In section 5, the topology of |K| may be generated by a uniformity [Appendix, 22].

If v is a vertex of a simplicial complex K, let $\operatorname{st}(v,K)$ be the open star of v in |K| and $\operatorname{\bar{st}}(v,K)$ be the closed star of v in |K|. If $A\subseteq |K|$, then we define $\operatorname{st}(A,K)=\bigcup\{\operatorname{Int}\sigma:\sigma\in K,\sigma\cap A\neq\emptyset\}$ and $\operatorname{\bar{st}}(A,K)=\bigcup\{\sigma:\sigma\in K,\sigma\cap A\neq\emptyset\}$. The symbol Sd_jK means the j-th barycentric subdivision of K. We define the symbols \mathcal{S}_i and $\bar{\mathcal{S}}_i$ for a simplicial complex K_i with an index to be the cover $\{\operatorname{st}(v,K_i):v\in K_i^{(0)}\}$ and the cover $\{\operatorname{\bar{st}}(v,K_i):v\in K_i^{(0)}\}$, respectively.

We use the symbol \prec both to mean 'refine' for covers and 'subdivides' for subdivisions of a complex. The symbol \prec^* is used for star refines.

Let \mathcal{U} be an open cover of a space X. Then for $U \in \mathcal{U}$,

$$st(U, \mathcal{U}) = st^{1}(U, \mathcal{U}) = \bigcup \{U' : U' \in \mathcal{U}, U' \cap U \neq \emptyset\},$$

$$st^{j+1}(U, \mathcal{U}) = \bigcup \{U' : U' \in \mathcal{U}, U' \cap st^{j}(U, \mathcal{U}) \neq \emptyset\}.$$

By $\operatorname{st}^j(\mathcal{U})$ we mean the cover $\{\operatorname{st}^j(U,\mathcal{U}): U \in \mathcal{U}\}$. If f and g are maps from a space Z to a space $X, (f,g) \leq \mathcal{U}$ means that for each $z \in Z$, there exists $U \in \mathcal{U}$ with $f(z), g(z) \in \mathcal{U}$. If X is a metric space with a metric d, we write $(f,g) \leq \varepsilon$ instead of $(f,g) \leq \mathcal{U}_{\varepsilon}$, where $\mathcal{U}_{\varepsilon}$ is the cover whose consists of all $\varepsilon/2$ -neighborhoods in X. By the symbol $\mathcal{N}(\mathcal{U})$ we mean the nerve of the cover \mathcal{U} . For covers \mathcal{U}, \mathcal{V} , the symbol $\mathcal{U} \wedge \mathcal{V}$ is used for the following cover $\{\mathcal{U} \cap \mathcal{V}, \mathcal{U}, \mathcal{V}: \mathcal{U} \in \mathcal{U}, \mathcal{V} \in \mathcal{V}\}$.

2. EDWARDS-WALSH COMPLEXES

In the latter section, we need Edwards-Walsh complexes for arbitrary simplicial complexes.

2.1. Lemma. Let |L| be a simplicial complex with the Whitehead topology, p be a prime number and n be a natural number. Then there exists a combinatorial map (i.e.

 $\pi_L^{-1}(L')$ is a subcomplex of $\mathrm{EW}_{\mathbf{Z}_p}(L,n)$ if L' is a subcomplex of L) $\psi_L\colon \mathrm{EW}_{\mathbf{Z}_p}(L,n)\to |L|$ such that

- (i) for $\sigma \in L$ with dim $\sigma \geq n+1$, $\psi_L^{-1}(\sigma) \in K(\bigoplus_{1}^{r_{\sigma}} \mathbf{Z}_p, n)$, where $r_{\sigma} = \operatorname{rank} \pi_n(\sigma^{(n)})$,
- (ii) for $\sigma \in L$ with dim $\sigma \leq n$, $\psi_L^{-1}(\sigma) = \sigma$,
- (iii) $\mathrm{EW}_{\mathbf{Z}_p}(L,n)$ is a CW-complex,
- (iv) $\psi_L^{-1}(\sigma)$ is a subcomplex of $\mathrm{EW}_{\mathbf{Z}_p}(L,n)$ with respect to the triangulation in (3),
- (v) $\psi_L^{-1}(\sigma)^{(k)}$ is a finite CW-complex for $k \geq n$,
- (vi) for any subcomplex L' of L and map $f: |L'| \to K(\mathbf{Z}_p, n)$, there exists an extension of $f \circ \psi_L|_{\psi_L^{-1}(|L'|)}$.

Sketch of Proof. We give its proof by using Edwards-Walsh's modification by Dranishnikov [6]. By the induction on dim L, ψ_L is constructed to satisfy the following:

$$(1) \ \psi_L^{-1}(L^{(n)}) = L^{(n)} \text{ is a subcomplex of } \mathrm{EW}_{\mathbf{Z_p}}(L,n) \text{ and } \psi_L|_{|L^{(n)}|} = id_{|L^{(n)}|}.$$

Let σ be a simplex of L with dim $\sigma = n + 1$. Let $K(\sigma)$ be an Eilenberg-MacLane space of type (\mathbf{Z}_p, n) obtained from $\partial \sigma$ by attaching an (n+1)-cell by a map of degree p. Hence

(2) $K(\sigma)^{(n)} = \partial \sigma$ and $K(\sigma)^{(n+1)} = \partial \sigma \cup_{\alpha} B^{n+1}$, where $\alpha \colon \partial B^{n+1} \to \partial \sigma$ is a map of degree p.

If dim $\sigma \geq n+2$ and $n \geq 2$, then $K(\sigma) = K_1(\sigma) \cup K_2(\sigma) \cup \ldots$ such that

- (3) $K_1(\sigma) = \bigcup_{\tau \preceq \sigma} K(\tau)$, where the union is taken over all proper faces τ of σ ,
- (4) for $i = 2, 3, ..., K_i(\sigma)$ is obtained from $K_{i-1}(\sigma)$ by attaching to $K_{i-1}(\sigma)^{(n+i-1)}$ a finite collection of (n+i)-cells killing the (n+i-1)-th homotopy group.

If dim $\sigma \geq n+2$ and n=1, then $K(\sigma)=K_1(\sigma)\cup K_2(\sigma)\cup \ldots$ such that

- (5) $K_1(\sigma)$ is obtained from $\bigcup_{\tau \preceq \sigma} K(\tau)$, by attaching finite collection of 2-cells abelizing the fundamental group,
- (6) for $i = 2, 3, ..., K_i(\sigma)$ is obtained from $K_{i-1}(\sigma)$ by attaching to $K_{i-1}(\sigma)^{(n+i-1)}$ a finite collection of (n+i)-cells killing the (n+i-1)-th homotopy group.

Then we construct as

- (7) $\psi_L^{-1}(\sigma)$ is the mapping cylinder M_{σ} of the embedding $j_{\sigma} : \psi_L^{-1}(\partial \sigma) \hookrightarrow K(\sigma)$,
- (8) $\psi_L|_{M_{\sigma}}$ is the cone of $\psi_L|_{\psi_L^{-1}(\partial \sigma)}$ such that $\psi_L(K(\sigma))$ is the barycentre of σ .

Hence for each simplex σ of dim $\sigma \geq n+1$, we have the property:

(9) if $n \ge 2$,

$$\psi_L^{-1}(\sigma)^{(n+1)} = \sigma^{(n)} \times [0,1] \cup_{\alpha_1} B^{n+1} \cup_{\alpha_2} \cdots \cup_{\alpha_{r_{\sigma}}} B^{n+1},$$

where for each (n+1)-dimensional face τ_i of σ , $\alpha_i : \partial B^{n+1} \to \partial \tau_i \times \{1\}$ is a map of degree p,

(10) if n=1,

$$\psi_L^{-1}(\sigma)^{(2)} = \sigma^{(1)} \times [0,1] \cup_{\alpha_1} B^2 \cup_{\alpha_2} \cdots \cup_{\alpha_{r_{\sigma}}} B^2 \cup_{\beta_1} B^2 \cup_{\beta_2} \cdots \cup_{\beta_{k_{\sigma}}} B^2,$$

where for each 2-dimensional face τ_i of σ , $\alpha_i : \partial B^2 \to \partial \tau_i \times \{1\}$ is a map of degree p and the collection $\{[\beta_1], \dots [\beta_{k_{\sigma}}]\}$ generates the commutator subgroup of π_1 $(\sigma^{(1)} \times [0,1] \cup_{\alpha_1} B^2 \cup_{\alpha_2} \dots \cup_{\alpha_{r_{\sigma}}} B^2)$. \square

3. Characterizations for metrizable spaces

Let us establish definitions. Let K be a simplicial complex and $f,g: X \to |K|$ be maps. We say that g is a K-modification of f if for each $x \in X$ and $\sigma \in K$, $f(x) \in \sigma$ implies $g(x) \in \sigma$. Let \mathcal{U} be an open cover of X. Then a map $b: X \to |\mathcal{N}(\mathcal{U})|$ is called \mathcal{U} -normal map if $b^{-1}(\operatorname{st}(\mathcal{U},\mathcal{U})) = \mathcal{U}$ for each $\mathcal{U} \in \mathcal{U}$ and b is essential on each simplex of $\mathcal{N}(\mathcal{U})$ (i.e. $b|_{b^{-1}(\sigma)}: b^{-1}(\sigma) \to \sigma$ is a essential map for each $\sigma \in \mathcal{N}(\mathcal{U})$). Note that if \mathcal{U} is a locally finite, then \mathcal{U} -normal map exists.

- **3.1. Definition.** Let Q, P be polyhedra, G be an abelian group, \mathcal{U} be an open cover of P and n be a natural number. We say that a map $\psi: Q \to P$ is (G, n, \mathcal{U}) -approximable if there exists a triangulation L of P such that for any triangulation M of Q there is a PL-map $\psi': |M^{(n)}| \to |L^{(n)}|$ satisfying the following conditions:
 - (i) $(\psi', \psi|_{|M^{(n)}|}) \leq \mathcal{U}$,
 - (ii) for any map $\alpha \colon |L^{(n)}| \to K(G,n)$, there exists an extension $\beta \colon |M^{(n+1)}| \to K(G,n)$ of $\alpha \circ \psi'$.
- **3.2. Definition.** Let G be an abelian group and n be a natural number. A map $f: X \to P$ of a metrizable space X to a polyhedron P is called (G, n)-cohomological if for any open cover \mathcal{U} of P there exist a polyhedron Q and maps $\varphi: X \to Q$, $\psi: Q \to P$ such that
 - (i) $(\psi \circ \varphi, f) \leq \mathcal{U}$,
 - (ii) ψ is (G, n, \mathcal{U}) -approximable.
- **3.3. Theorem.** Let X be a metrizable space, p be a prime number and n be a natural number. Then X has cohomological dimension with respect to \mathbb{Z}_p of less than and equal to n if and only if every map f of X to a polyhedron P is (\mathbb{Z}_p, n) -cohomological.

Proof of necessity. Suppose that $c\text{-}\dim_{\mathbf{Z}_p} X \leq n$. Let $f: X \to P$ be a map of X to a polyhedron P and \mathcal{U} be an open cover of P. Then take a star refinement \mathcal{U}_0 of \mathcal{U} .

First, we show that there exist a simplicial complex K and maps $\varphi \colon X \to |K|$, $\psi \colon |K| \to P$ such that

(1) if $\sigma \in K$, there exists $U \in \mathcal{U}_0$ with $\psi(\sigma) \subseteq U$,

- (2) for each $x \in X$ if $\varphi(x) \in \text{Int } \sigma, \sigma \in K$, there exists $U \in \mathcal{U}_0$ with $\psi(\sigma) \cup \{f(x)\} \subseteq U$,
- (3) there exist a triangulation L of P and a PL-map $\psi' \colon |K^{(n)}| \to |L^{(n)}|$ such that
 - (i) $(\psi', \psi|_{|K^{(n)}|}) \leq \mathcal{U}_0$
 - (ii) for any map $\alpha: |L^{(n)}| \to K(G, n)$ there is an extension $\beta: |K^{(n+1)}| \to K(G, n)$ of $\alpha \circ \psi'$.

By J. H. C. Whitehead's theorem [25], take a triangulation L of P such that

(4) st
$$\{\bar{\text{st}}(v,L): v \in L^{(0)}\} \prec \mathcal{U}_0$$
.

We will construct a map $c : X \to \mathrm{EW}_{\mathbf{Z}_p}(L,n)$ such that

- (5) $c|_{f^{-1}(|L^{(n)}|)} = f|_{f^{-1}(|L^{(n)}|)},$
- (6) $c(f^{-1}(\sigma)) \subseteq \psi_L^{-1}(\sigma)$ for $\sigma \in L$, where $\psi_L \colon \mathrm{EW}_{\mathbf{Z}_p}(L,n) \to L$ is the map constructed in Lemma 2.1.

We define the map $c_n \equiv f|_{f^{-1}\left(|L^{(n)}|\right)} \colon f^{-1}\left(|L^{(n)}|\right) \to |L^{(n)}| \subseteq \mathrm{EW}_{\mathbf{Z}_p}(L,n)$. Inductively, suppose that for $n \leq k$ we have defined the function $c_k \colon f^{-1}\left(|L^{(k)}|\right) \to \mathrm{EW}_{\mathbf{Z}_p}(L,n)$ such that $c_k|_{f^{-1}(\sigma)} \colon f^{-1}(\sigma) \to \psi_L^{-1}(\sigma) \subseteq \mathrm{EW}_{\mathbf{Z}_p}(L,n)$ is continuous and $c_k|_{f^{-1}(\sigma)} = c_k|_{f^{-1}(\tau)}$ on $f^{-1}(\sigma) \cap f^{-1}(\tau)$ for $\sigma, \tau \in L^{(k)}$. Now, let $\sigma \in L$ with $\dim \sigma = k+1$. By the construction of c_k and $\mathrm{EW}_{\mathbf{Z}_p}(L,n), c_k|_{f^{-1}(\partial\sigma)} \colon \partial\sigma \to \psi_L^{-1}(\sigma)$ is continuous. Hence by c- $\dim_{\mathbf{Z}_p} f^{-1}(\sigma) \leq c$ - $\dim_{\mathbf{Z}_p} X \leq n$ and (i) in Lemma 2.1, we have an continuous extension $c_\sigma \colon f^{-1}(\sigma) \to \psi_L^{-1}(\sigma)$ of $c_k|_{f^{-1}(\partial\sigma)}$. Define c_{k+1} to be c_σ on $f^{-1}(\sigma)$ for $\sigma \in L$ with $\dim \sigma = k+1$. Finally, we define c to be $\bigcup_{k=n}^{\infty} c_k$. Then since X is compactly generated, the function c is continuous.

We define an open cover $\mathcal{B} = \{B_{\sigma} : \sigma \in L\}$ in the following way:

$$B_{\sigma} \equiv \mathrm{EW}_{\mathbf{Z}_{\mathbf{z}}}(L, n) \setminus \bigcup \{ \psi_L^{-1}(\tau) : \sigma \cap \tau = \emptyset \}.$$

Then note that we have

- $(7) \ \psi_L^{-1}(\sigma) \subseteq B_{\sigma}$
- (8) if $x \in B_{\sigma}$ and $x \in \psi_L^{-1}(\tau)$, $\sigma \cap \tau \neq \emptyset$.

Since $\mathrm{EW}_{\mathbf{Z}_p}(L,n)$ is LC^n , for a star refinement \mathcal{B}_1 of \mathcal{B} , there exists an open refinement \mathcal{B}_2 of \mathcal{B}_1 such that if K is a simplicial complex of $\dim K \leq n+1$, then every partial realization of K in $\mathrm{EW}_{\mathbf{Z}_p}(L,n)$ relative to \mathcal{B}_2 extended to a full realization relative to \mathcal{B}_1 [2]. Select a star refinement \mathcal{B}_3 of \mathcal{B}_2 .

Then by [21, Lemma 9.6], there exist an open cover \mathcal{V} of X refining $f^{-1}(\mathcal{U}_0) \wedge c^{-1}(\mathcal{B}_3)$ and maps $\varphi \colon X \to |\mathcal{N}(\mathcal{V})|, \psi \colon |\mathcal{N}(\mathcal{V})| \to P$ such that

- (9) φ is \mathcal{V} -normal,
- (10) $\psi \circ \varphi$ is L-modification of f,
- (11) if $\sigma \in \mathcal{N}(\mathcal{V})$, there exists $U \in \mathcal{U}_0$ with $f(\varphi^{-1}(\sigma)) \cup \psi(\sigma) \subseteq U$.

Then these $\mathcal{N}(\mathcal{V})$, φ and ψ satisfy the conditions (1)-(3).

It is easily seen that (11) implies (1) and (2). It remain to prove that (3) holds.

We shall construct a map $\psi_0: |\mathcal{N}(\mathcal{V})^{(n+1)}| \to \mathrm{EW}_{\mathbf{Z}_p}(L,n)$ in the following way: note that if $\langle U \rangle \in \mathcal{N}(\mathcal{V})^{(n+1)}$, there exists $B_U \in \mathcal{B}_3$ with $U \subseteq c^{-1}(B_U)$. ψ_0 on $|\mathcal{N}(\mathcal{V})^{(0)}|$ is defined by an element $\psi_0(\langle U \rangle) \in B_U$ for each $\langle U \rangle \in \mathcal{N}(\mathcal{V})^{(0)}$. Let $\langle U_0, \ldots, U_m \rangle \in \mathcal{N}(\mathcal{V})^{(n+1)}$. Then by $\emptyset \neq U_0 \cap \cdots \cap U_m \subseteq c^{-1}(B_{U_0}) \cap \cdots \cap c^{-1}(B_{U_m})$, we have

$$\psi_0(\{\langle U_0 \rangle, \dots, \langle U_m \rangle\}) \subseteq \operatorname{st}(B_{U_0}, \mathcal{B}_3) \subseteq B \text{ for some } B \in \mathcal{B}_2.$$

It show that ψ_0 is a partial realization of $\mathcal{N}(\mathcal{V})^{(n+1)}$ in $\mathrm{EW}_{\mathbf{Z}_p}(L,n)$ relative to \mathcal{B}_2 . Therefore, by the construction of \mathcal{B}_2 , we may define ψ_0 to be a full realization relative to \mathcal{B}_1 . Then by the same way in [21, p245 (8)] we can show that

(12) if $t \in |\mathcal{N}(\mathcal{V})^{(n+1)}|$ with $\psi(t) \in \text{Int } \delta$ and $\psi_0(t) \in \psi_L^{-1}(\tau)$ for $\delta, \tau \in L$, then there exist $\sigma, \lambda \in L$ such that $\delta \prec \sigma$ and $\sigma \cap \lambda \neq \emptyset \neq \lambda \cap \tau$.

Now, by the property (v) in Lemma 2.1, we can choose

(13) a cellular map $\psi_1: |\mathcal{N}(\mathcal{V})^{(n+1)}| \to \mathrm{EW}_{\mathbf{Z}_p}(L, n)^{(n+1)}$ such that for each $t \in |\mathcal{N}(\mathcal{V})^{(n+1)}|$, if $\psi_0(t) \in \psi_L^{-1}(\tau)$, then $\psi_1(t) \in \psi_L^{-1}(\tau)^{(n+1)}$.

By the simplicial approximation theorem, we assume that ψ_1 is PL.

If $n \geq 2$, by the properties (9) and (1) in Lemma 2.1, we have

$$\mathrm{EW}_{\mathbf{Z}_p}(L,n)^{(n+1)} = |L^{(n)}| \cup \bigcup \{\partial \sigma \times [0,1] \cup_{\alpha_\sigma} B_\sigma^{n+1} : \sigma \in L, \dim \sigma = n+1\},$$

where $\alpha_{\sigma} : \partial B_{\sigma}^{n+1} \to \partial \sigma$ is a map of degree p. For each (n+1)-simplex σ of L, choose a point $z_{\sigma} \in B_{\sigma}^{n+1} \setminus \partial B_{\sigma}^{n+1}$, and take the retraction

$$r : \operatorname{EW}_{\mathbf{Z}_p}(L, n)^{(n+1)} \setminus \{z_{\sigma} : \sigma \in L, \dim \sigma = n+1\} \to |L^{(n)}|$$

induced by the compositions of the radial projection of $B^{n+1}_{\sigma} \setminus \{z_{\sigma}\}$ onto $\partial \sigma \times \{1\}$ and the natural projection of $\partial \sigma \times [0,1]$ onto $\partial \sigma \times \{0\} \subseteq |L^{(n)}|$.

If n=1, for every simplex σ of dim $\sigma \geq 2$, $\psi_L^{-1}\left(\sigma^{(2)}\right)$ may be represented as the form (10) in Lemma 2.1:

$$\psi_L^{-1}(\sigma)^{(2)} = \sigma^{(1)} \times [0,1] \cup_{\alpha_1} B^2 \cup_{\alpha_2} \cdots \cup_{\alpha_{r_{\sigma}}} B^2 \cup_{\beta_1} B^2 \cup_{\beta_2} \cdots \cup_{\beta_{k_{\sigma}}} B^2.$$

Then choose points $u_1^{\sigma}, \ldots, u_{r_{\sigma}}^{\sigma}, v_1^{\sigma}, \ldots, v_{k_{\sigma}}^{\sigma}$ of $\psi_L^{-1}(\sigma^{(1)})^{(2)} \setminus \sigma^{(1)} \times [0, 1]$ for each B^2 and the retraction $r \colon \mathrm{EW}_{\mathbf{Z}_p}(L, n)^{(2)} \setminus \{u_1^{\sigma}, \ldots, u_{r_{\sigma}}^{\sigma}, v_1^{\sigma}, \ldots, v_{k_{\sigma}}^{\sigma} : \sigma \in L, \dim \sigma \geq 2\} \to |L^{(1)}|$ induced by the compositions of the radial projections of $B^2 \setminus \{u_i^{\sigma}\}$ or $B^2 \setminus \{v_j^{\sigma}\}$ onto S^1 and the natural projection of $\sigma^{(1)} \times [0, 1]$ onto $\sigma^{(1)} \times \{0\} \subseteq |L^{(1)}|$.

In both cases, we put

$$\psi' \equiv r \circ \psi_1|_{|\mathcal{N}(\mathcal{V})^{(n)}|} \colon |\mathcal{N}(\mathcal{V})^{(n)}| \to |L^{(n)}|.$$

Then the map ψ' holds the conditions (i),(ii). First, we show the condition (i). Let $t \in |\mathcal{N}(\mathcal{V})^{(n)}|$. By (12), there exist $\sigma, \lambda, \tau \in L$ such that $\sigma \cap \lambda \neq \emptyset \neq \lambda \cap \tau$ and $\psi(t) \in \sigma$, $\psi_0(t) \in \psi_L^{-1}(\tau)$. Then since $\psi_1(t)$ is an element of $\psi_L^{-1}(\tau)^{(n)}$, we have $\psi'(t) \in \tau$. Hence, we have $\psi(t), \psi'(t) \in \bar{\operatorname{st}}(\lambda, L) \subseteq U$ for some $U \in \mathcal{U}_0$ (see (4)). Next, we must show the condition (ii). But, it is easy to show that. Hence, we omitted it here.

Now, we shall show that f is (\mathbf{Z}_p, n) -cohomological. By (2), we can easily see that $(\psi \circ \varphi, f) \leq \mathcal{U}$. So, we show that ψ is $(\mathbf{Z}_p, n, \mathcal{U})$ -approximable.

Let M be a triangulation of |K|. Note that for a simplicial approximation j of $id_{|M|}: |M| = |K| \to |K|$ with respect to K, we have that

$$j\left(|M^{(n+1)}|\right) \subseteq |K^{(n+1)}| \text{ and } j\left(|M^{(n)}|\right) \subseteq |K^{(n)}|.$$

Then by (1) and (3), we can easily see that the map

$$\psi'' \equiv \psi' \circ j \colon |M^{(n)}| \to |L^{(n)}|$$

holds the conditions. \Box

The reverse implication is proved by the standard way [21]. First, we need some notations.

We may assume that the Eilenberg-MacLane space $K(\mathbf{Z}_p, n)$ is a metrizable, locally compact separable space. Then by the Kuratowski-Wojdyslawski's theorem, we can consider that $K(\mathbf{Z}_p, n)$ is a closed subset of a convex subset C of a normed linear space E. Note that C is AR(metrizable spaces). Since $K(\mathbf{Z}_p, n)$ is ANR, there exist a closed neighborhood F in C and a retraction $r \colon F \to K(\mathbf{Z}_p, n)$. Further, we can choose an open cover \mathcal{W}_0 of $\mathrm{Int}_C F$ such that

(1) for any space Z and any maps $\alpha, \beta \colon Z \to F$ with $(\alpha, \beta) \leq W_0$, the maps $r \circ \alpha, r \circ \beta \colon Z \to K(\mathbf{Z}_p, n)$ are homotopic in $K(\mathbf{Z}_p, n)$.

Then we take an open, convex cover W of C such that

(2) if $W \in \mathcal{W}$ with $W \cap K(\mathbf{Z}_p, n) \neq \emptyset$, there exists $U \in \mathcal{W}_0$ with $\operatorname{st}(W, \mathcal{W}) \subseteq U$. Select a star refinement \mathcal{V} of \mathcal{W} .

Let $h_0: C \to |\mathcal{N}(\mathcal{V})|$ be a Kuratowski's map with respect to \mathcal{V} and define a map $h_1: |\mathcal{N}(\mathcal{V})| \to C$ in the following way: a map h_1 on $|\mathcal{N}(\mathcal{V})^{(0)}|$ is defined by an element $h_1(\langle V \rangle) \in V$ for each $\langle V \rangle \in |\mathcal{N}(\mathcal{V})^{(0)}|$. Next, by using the convexity of C, we extend h_1 linearly on each simplex $|\mathcal{N}(\mathcal{V})|$. Let $\sigma = \langle V_0, \ldots, V_m \rangle \in |\mathcal{N}(\mathcal{V})|$. Then by $V_0 \cap \cdots \cap V_m \neq \emptyset$.

$$h_1\left(\{\langle V_0 \rangle, \dots, \langle V_m \rangle\}\right) \subseteq \operatorname{st}(V_o, \mathcal{V}) \subseteq W_\sigma \text{ for some } W_\sigma \in \mathcal{W}.$$

Thus, by the construction of h_1 , we have $h_1(\sigma) \subseteq W_{\sigma}$.

Let \mathcal{N}_1 be a subcomplex $\mathcal{N}(\{V \in \mathcal{V} : V \cap K(\mathbf{Z}_p, n) \neq \emptyset\})$ of $\mathcal{N}(\mathcal{V})$. Let \mathcal{N}_0 be a simplicial neighborhood of \mathcal{N}_1 in $\mathcal{N}(\mathcal{V})$ such that if $\langle V_0 \rangle \in \mathcal{N}_0$, there exists $\langle V_1 \rangle \in \mathcal{N}_1$ with $V_0 \cap V_1 \neq \emptyset$. Then we can easily see the followings:

- (3) for each $x \in K(\mathbf{Z}_p, n)$, there exists $W \in \mathcal{W}$ with $x, h_1 \circ h_0(x) \in W$,
- (4) $h_1(|\mathcal{N}_0|) \subseteq \operatorname{st}(K(\mathbf{Z}_p, n), \mathcal{W}) \subseteq F$,
- (5) $h_0(K(\mathbf{Z}_p, n)) \subseteq |\mathcal{N}_1| \subseteq |\mathcal{N}_0|$.

Proof of sufficiency. Let A be a closed subset of X and $h: A \to K(\mathbf{Z}_p, n)$ be a map. We consider the above-mentioned nerve $\mathcal{N}(\mathcal{V})$ and maps h_0, h_1 . We take an open cover \mathcal{U} of $|\mathcal{N}(\mathcal{V})|$ such that

- (6) st³ ($|\mathcal{N}_1|, \mathcal{U}$) $\subseteq |\mathcal{N}_0|$,
- (7) $\operatorname{st}^3(\mathcal{U}) \prec h_1^{-1}(\mathcal{W}),$

and choose a subdivision \mathcal{N} of $\mathcal{N}(\mathcal{V})$ such that if $\sigma \in \mathcal{N}$ there exists $U \in \mathcal{U}$ with $\sigma \subseteq U$. Since C is AE, there is an extension $H: X \to C$ of h. Then by the assumption, the map $h_0 \circ H: X \to |\mathcal{N}(\mathcal{V})|$ is (\mathbf{Z}_p, n) -cohomological. Hence, there exist a polyhedron Q and maps $\varphi: X \to Q$, $\psi: Q \to |\mathcal{N}(\mathcal{V})|$ such that

- (8) $(\psi \circ \varphi, h_0 \circ H) \leq \mathcal{U},$
- (9) ψ is $(\mathbf{Z}_p, n, \mathcal{U})$ -approximable.

By using the simplicial approximation theorem, we obtain a triangulation M of Q and a simplicial approximation $\psi^* \colon M \to \mathcal{N}$ of ψ . Then by (8),(9), we have

- (10) $(\psi^* \circ \varphi, h_0 \circ H) \leq \operatorname{st} \mathcal{U},$
- (11) ψ^* is $(\mathbf{Z}_p, n, \operatorname{st} \mathcal{U})$ -approximable.

Now, by (11) with respect to M, there exist a triangulation L and a PL-map $\psi': |M^{(n)}| \to |L^{(n)}|$ such that

- (12) $(\psi', \psi^*|_{|M^{(n)}|}) \le \operatorname{st} \mathcal{U},$
- (13) for any map $\alpha: |L^{(n)}| \to K(\mathbf{Z}_p, n)$, there exists an extension $\beta: |M^{(n+1)}| \to K(\mathbf{Z}_p, n)$ of $\alpha \circ \psi'$.

Claim. There exists a map $\xi \colon Q \to K(\mathbf{Z}_p, n)$ such that $\xi|_{\psi^{*-1}(|\mathcal{N}_0|)} = r \circ h_1 \circ \psi^*|_{\psi^{*-1}(|\mathcal{N}_0|)}$ Construction of ξ . First, we shall see that

- (14) for each $x \in D \equiv \psi^{*-1}(|\mathcal{N}_0|) \cap |M^{(n)}|$, there exists $U \in \mathcal{W}_0$ such that $h_1 \circ \psi^*(x), h_1 \circ \psi'(x) \in U$.
- By (12), there exist $U_1, U_2, U_3 \in \mathcal{U}$ such that $U_1 \cap U_2 \neq \emptyset \neq U_2 \cap U_3$ and $\psi^*(x) \in U_1$, $\psi'(x) \in U_3$. Then by (7), we have $W \in \mathcal{W}$ with $h_1(U_1 \cup U_2 \cap U_3) \subseteq W$. Since $\psi^*(x) \in |\mathcal{N}_0|$, by (4), there exists $W' \in \mathcal{W}$ such that $h_1 \circ \psi^*(x) \in W$ and $W' \cap K(\mathbf{Z}_p, n) \neq \emptyset$. Hence by (2), we obtain $U \in \mathcal{W}_0$ such that $h_1 \circ \psi^*(x), h_1 \circ \psi'(x) \in \operatorname{st}(W', \mathcal{W}) \subseteq U$.

Therefore by (14) and (1), we see the followings:

(15)
$$h_1 \circ \psi'(D) \subseteq F$$
,

(16)
$$r \circ h_1 \circ \psi^*|_D \simeq r \circ h_1 \circ \psi'|_D$$
 in $K(\mathbf{Z}_p, n)$.

Since D is a subpolyhedron of $|M^{(n)}|$ and ψ' is PL, $\psi'(D)$ is subpolyhedron of $|L^{(n)}|$. Hence, from $\pi_q(K(\mathbf{Z}_p, n)) = 0$ for q < n (if n = 1, the path-connectedness of $K(\mathbf{Z}_p, n)$), there exists an extension

$$\alpha \colon |L^{(n)}| \to K(\mathbf{Z}_p, n)$$

of $r \circ h_1|_{\psi'(D)} \colon \psi'(D) \to K(\mathbf{Z}_p, n)$.

Then by (13), we have an extension

$$\beta \colon |M^{(n+1)}| \to K(\mathbf{Z}_p, n)$$

of $\alpha \circ \psi'$.

Now, put

$$R \equiv |M^{(n+1)}| \setminus \bigcup \left\{ \operatorname{Int} \sigma : \sigma \in M, \dim \sigma = n+1, \sigma \subseteq \psi^{*-1}(|\mathcal{N}_0|) \right\}.$$

Then since for each $x \in D \subseteq R$ we have $\beta(x) = \alpha \circ \psi'(x) = r \circ h_1 \circ \psi'(x)$,

(17)
$$\beta|_D \simeq r \circ h_1 \circ \psi'(x)|_D \simeq r \circ h_1 \circ \psi^*|_D \quad \text{in } K(\mathbf{Z}_p, n).$$

By the homotopy extension theorem, there exists an extension $\xi_R \colon R \to K(\mathbf{Z}_p, n)$ of $r \circ h_1 \circ \psi^*|_D$.

Since for $\sigma \in M$ with $\dim \sigma = n+1$ and $\sigma \subseteq \psi^{*-1}(|\mathcal{N}_0|)$, we have $\xi_R|_{\partial \sigma} = r \circ h_1 \circ \psi^*|_{\partial \sigma}$, there exists an extension $\xi_{n+1} \colon |M^{(n+1)}| \to K(\mathbf{Z}_p, n)$ of ξ_R such that $\xi_{n+1}|_{\psi^{*-1}(|\mathcal{N}_0|)\cap |M^{(n+1)}|} = r \circ h_1 \circ \psi^*|_{\psi^{*-1}(|\mathcal{N}_0|)\cap |M^{(n+1)}|}$.

Hence, we can define a map $\xi' \colon \psi^{*-1}(|\mathcal{N}_0|) \cup |M^{(n+1)}| \to K(\mathbf{Z}_p, n)$ by the following:

$$\xi' \equiv (r \circ h_1 \circ \psi^*|_{\psi^{*-1}(|\mathcal{N}_0|)}) \cup \xi_{n+1}.$$

Therefore from $\pi_q(K(\mathbf{Z}_p, n)) = 0$ for q > n, we obtain an extension $\xi \colon Q \to K(\mathbf{Z}_p, n)$ of ξ' such that $\xi|_{\psi^{*-1}(|\mathcal{N}_0|)} = r \circ h_1 \circ \psi^*|_{\psi^{*-1}(|\mathcal{N}_0|)}$. It completes the construction.

Now, we put

$$h' \equiv \xi \circ \varphi \colon X \to K(\mathbf{Z}_p, n).$$

Then to complete the proof it suffices to prove

(18)
$$h'|_{A} \simeq h \text{ in } K(\mathbf{Z}_{p}, n).$$

First, we shall see that

$$\psi^* \circ \varphi(A) \subseteq |\mathcal{N}_0|.$$

Let $a \in A$. By (10), there exist $U_1, U_2, U_3 \in \mathcal{U}$ such that

(19)
$$U_1 \cap U_2 \neq \emptyset \neq U_2 \cap U_3 \text{ and } \psi^* \circ \varphi(a) \in U_1, h_0 \circ H(a) \in U_3.$$

Then since $h_0 \circ H(a) = h_0 \circ h(a) \in h_0 (K(\mathbf{Z}_p, n)) \subseteq |\mathcal{N}_1|$, we have $\psi^* \circ \varphi(a) \in |\mathcal{N}_0|$ by (6).

Hence, by Claim, we have for each $a \in A$ $h'(a) = \xi \circ \varphi(a) = r \circ h_1 \circ \psi^* \circ \varphi(a)$. Therefore, by (1), it suffices to see that

(20) there exists $U \in \mathcal{W}_0$ such that $h_1 \circ \psi^* \circ \varphi(a), h(a) \in U$.

Let $U_1, U_2, U_3 \in \mathcal{U}$ with the property (19). By (7), there exists $W \in \mathcal{W}$ such that $U_1 \cup U_2 \cup U_3 \subseteq h_1^{-1}(W)$. By (3) we choose $W' \in \mathcal{W}$ such that $h(a), h_1 \circ h_0 \circ h(a) \in W'$. Therefore, since $h(a) \in K(\mathbf{Z}_p, n)$, there exists $U \in \mathcal{W}_0$ such that

$$h_1 \circ \psi^* \circ \varphi(a), h(a) \in \operatorname{st}(W', \mathcal{W}) \subset U.$$

It completes the proof.

4. APPROXIMABLE DIMENSION

- **4.1. Definition.** A space X has approximable dimension with respect to a coefficient group G of less than and equal to n (abbreviated, a-dim $_G X \leq n$) provided that for every polyhedron P, map $f: X \to P$ and open cover \mathcal{U} , there exist a polyhedron Q and maps $\varphi: X \to Q$, $\psi: Q \to P$ such that
 - (i) $(\psi \circ \varphi, f) \leq \mathcal{U}$,
 - (ii) ψ is (G, n, \mathcal{U}) -approximable.

First, we state fundamental inequalities of a-dim_G.

4.2. Theorem. For a metrizable space X and an arbitrary abelian group G, we hold the following inequalities:

$$c$$
- $\dim_G X \leq a$ - $\dim_G X \leq \dim X$.

Proof. The second inequality is trivial. We can see the first inequality by the strategy similar to the proof of the sufficiency in Theorem 3.3. \Box

As we will show in latter sections, our approach of a-dim_G gives useful applications. In general, a-dim_G is different from c-dim_G. However, in special cases of coefficient group G, a-dim_G coincides with c-dim_G.

4.3. Theorem. If $G = \mathbb{Z}$ or \mathbb{Z}_p , where p is a prime number, for every metrizable space X, we have

$$a\operatorname{-dim}_G X = c\operatorname{-dim}_G X.$$

Proof. From Theorem 3.3, 4.2, we see the fact. \Box

5. RESOLUTIONS FOR METRIZABLE SPACES

By a polyhedron we mean the space |K| of a simplicial complex K with the Whitehead topology (denoted by $|K|_w$). We may define a topology for |K| by means of a uniformity in [Appendix, 22] (denoted by $|K|_w$).

5.1. Theorem. Let X be a metrizable space having approximable dimension with respect to an abelian group G of less than and equal to n. Then there exist an n-dimensional metrizable space Z and a perfect UV^{n-1} -surjection $\pi: Z \to X$ such that for $x \in X$, the set $[\pi^{-1}(x), K(G, n)]$ of homotopy classes is trivial.

Proof. The strategy is like the construction of Walsh-Rubin [24,22].

Let d be a metric for X and let $\{\mathcal{U}_i : i \in \mathbb{N} \cup \{0\}\}$ be a sequence of open covers of X where each \mathcal{U}_i consists of all 1/(i+1)-neighborhoods.

First, we shall construct the followings:

open covers \mathcal{V}_i of X whose nerves $\mathcal{N}(\mathcal{V}_i)$ are locally finite dimensional, maps $b_i \colon X \to |\mathcal{N}(\mathcal{V}_i)|$ for $i \geq 0$, $f_i^*, f_i \colon |\mathcal{N}(\mathcal{V}_i)| \to |\mathcal{N}(\mathcal{V}_{i-1})|$ for $i \geq 1$ and sequences $\mathcal{N}_i^j, j \in \mathbb{N} \cup \{0\}$ of subdivisions of $\mathcal{N}(\mathcal{V}_i)$ for $i \geq 0$ such that

- (1) $\bar{\mathcal{S}}_i^{j+1} \prec^* \mathcal{S}_i^j$ for $j \geq 0$,
- (2) b_i is normal with respect to $b_i^{-1}(\mathcal{S}_i^j)$ and \mathcal{N}_i^j for $j \geq 0$,
- (3) $f_i: \mathcal{N}_i^0 \to \mathcal{N}_{i-1}^3$ is simplicial for $i \geq 1$,
- (4) $f_i \circ b_i$ is \mathcal{N}_{i-1}^j -modification of b_{i-1} , $0 \le j \le 3$ for $i \ge 1$,
- (5) f_i maps each compact set in $|\mathcal{N}_i|_u$ onto a compact set in $|\mathcal{N}_{i-1}|_u$ which is contained in a finite union of simplexes of \mathcal{N}_{i-1} ,
- (6) $S_i^0 \prec f_i^{-1}(S_{i-1}^3)$ for $i \ge 1$,
- (7) $\bar{\mathcal{S}}_{i}^{k} \prec f_{i}^{-1}(\mathcal{S}_{i-1}^{k+3}) \text{ for } k \geq 1 \text{ and } \bar{\mathcal{S}}_{i}^{k} \prec f_{i}^{*-1}(\mathcal{S}_{i-1}^{k+3}) \text{ for } k \geq 4,$
- $(8) \ \mathcal{V}_i \prec \mathcal{U}_i \wedge b_{i-1}^{-1}(\mathcal{S}_{i-1}^3) \wedge b_{i-2}^{-1}(\mathcal{S}_{i-2}^6) \wedge \cdots \wedge b_0^{-1}(\mathcal{S}_0^{3i}),$

where we regard $|\mathcal{N}_i|_u$ as the uniform space with the uniform topology induced by the uniform base $\{\mathcal{S}_i^j\}_{j=0}^{\infty}$.

Further, we shall construct continuous (w.r.t. the Whitehead topology), uniformly continuous (w.r.t. the uniform topology) PL-maps $g_i: |(\mathcal{N}_i^3)^{(n)}| \to |(\mathcal{N}_{i-1}^3)^{(n)}|$ such that

- (9) for each $t \in |(\mathcal{N}_i^3)^{(n)}|$, there exist $\sigma, \tau \in \mathcal{N}_{i-1}^2$ such that $f_i(t) \in \sigma$, $g_i(t) \in \tau$ and $\sigma \cap \tau \neq \emptyset$,
- (10) for any map $\alpha : |(\mathcal{N}_{i-1}^3)^{(n)}|_w \to K(G, n)$, there exists an extension $\beta : |(\mathcal{N}_i^3)^{(n+1)}|$ $\to K(G, n)$ of $\alpha \circ g_i : |(\mathcal{N}_i^3)^{(n)}|_w \to |(\mathcal{N}_{i-1}^3)^{(n)}|_w \to K(G, n)$,
- (11) for each $x \in |\mathcal{N}_i|$, $g_i\left(\operatorname{st}(x,\bar{\mathcal{S}}_i^2) \cap |(\mathcal{N}_i^3)^{(n)}|\right)$ is a Whitehead (i.e. finite) compact polyhedral subset of $|\mathcal{N}_{i-1}|$.

Let us start the construction. We take an open refinement \mathcal{V}_0 of \mathcal{U}_0 in X whose nerve $\mathcal{N}(\mathcal{V}_0)$ is locally finite dimensional and \mathcal{V}_0 -normal map $b_0 \colon X \to |\mathcal{N}(\mathcal{V}_0)|$. We

define \mathcal{N}_0^j to be a subdivision of $\operatorname{Sd}_{2j}\mathcal{N}(\mathcal{V}_0)$ for j=0,1,2 with $\bar{\mathcal{S}}_0^j \prec \mathcal{S}_0^{j-1}$. By using [22, Proposition A.3], for the cover $\mathcal{E}_0 \equiv \left\{\operatorname{st}(x,\bar{\mathcal{S}}_0^2): x \in |\mathcal{N}(\mathcal{V}_0)|\right\}$, we obtain an open cover \mathcal{B}_0 of $|\mathcal{N}(\mathcal{V}_0)|$ and a PL, \mathcal{N}_0^2 -modification $r_0: |\mathcal{N}_0^2| \to |\mathcal{N}_0^2|$ of the identity such that

- $(12)_0$ $r_0(\operatorname{Cl} B)$ is compact for $B \in \mathcal{B}_0$,
- $(13)_0$ Cl $B \cup r_0(\text{Cl } B) \subseteq E$ for some $E \in \mathcal{E}_0$.

Since b_0 is (G, n)-cohomological, from the similar argument to the proof of the necessity in Theorem 3.3 we can take the followings:

subdivision \mathcal{N}_0^3 of $\operatorname{Sd}_2 \mathcal{N}_0^2$, locally finite open cover \mathcal{V}_1 of X and maps $b_1: X \to |\mathcal{N}(\mathcal{V}_1)|, f_1^*: |\mathcal{N}(\mathcal{V}_1)| \to |\mathcal{N}_0^3|$ such that

- $(14)_1 \ \bar{\mathcal{S}}_0^3 \prec^* \mathcal{S}_0^2 \wedge \mathcal{B}_0,$
- $(15)_1 \ \mathcal{V}_1 \prec^* \mathcal{U}_1 \wedge b_0^{-1}(\mathcal{S}_0^3),$
- $(16)_1$ b_1 is \mathcal{V}_1 -normal,
- $(17)_1$ $f_1^* \circ b_1$ is \mathcal{N}_0^3 -modification of b_0 ,
- (18)₁ for each $\sigma \in \mathcal{N}(\mathcal{V}_1)$, there exists $U \in \text{st } \mathcal{S}_0^3$ such that $b_0\left(b_1^{-1}(\sigma)\right) \cup f_1^*(\sigma) \subseteq U$,
- (19)₁ for any triangulation M of $|\mathcal{N}(\mathcal{V}_1)|$, there exists a PL-map $p' \colon |M^{(n)}| \to |(\mathcal{N}_0^3)^{(n)}|$ such that
 - (i) $(p', f_1^*|_{|M^{(n)}|}) \le \{\bar{\text{st}}(\lambda, \mathcal{N}_0^3) : \lambda \in \mathcal{N}_0^3\},$
 - (ii) for any map $\alpha : |(\mathcal{N}_0^3)^{(n)}| \to K(G, n)$, there exists an extension $\beta : |M^{(n+1)}| \to K(G, n)$ of $\alpha \circ p'$.

Let \mathcal{N}_0^{j+1} denote a subdivision of $\operatorname{Sd}_2 \mathcal{N}_0^j$ with $\bar{\mathcal{S}}_0^{j+1} \prec^* \mathcal{S}_0^j$ for $j \geq 3$.

Now, let $|\mathcal{N}_0^3|_m$ denote $|\mathcal{N}_0^3|$ with the metric topology [19, p301]. Then there is a \mathcal{N}_0^3 -modification $j_0: |\mathcal{N}_0^3|_m \to |\mathcal{N}_0^3|_w$ of the identity function [19, p302]. By the simplicial approximation theorem, we obtain a subdivision \mathcal{N}_1 of $\mathcal{N}(\mathcal{V}_1)$ and a simplicial approximation $f_1: \mathcal{N}_1 \to \mathcal{N}_0^3$ of $j_0 \circ f_1^*$. Let \mathcal{N}_1^0 denote \mathcal{N}_1 . Then by the simpliciality of f_1 and $(17)_1$, we have

- (20) $S_1^0 \prec f_1^{-1}(S_0^3)$,
- (21) $f_1 \circ b_1$ is \mathcal{N}_0^3 -modification of b_0 .

We take a subdivisions \mathcal{N}_1^{j+1} of \mathcal{N}_1^0 for j=0,1 such that

- (22) $\bar{\mathcal{S}}_1^{j+1} \prec^* \mathcal{S}_1^j \text{ for } j = 0, 1,$
- (23) $\bar{\mathcal{S}}_1^{j} \prec f_1^{-1}(\mathcal{S}_0^{j+3})$ for j = 1, 2,
- (24) $\mathcal{N}_1^j \prec \operatorname{Sd}_{2j} \mathcal{N}_1^0 \text{ for } j = 1, 2.$

By using Lemma [22, Proposition A.3], for the cover $\mathcal{E}_1 \equiv \left\{ \operatorname{st}(x, \bar{\mathcal{S}}_1^2) : x \in |\mathcal{N}_1| \right\}$, we obtain an open cover \mathcal{B}_1 of $|\mathcal{N}(\mathcal{V}_0)|$ and a PL, \mathcal{N}_1^2 -modification $r_1 : |\mathcal{N}_1^2| \to |\mathcal{N}_1^2|$ of the identity map such that

- $(12)_1$ $r_1(\operatorname{Cl} B)$ is compact for $B \in \mathcal{B}_1$,
- $(13)_1$ Cl $B \cup r_1(\text{Cl } B) \subseteq E$ for some $E \in \mathcal{E}_1$.

Since b_1 is (G, n)-cohomological, from the similar argument to the proof of the necessity in Theorem 3.3 we can take the followings:

subdivision \mathcal{N}_1^3 of $\mathrm{Sd}_2 \mathcal{N}_1^2$, locally finite open cover \mathcal{V}_2 of X and maps $b_2 \colon X \to |\mathcal{N}(\mathcal{V}_2)|, f_2^* \colon |\mathcal{N}(\mathcal{V}_2)| \to |\mathcal{N}_1^3|$ such that

- $(14)_2 \ \bar{\mathcal{S}}_1^3 \prec^* \mathcal{S}_1^2 \wedge \mathcal{B}_1 \wedge f_1^{-1}(\mathcal{S}_0^6),$
- $(15)_2 \ \mathcal{V}_2 \prec^* \mathcal{U}_2 \wedge b_1^{-1}(\mathcal{S}_1^3) \wedge b_0^{-1}(\mathcal{S}_0^6),$
- $(16)_2$ b_2 is \mathcal{V}_2 -normal,
- $(17)_2$ $f_2^* \circ b_2$ is \mathcal{N}_1^3 -modification of b_1 ,
- (18)₂ for each $\sigma \in \mathcal{N}(\mathcal{V}_2)$, there exists $U \in \text{st } \mathcal{S}_1^3$ such that $b_1(b_2^{-1}(\sigma)) \cup f_2^*(\sigma) \subseteq U$,
- (19)₂ for any triangulation M of $|\mathcal{N}(\mathcal{V}_2)|$, there exists a PL-map $p': |M^{(n)}| \to |(\mathcal{N}_1^3)^{(n)}|$ such that
 - (i) $(p', f_2^*|_{|M^{(n)}|}) \le \{\bar{\operatorname{st}}(\lambda, \mathcal{N}_1^3) : \lambda \in \mathcal{N}_0^3\},$
 - (ii) for any map $\alpha \colon |(\mathcal{N}_1^3)^{(n)}| \to K(G,n)$, there exists an extension $\beta \colon |M^{(n+1)}| \to K(G,n)$ of $\alpha \circ p'$.

Now, by using $(19)_1$ about the triangulation \mathcal{N}_1^3 of $|\mathcal{N}(\mathcal{V}_1)|$, we obtain a PL-map $g_1^*: |(\mathcal{N}_1^3)^{(n)}| \to |(\mathcal{N}_0^3)^{(n)}|$ such that

- $(25)_1 (g_1^*, f_1^*|_{|(\mathcal{N}_1^3)^{(n)}|}) \le \{\bar{\operatorname{st}}(\lambda, \mathcal{N}_0^3) : \lambda \in \mathcal{N}_0^3\},\$
- (26)₁ for any map $\alpha: |(\mathcal{N}_0^3)^{(n)}| \to K(G, n)$, there exists an extension $\beta: |(\mathcal{N}_1^3)^{(n+1)}| \to K(G, n)$ of $\alpha \circ g_1^*$.

Consider the inclusion map $i_0: |(\mathcal{N}_0^3)^{(n)}| \hookrightarrow |\mathcal{N}_0^3|$ and the composition

$$r_0 \circ i_0 \circ g_1^* \colon |(\mathcal{N}_1^3)^{(n)}| \to |(\mathcal{N}_0^3)^{(n)}| \hookrightarrow |\mathcal{N}_0^3| = |\mathcal{N}(\mathcal{V}_0)| \to |\mathcal{N}(\mathcal{V}_0)|.$$

The image A of the PL-map $r_0 \circ i_0 \circ g_1^*$ has dimension $\leq n$. Then we can take a \mathcal{N}_0^3 -modification $s_0 \colon A \to |(\mathcal{N}_0^3)^{(n)}|$ of the inclusion map $A \hookrightarrow |\mathcal{N}_0^3|$. Let $g_1 \colon |(\mathcal{N}_1^3)^{(n)}| \to |(\mathcal{N}_0^3)^{(n)}|$ denote the composition map $s_0 \circ r_0 \circ i_0 \circ g_1^*$.

Then this has the following properties:

Claim 1.

- (9)₁ for each $t \in |(\mathcal{N}_1^3)^{(n)}|$, there exist $\sigma, \tau \in \mathcal{N}_0^2$ such that $f_1(t) \in \sigma$, $g_1(t) \in \tau$ and $\sigma \cap \tau \neq \emptyset$,
- (10)₁ for any map $\alpha: |(\mathcal{N}_0^3)^{(n)}| \to K(G, n)$, there exist an extension $\beta: |(\mathcal{N}_1^3)^{(n+1)}| \to K(G, n)$ of $\alpha \circ g_1$,
- (11)₁ for each $x \in |\mathcal{N}_1|$, $g_1\left(\operatorname{st}(x,\bar{\mathcal{S}}_1^2) \cap |(\mathcal{N}_1^3)^{(n)}|\right)$ is a Whitehead (i.e. finite) compact polyhedral subset of $|\mathcal{N}_0|$.

Proof of Claim 1. We show the property $(9)_1$. Let $t \in |(\mathcal{N}_1^3)^{(n)}|$. By $(25)_1$, there exist $\sigma, \lambda, \tau \in \mathcal{N}_0^3$ such that $f_1^*(t) \in \sigma$, $g_1^*(t) \in \tau$ and $\sigma \cap \lambda \neq \emptyset \neq \lambda \cap \tau$. We may assume that $\lambda = |v_0, v_1|$, $v_0 \in \sigma$ and $v_1 \in \tau$.

Since j_0 is \mathcal{N}_0^3 -modification of the identity function, we have $j_0 \circ f_1^*(t) \in \sigma$. Since f_1 is simplicial approximation of $j_0 \circ f_1^*$, we have $f_1(t) \in \sigma$.

Select $\tilde{\tau} \in \mathcal{N}_0^2$ with $\tau \subseteq \tilde{\tau}$. Since r_0 is \mathcal{N}_0^2 -modification of the identity map, we have $r_0 \circ i_0 \circ g_1^*(t) \in \tilde{\tau}$. Further since s_0 is \mathcal{N}_0^3 -modification of $A \hookrightarrow |\mathcal{N}_0^3|$ and $\mathcal{N}_0^3 \prec \mathcal{N}_0^2$, we have $g_1(t) = s_0 \circ r_0 \circ i_0 \circ g_1^*(t) \in \tilde{\tau}$.

Case 1. $v_1 \in (\mathcal{N}_0^2)^{(0)}$ (i.e. $v_1 \in \tilde{\tau}^{(0)}$).

By $\mathcal{N}_0^3 \prec \operatorname{Sd}_2 \mathcal{N}_0^2$, we have $v_0 \notin (\mathcal{N}_0^2)^{(0)}$. Hence, there exists $\gamma \in \mathcal{N}_0^2$ such that $|v_0, v_1| \subseteq \gamma$ and $v_0 \in \operatorname{Int} \gamma$. Then if $\tilde{\sigma} \in \mathcal{N}_0^2$ with $\sigma \subseteq \tilde{\sigma}$, we have $\gamma \prec \tilde{\sigma}$. Therefore we have $\tilde{\sigma} \cap \tilde{\tau} \neq \emptyset$, $f_1(t) \in \tilde{\sigma}$ and $g_1(t) \in \tilde{\tau}$.

Case 2. $v_1 \notin (\mathcal{N}_0^2)^{(0)}$.

If $v_0 \in (\mathcal{N}_0^2)^{(0)}$, the proof is similar to Case 1. Let $v_0 \notin (\mathcal{N}_0^2)^{(0)}$. By $\mathcal{N}_0^3 \prec \operatorname{Sd}_2 \mathcal{N}_0^2$, there exist $\gamma_0, \gamma_1 \in \mathcal{N}_0^2$ such that $v_0 \in \operatorname{Int} \gamma_0$, $v_1 \in \operatorname{Int} \gamma_1$ and $\gamma_0 \prec \gamma_1$ or $\gamma_1 \prec \gamma_0$. Then if $\tilde{\sigma} \in \mathcal{N}_0^2$ with $\sigma \subseteq \tilde{\sigma}$, we have $\gamma_0 \prec \tilde{\sigma}$. Similarly, we have $\gamma_1 \prec \tilde{\tau}$. Therefore we have $\tilde{\sigma} \cap \tilde{\tau} \neq \emptyset$, $f_1(t) \in \tilde{\sigma}$ and $g_1(t) \in \tilde{\tau}$.

By $g_1^* \simeq g_1$, we can see the property $(10)_1$ by the homotopy extension theorem and $(26)_1$.

We show the property $(11)_1$. First, we shall see that

(27)
$$g_1^*\left(\operatorname{st}(x,\bar{\mathcal{S}}_1^2)\cap |(\mathcal{N}_1^3)^{(n)}|\right)\subseteq B \text{ for some } B\in\mathcal{B}_0.$$

Let $\operatorname{st}(x,\bar{\mathcal{S}}_1^2)$ be represented by $\bigcup \{ \operatorname{\bar{st}}(v_\alpha,\mathcal{N}_1^2) : \alpha \in A \}$. There exists $\sigma_x \in \mathcal{N}_1^2$ with $x \in \operatorname{Int} \sigma_x$.

For each $\alpha \in A$, we choose $\sigma_{\alpha} \in \mathcal{N}_{1}^{2}$ such that $\sigma_{x} \leq \sigma_{\alpha}$ and $v_{\alpha} \in \sigma_{\alpha}$. Further we select minimum and maximal dimensional simplexes $\tau_{x}, \tau_{\alpha} \in \mathcal{N}_{1}^{0}$ with $\tau_{x} \leq \tau_{\alpha}$ respectively such that $\sigma_{x} \subseteq \tau_{x}$ and $\sigma_{\alpha} \subseteq \tau_{\alpha}$.

If $\sigma_x \subseteq \operatorname{Int} \tau_x$, we have $\operatorname{\bar{st}}(v_\alpha, \mathcal{N}_1^2) \subseteq \tau_\alpha$ from $v_\alpha \in \operatorname{Int} \tau_\alpha$. Then there exists a vertex $v \in \mathcal{N}_1^2$ such that $\bigcup_\alpha \tau_\alpha \subseteq \operatorname{\bar{st}}(v, \mathcal{N}_1^0)$. Since f_1 is the simplicial map from \mathcal{N}_1^0 to \mathcal{N}_0^3 , we have $f_1(\bigcup_\alpha \tau_\alpha) \subseteq f_1(\operatorname{\bar{st}}(v, \mathcal{N}_1^0)) \subseteq \operatorname{\bar{st}}(f_1(v), \mathcal{N}_0^3)$. By the nearness between f_1 and g_1^* (see proof of $(9)_1$) and $(14)_1$, we obtain

$$(28) g_1^* \left(\operatorname{st}(x, \bar{\mathcal{S}}_1^2) \cap |(\mathcal{N}_1^3)^{(n)}| \right) \subseteq \operatorname{st} \left(\operatorname{\bar{st}}(f_1(v), \mathcal{N}_0^3), \bar{\mathcal{S}}_0^3 \right) \subseteq B \text{ for some } B \in \mathcal{B}_0.$$

If $\sigma_x \cap \partial \tau_x \neq \emptyset$ and $\sigma_x \cap \operatorname{Int} \tau_x \neq \emptyset$, we choose a face $\tilde{\tau}_x$ with $\tilde{\tau}_x \not\preceq \tau_x$ such that $\sigma_x \cap \partial \tau_x \subseteq \tilde{\tau}_x$. Then there exists a vertex $v \in \tilde{\tau}_x$ such that $\bigcup_{\alpha} \operatorname{st}(v_{\alpha}, \mathcal{N}_1^2) \subseteq \operatorname{st}(v, \mathcal{N}_1^0)$. Hence we have (28) in the same way.

Since $\operatorname{st}(x,\bar{\mathcal{S}}_1^2) \cap |(\mathcal{N}_1^3)^{(n)}|$ is a subpolyhedron of $|\mathcal{N}_1|$ and g_1^* is a PL-map, we see that $g_1^*\left(\operatorname{st}(x,\bar{\mathcal{S}}_1^2) \cap |(\mathcal{N}_1^3)^{(n)}|\right)$ is a subpolyhedron of $|\mathcal{N}_0|$. Then by (27) and (12)₀, $r_0 \circ i_0 \circ g_1^*\left(\operatorname{st}(x,\bar{\mathcal{S}}_1^2) \cap |(\mathcal{N}_1^3)^{(n)}|\right)$ is a subpolyhedron of $|\mathcal{N}_0|$ and a compact set of $|\mathcal{N}_0|_w$. Since s_0 is a PL-map, we have see the property (11)₁.

Now, we shall take a base for a uniformity for $|\mathcal{N}_1|$. We choose a subdivisions \mathcal{N}_1^j for $j \geq 4$ of \mathcal{N}_1 such that

 $\begin{array}{l} (29) \ \mathcal{N}_{1}^{j+1} \prec \operatorname{Sd}_{2} \, \mathcal{N}_{1}^{j} \ \text{for} \ j \geq 3, \\ (30) \ \bar{\mathcal{S}}_{1}^{j+1} \prec^{*} \, \mathcal{S}_{1}^{j} \ \text{for} \ j \geq 3, \\ (31) \ \bar{\mathcal{S}}_{1}^{j+1} \prec f_{1}^{-1} (\mathcal{S}_{0}^{j+4}) \wedge f_{1}^{*-1} (\mathcal{S}_{0}^{j+4}) \wedge \mathcal{F}_{1}^{j+4} \ \text{for} \ j \geq 3, \end{array}$

where \mathcal{F}_1^{j+4} is defined as follows. $g_1^{-1}\left(\mathcal{S}_0^{j+4}\cap |(\mathcal{N}_0^3)^{(n)}|\right)$ is the open cover of $|(\mathcal{N}_1^3)^{(n)}|_w$. Extend it to an open cover \mathcal{F}_1^{j+4} of $|\mathcal{N}_1|_w$. Then clearly the uniformity make f_1, f_1^* and g_1 uniformly continuous.

We shall show that f_1 holds the property (5). First, note that the composition

$$j_0 \circ id \circ f_1^* \colon |\mathcal{N}_1|_u \to |\mathcal{N}_0|_u \to |\mathcal{N}_0|_m \to |\mathcal{N}_0|_w,$$

where $id: |\mathcal{N}_0|_u \to |\mathcal{N}_0|_m$ is the identity map, is continuous.

Let K be a compact set of $|\mathcal{N}_1|_u$. There exist $\sigma_1, \ldots, \sigma_l \in \mathcal{N}_0$ such that $j_0 \circ f_1^*(K) =$ $j_0 \circ id \circ f_1^*(K) \subseteq \sigma_1 \cup \cdots \cup \sigma_l$. Since f_1 is a simplicial approximation of $j_0 \circ f_1^*$, we have $f_1(K) \subseteq \sigma_1 \cup \cdots \cup \sigma_l$. By the continuity of $f_1, f_1(K)$ is a compact set of $|\mathcal{N}_0|_u$.

As we proceed in this work, we have \mathcal{V}_i , f_i^* , f_i , \mathcal{N}_i^j and g_i with the properties (1)-(11).

From now on, we consider X to be the uniform space with the uniformity generated by the sequence $\{\mathcal{V}_i\}_{i=0}^{\infty}$ of open covers of X and $|\mathcal{N}_i|$ to be the uniform space with the uniformity generated by the sequence $\{S_i^j\}_{i=0}^{\infty}$. Then by the construction, the topology induced by $\{\mathcal{V}_i\}_{i=0}^{\infty}$ and the original metric topology are identical.

We shall construct the resolution of X. The construction essentially depends on Rubin's way [22]. Hence, the detail is omitted here.

For $j \geq 0$, let $f_{j,j}$ denote the identity on \mathcal{N}_j and let $f_{i,j}$ denote the composition $f_{j+1} \circ \cdots \circ f_i \colon |\mathcal{N}_i| \to |\mathcal{N}_j| \text{ for } i > j.$

The functions

$$b_i \colon (X, \{\mathcal{V}_i\}_{i=0}^{\infty}) \to (|\mathcal{N}_i|, \{\mathcal{S}_i^j\}_{j=0}^{\infty})$$

and

$$f_{i+1,i} \colon (|\mathcal{N}_{i+1}|, \{\mathcal{S}_{i+1}^j\}_{j=0}^\infty) \to (|\mathcal{N}_i|, \{\mathcal{S}_i^j\}_{j=0}^\infty)$$

are uniformly continuous for $i \geq 0$. Then since the sequence $\{f_{i,j} \circ b_i\}_{i=1}^{\infty}$ is Cauchy in the uniform space $C(X, |\mathcal{N}_j|_u)$ with the uniformity of uniform convergence, we have a uniformly continuous, limit map

$$f_{\infty,j} \equiv \lim_{q \to \infty} f_{q,j} \circ b_q \colon \left(X, \{ \mathcal{V}_i \}_{i=0}^{\infty} \right) \to \left(|\mathcal{N}_j|, \{ \mathcal{S}_j^i \}_{i=0}^{\infty} \right),$$

such that

- (32) $f_{\infty,j}$ is \mathcal{N}_{j}^{3} -modification of b_{j} ,
- $(33) (f_{\infty,j},b_j) \leq \mathcal{S}_i^1,$
- (34) $f_{\infty,j}$ is a topological irreducible (i.e. surjective) map relative to \mathcal{N}_{j}^{3} ,
- (35) $f_{i+1,i} \circ f_{\infty,i+1} = f_{\infty,i}$ for $i \ge 0$.

We consider $\prod_{i=0}^{\infty} |\mathcal{N}_i|_u$ to be the uniform space by the product uniformity. Note that $\lim \{|\mathcal{N}_j|_u, f_{i+1,i}\}$ is a non-empty subspace by the property (34).

Then by (35), there exist a uniformly continuous map $f_{\omega} \colon X \to \varprojlim |\mathcal{N}_i|_u$ with $f_{\infty,i} = pr_i \circ f_{\omega}$ and especially the map f_{ω} is a uniformly embedding onto a dense subset $f_{\omega}(X)$ in $\varprojlim |\mathcal{N}_i|_u$, where $pr_i \colon \prod_{j=0}^{\infty} |\mathcal{N}_j|_u \to |\mathcal{N}_i|_u$ is the natural projection.

Let Z denote the limit of the inverse sequence $\{|(\mathcal{N}_i^3)^{(n)}|_u, g_{i+1,i}\}$. Then we consider Z to be the sub-uniform space of the uniform space $\prod_{i=0}^{\infty} |\mathcal{N}_i|_u$. Note that Z has dimension $\leq n$.

We begin with a description of the map π . For $j \geq 0$, a uniformly continuous map $\pi_j \colon Z \to \prod_{i=0}^{\infty} |\mathcal{N}_i|_u$ is defined by

$$\pi_i(\mathbf{z}) \equiv (f_{i,0}(z_i), f_{i,1}(z_i), \dots, f_{i,i-1}(z_i), z_i, z_{i+1}, \dots)$$

for $\mathbf{z} = (z_j) \in Z$ and let π_0 be the inclusion map. Then since the sequence $\{\pi_j\}_{j=0}^{\infty}$ is Cauchy in $C(Z, \prod_{i=0}^{\infty} |\mathcal{N}_i|_u)$, there is a uniformly continuous, limit map $\pi \colon Z \to \prod_{i=0}^{\infty} |\mathcal{N}_i|_u$. Then the map π is proper from Z onto $\varprojlim \{|\mathcal{N}_i|_u, f_{i+1,i}\}$. We must show that $\pi^{-1}(\mathbf{x})$ is a UV^{n-1} -set and the set $[\pi^{-1}(\mathbf{x}), K(G, n)]$ is trivial for $\mathbf{x} \in \lim \{|\mathcal{N}_i|_u, f_{i+1,i}\}$.

For $\mathbf{x} = (x_i) \in \varprojlim \{ |\mathcal{N}_i|_u, f_{i+1,i} \}$, let $\delta N(x_i)$ and $\varepsilon N(x_i)$ denote $\operatorname{st}(x_i, \bar{\mathcal{S}}_i^0)$ and $\operatorname{st}(x_i, \bar{\mathcal{S}}_i^2)$, respectively. Then we have the following properties [22]: for $\mathbf{x} = (x_i) \in \varprojlim \{ |\mathcal{N}_i|_u, f_{i+1,i} \}$,

(36)
$$g_{i,i-1}\left(\delta N(x_i)\cap |(\mathcal{N}_i^3)^{(n)}|\right)\subseteq \varepsilon N(x_{i-1}),$$

$$(37) \lim_{\longleftarrow} \left\{ \varepsilon N(x_i) \cap |(\mathcal{N}_i^3)^{(n)}|, g_{i,i-1}|... \right\} = \pi^{-1}(\mathbf{x}) = \lim_{\longleftarrow} \left\{ \delta N(x_i) \cap |(\mathcal{N}_i^3)^{(n)}|, g_{i,i-1}|... \right\}$$

By $\bar{\mathcal{S}}_i^2 \prec^* \mathcal{S}_i^1$, there exists $F_i \in \mathcal{S}_i^1$ such that $\operatorname{st}(x_i, \bar{\mathcal{S}}_i^2) \subseteq F_i$. Further, by $\mathcal{S}_i^1 \prec \mathcal{S}_i^0$, there is a $S \in \mathcal{S}_i^0$ such that $F_i \subseteq S$. Hence we have the contractible set F_i such that

(38)
$$\varepsilon N(x_i) \subseteq F_i \subseteq \delta N(x_i).$$

Claim 2. $\pi^{-1}(\mathbf{x})$ is a UV^{n-1} -set for for $\mathbf{x} = (x_i) \in \underline{\lim} \{ |\mathcal{N}_i|_u, f_{i+1,i} \}$.

Proof of Claim 2. It suffices to show that the map

$$g_{i+1,i}|_{\dots}: \delta N(x_{i+1}) \cap |(\mathcal{N}_{i+1}^3)^{(n)}| \to \delta N(x_i) \cap |(\mathcal{N}_i^3)^{(n)}|$$

induces a zero homomorphism of homotopy group of dimension less than n. By (36) and (38), we have

$$g_{i+1,i}\left(\delta N(x_{i+1})\cap |(\mathcal{N}_{i+1}^3)^{(n)}|\right)\subseteq F_i\cap |(\mathcal{N}_i^3)^{(n)}|\subseteq \delta N(x_i)\cap |(\mathcal{N}_i^3)^{(n)}|.$$

Since F_i is contractible, we have

$$\pi_k\left(F_i \cap |(\mathcal{N}_i^3)^{(n)}|\right) = 0 \quad \text{for } k < n.$$

Therefore $g_{i+1,i}|_{...}$ induces a zero homomorphism of homotopy group of dimension less than n.

Claim 3. $[\pi^{-1}(\mathbf{x}), K(G, n)] \approx \check{\boldsymbol{H}}^{n}(\pi^{-1}(\mathbf{x}); G)$ is trivial for $\mathbf{x} \in \underline{\lim}\{|\mathcal{N}_{i}|_{u}, f_{i+1,i}\}.$

Proof of Claim 3. By (11),(36),(37) and the continuity of Čech cohomology, we have

$$\check{H}^{n}(\pi^{-1}(\mathbf{x});G) \approx \varinjlim \left\{ H^{n}\left(g_{i,i-1}(\varepsilon N(x_{i}) \cap |(\mathcal{N}_{i}^{3})^{(n)}|_{u});G\right), g_{i,i-1}|_{\dots}^{*} \right\}.$$

Hence it suffices to show that

$$|g_{i,i-1}|_{...}^*: H^n\left(g_{i,i-1}(\varepsilon N(x_i)\cap |(\mathcal{N}_i^3)^{(n)}|); G\right) \to H^n\left(g_{i+1,i}(\varepsilon N(x_{i+1})\cap |(\mathcal{N}_{i+1}^3)^{(n)}|); G\right)$$

is the zero homomorphism.

Let $G_{i,i-1}$ denotes $g_{i,i-1}\left(\varepsilon N(x_i)\cap |(\mathcal{N}_i^3)^{(n)}|_u\right)$. Then by (11) the subspace $G_{i,i-1}$ of $|(\mathcal{N}_{i-1}^3)^{(n)}|_u$ and the subspace $G_{i,i-1}$ of $|(\mathcal{N}_{i-1}^3)^{(n)}|_w$ is identical. Hence from now on, we may consider that $G_{i,i-1}$ is the subspace of $|(\mathcal{N}_{i-1}^3)^{(n)}|_w$.

Let $[\alpha] \in [G_{i,i-1}, K(G,n)]$. Then from $\pi_q(K(G,n)) = 0$ for q < n, there exists an extension $\tilde{\alpha} : |(\mathcal{N}_{i-1}^3)^{(n)}|_w \to K(G,n)$ of α . By (10), we have an extension $\beta : |(\mathcal{N}_i^3)^{(n+1)}|_w \to K(G,n)$ of $\tilde{\alpha} \circ g_{i,i-1}|_{G_{i+1,i}}$.

Since F_i is the contractible set, $F_i \cap |(\mathcal{N}_i^3)^{(n)}|_w$ is contractible in $F_i \cap |(\mathcal{N}_i^3)^{(n+1)}|_w$. Hence, there exists a homotopy $H \colon (F_i \cap |(\mathcal{N}_i^3)^{(n)}|_w) \times I \to F_i \cap |(\mathcal{N}_i^3)^{(n+1)}|_w$ such that H_0 is the inclusion map and H_1 is a constant map. Since $G_{i+1,i} \subseteq \varepsilon N(x_i) \cap |(\mathcal{N}_i^3)^{(n)}|_w \subseteq F_i \cap |(\mathcal{N}_i^3)^{(n)}|_w$, we can define the following compositions:

$$\tilde{H} \equiv \beta \circ i_2 \circ H \circ i_1 \colon G_{i+1,i} \times I \hookrightarrow \left(F_i \cap |(\mathcal{N}_i^3)^{(n)}|_w \right) \times I \to F_i \cap |(\mathcal{N}_i^3)^{(n+1)}|_w \\
\hookrightarrow |(\mathcal{N}_i^3)^{(n+1)}|_w \to K(G,n),$$

where i_1 and i_2 are the inclusion maps.

Then we have $\tilde{H}_0 = \beta|_{G_{i+1,i}} = \alpha \circ g_{i,i-1}|_{G_{i+1,i}}$ and $\tilde{H}_1 =$ a constant. It completes the proof of Claim 3. Then the map

$$\pi_X \equiv \pi|_{\pi^{-1}(X)} \colon \pi^{-1}(X) \twoheadrightarrow X$$

is a desired one for Theorem. \Box

5.2. Corollary. Let X be a metrizable space having cohomological dimension with respect to \mathbb{Z}_p of less than and equal to n. Then there exist an n-dimensional metrizable space Z and a perfect UV^{n-1} -surjection $\pi\colon Z\to X$ such that for $x\in X$, the set $[\pi^{-1}(x),K(\mathbb{Z}_p,n)]$ of homotopy classes is trivial.

REFERENCES

- 1. P. S. Alexsandrov and P. S. Pasynkov, Introduction to Dimension Theory, Moscow, 1973.
- 2. K. Borsuk, Theory of retract, PWN, Warszaw, 1967.
- 3. M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483.
- 4. C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200-242.
- 5. A. N. Dranishnikov, On homological dimension modulo p, Math. USSR-Sb. 60(2) (1988), 413-425.
- 6. _____, Homological dimension theory, Russian Math. Surveys 43(4) (1988), 11-63.
- 7. ____and E. V. Shchepin, Cell-like maps. The problem of raising dimension, Russian Math. Surveys 41(6) (1986), 59-111.
- 8. J. Dydak, Cohomological dimension and metrizable spaces, preprint.
- 9. ____and J. J. Walsh, Aspects of cohomological dimension for principal ideal domains, preprint.
- 10. Y. Kodama, Appendix to K. Nagami, Dimension theory, Academic Press, New York, 1970.
- 11. A. Koyama, Approximable dimension and acyclic resolutions, preprint (1989).
- 12. _____, Approximable dimension and factorization theorems, preprint (1989).
- 13. _____and T. Watanabe, Notes on cohomological dimension modulo p nonmetrizable version, Kyoto Mathematical Science Research Institute Kōkyūroku 659 (1988), 1-24.
- 14. V. I. Kuz'minov, Homological dimension theory, Russian Math. Surveys 23 (1968), 1-45.
- 15. S. Mardešić, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), 278-291.
- 16. _____, Factorization theorems for cohomological dimension, Topology Appl. 30 (1988), 291-306.
- 17. ____and L. R. Rubin, Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 183 (1989), 129-144.
- 18. _____, Cell-like maps and non-metrizable compacta of finite covering dimension, Trans. Amer. Math. Soc. 313 (1989), 53-79.
- 19. S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
- 20. L. R. Rubin, Irreducible representations of normal spaces, Proc. Amer. Math. Soc. 107(1) (1989), 277-283
- 21. _____, Characterizing cohomological dimension: The cohomological dimension of $A \cup B$, Topology Appl. 40 (1991), 233-263.
- 22. ____and P. J. Schapiro, Cell-like maps onto non-compact spaces of finite cohomological dimension, Topology Appl. 27 (1987), 221-244.
- 23. E. Spanier, Algebraic topology, Springer-Verlag, New York, 1989.
- 24. J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Lecture Note in Math., vol. 870, 1981, pp. 105-118.
- 25. J. H. C. Whitehead, Simplicial spaces, nuclei, and m-gropes, Proc. London Math. Soc. 45 (1939), 243-327.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA-SHI, IBARAKI, 305, JAPAN *E-mail address*: yokoi@sakura.cc.tsukuba.ac.jp