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On the Discrete Boltzmann Equation
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Chapter 1

Formulation and results

The discrete model of Boltzmann equations system in a thin infinite tube as follows :

Ou; Ou;
(B) —61':—' + c,-gu; = Qi(u) + L;(u)

ui(2,0) =ul(z) for zeR,teR,

where

Qi(v) = Z (A upu, — A uu;)

ik el

Li() = Y (obus — o).

kel
The natural physical conditions are following :

Condition 1.—
AM 20, M =AM Ath
Aijtaé(l = 1#j and c+cj=cpte
Vi 3(j,k,£) such that A¥ £0

k20

Condition 2.—

Viel, Zai(ch —-¢)=0
kel
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We put I, k=0,1,--- as follows :

Io = {i;ai =0 for all k € I}
= {i; particles with velocity ¢; don’t provoke any reflection}
I, = {i & Ip;there exists j € Ip such that aj- > 0}
(1.1) = {4; particles with velocity ¢; is transformed

into a particle with velocity ¢j,j € Iy by reflection 1},
k
Livi={i ¢ U I;; there exists j € I, such that aj- > 0}
L=0

Remark : As we see later, Ip is not empty, if we assume Condition 2.

Proposition 1.1.— Suppose Conditions 1 and 2. Let u; = u;(2,t) € C*(R4,S(R))
(¢ € I) a solution of (B). Then, for any t € R, we have

(12) /R lZu,«(z,t)dz: /R .Zu?(z)dzzp

(mass conservation law)

(1.3) /R ;c,-u,-(z,t)dzz L zi:c,-u?(z)dz

(momentum conservation low)
Proposition 1.2.— Condition 2 implies that Iy is not empty.

The results of this note are following :
under Condition 2

Theorem 1.— Suppose Conditions 1 and 2. For a Cauchy data u? positive, summable
and bounded, there exists a unique global bounded solution u;(z,t) € L*(R x R}) and

(14) ui(2,t) < (1 + supu;(2)) exp (ap® + bp)

i®

where a and b depend only on the equations system, and p is the total mass.

Corollary 2.— Suppose Conditions 1 and 2. For a Cauchy data u? positive and bounded,
there exists a unique global solution u;(z,t) € L (R x R,) and

Loc
(1.5) u;(2,t) < exp (Ap*t? + B)

where A and B don’t depend on time.
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Theorem 3.— Suppose hypotheses like as in Theorem 1. We have a asymptotical be-
havior of a solution : there is a function v} (z,t) which verifies that, for any € > 0, there
exists a large T such that fort > T

(1.6) |lwi(-t) —of (4 t)||,, <e (1S pSo0) forall i
and

(LAQUIPS

< { m(t) Z:E Io

= | m(t) exp {—-At(1 - %)} i¢ I

for all i, where 2 < p < oo and m(t) is a strictly decreasing function.

(1.7)

without Condition 2 We put other hypotheses.

Condition 3.—
o >0 for i#k

Proposition 1.3.— Condition 2 is not compatible with Condition 3.
Moreover we assume the microreversibility of the reflections :

Condition 4.—

In this situation, we can apply the theory due to Shizuta and Kawashima [9] for a positive,
summable and bounded Cauchy data and obtain the following theorem :

Theorem 4.— Assume Conditions 1, 3 and 4. Then, for a smooth, positive, summable
and bounded Cauchy data u? such that @ is defined and in L, we have a decay estimate
for the solution:

(1.8) i )l pee S Col(l+8)7 2|00 0 + [|6°

where the constant C, depends only on the equations system.

2+)

for small Cauchy data
i)Case with the binary collision terms '
In this case, we treat general form of the binary collision terms :

(gQ) Qi(v) =) Bi*wju,
ik

which is introduced by Bony [4]. In 1990, he showed that the global existence of the
solution for small Cauchy data in the case of I; = 0 in RN and defined the corresponding
wave and scattering operators.

The equations system is following :
011,,' Ou,-
(B) W +C;E:— —Q,-(u)+L,-(u)

wile=0 = u](")

with L; is of form as before. On this system, we impose some assumptions :
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Condition 5.— )
Bi*#0 = j+#k

Bi*#40 = jandkg¢l,
0

nv

of

Condition 6.—
{ Iy#90

ieI\Io=>i€I1

Remark : Condition 6 means that the particles which don’t provoke any reflection don’t
make any binary collision.

Theorem 5.— Suppose Conditions 5 and 6. If the Cauchy data is sufficiently small in
H*(s=1,2,--:), the solution has a decay estimate as follows :

llwill g« ( 50 [Jil peo )
(1.9) < C.”u(’”H, for i€l
= C,.“'u.o”H,e_%"t for iel

where C, depends only on the equations system and constant A > (.

ii)Case with the multiple collision terms
The case with the multiple collision terms is studied only in a few papers [1][2][6]. We
consider the general multiple collision terms as follows :

® R(w) = 3 Y B,

where we permit the cases j, = j;, k # £.

Then the equations system is following :
oui | . Ou

(M) ot "

o = Riw) + Li(w)

uilt:O = 'll.?()

where L; is of form as before. On this system, we impose some assumptions :

Condition 7.—

E:'r"ip #0 = Jju ?éjﬂrja,jﬁ € {Jl’]p}
_E?.l-"jp #0 = { Jjou & Io ifi€lo
i JjaFis¢lo fidly

The similar result is then obtained :
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Theorem 6.— Suppose Conditions 6 and 7. If the Cauchy data is sufficiently small in
H*(s =1,2,-:-), the solution has a decay estimate as follows :

llwill g 50 [joil peo )
(1.10) < J Gl for iely
= C,.“uOHH,e‘ e for 1€l

where C, depends only on the equations system and constant A > 0.

Chapter 2
On the proof

$2.1 Estimations

In this section, assuming Conditions 1. and 2, we establish estimations of solutions,
improving the method due to Bony [3]. We assume, for simplicity, that ¢; # ¢; for i # j.
This hypothesis is not essential at all and we can recover it by the usual argument.

Let’s define Bony’s function [3] and its variation :

(2.1) o(0) = Y(ci — &) [ [ san(y - 2)us(a, yus (v, t)dady

(2.2) $(ti20,c0) = 3 (e — <o) / sgn{z — (20 + cot)}ui(z, ¢)dz

i
Differentiating these functions, we have

Lemma 2.1.— Suppose T < T*. Under Conditions 1 and 2, we have

(2.3) A(0,T) < Cp?

(24) | 5(0,T) < Cp

where T™ is the existence time of solutions and

(2.5) A(ty,t2) = sup /th/;u,-(z,t)u,-(z,t)dzdt

eiFfe;
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ta
(2.6) 8(t1,t2) = sup sup/ ui(z + cjt, t)dt
ci#e; 2€ER t‘l

Proposition 2.2.— Suppose Conditions 1 and 2. Then there exists p 2 0 such that
(2.7) I=ILULU---UI |

For analyzing closely our partial differential equations system, now we consider simpler
equations system ; this is motivated by the dissipation of the effects due to the binary
collision terms when time is going to infinity, which is suggested by definability of the
wave operator for the system without the linear term, due to Bony [4] :

df;
fllt D—f >0

Proposition 2.3.— Suppose Cond1t10ns land 2. 1) foralli€ I, f,(t) is positive.
2) for i € Iy, f;(t) is increasing and bounded, so tends to a limit > 0 as t — +oo.
3) for i ¢ Iy, f;(t) tends to 0 exponentially ast — +oo.

Now we fix t; and decompose u; into the sum of “(quasi-)linear part” v; and
“(essential-)nonlinear part” w;. Let v; a solution for the equations system :

(‘;’;+c, ) i =Li(v) = ) Al v

j. ket

vi]t:tl = ui(" tl)

(V)

where u; is the solution of (B).
Then w; = u; — v; should satisfy

'<0+ 6)w—1}-('w)+Q-('w)+1'~—.«r-
0t c' 0 T ] ] 1 3
wilt:t, =0 ;
(W) ] with  »; = Z A?J-‘('vk'vt + wrvy + vewy)
ik,
= Z Auw,v,
\ j et

Definition.— The operator P = (P;); is said to be positively preserving if ond only if
the solution u; is nonnegative over R x R, where u;(2,t) is a solution for the equations
system :

(2.8) (% +c ?)%) u; = P(u)

uile=o = u(2) 2 0

Corollary 2.4.— The operators (Q;); and (L;); are positively preserving.
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Proposition 2.5.—
(2.9) vi(2,t) 2 0 and w;(=,t) 2 0 foranyz € R andt € R,

Now we have some remarks :

Corollary 2.6.—

ta ta
(2.10) / / r,-dzdt § A(tl,tz), / / s,-dzdt g A(tl,tz)
£ R ty R

We are now going to estimate the “linear part” solution v;. Its estimation in
as follows :

“Lw »

(2,
Proposition 2.7.— The fanction V(t) = sup v_f(a(:_t,)l
i, i

The estimation for v; and w; along the characteristic as following :

is strictly decreasing.

Proposition 2.8.— For ¢; # ¢; and t; < s,

ta
(2.11) sup/ vi(z + ¢t  t)dt < C,8(t1,t2)
. 2cR ty
12
(2.12) sup/ w;(z + ¢;t, t)dt < CuA(t1,12),
2ER t1

where these constants C, depend only on the equations system.

Now we would like to estimate more closely M(t;) in terms of M(t;) for ¢; < t, < T*,
where

(2.13) M(t) = maxsup sup u;(z,s8) for t<T*
i€l s<t 2€R ]

For the first, we integrate, along a characteristic curve, the equations system for w; : then
ta
wi(tn,z) SO [ (Tuy+ Y ey

(2.14) b1 i kj#i

+ Z vRv; + Z wyv; + Z vw; )(2 + ¢;t, t)dt

k,j#i kj#i kj#i

where 2z, = 2 + ¢;(t2 — t1). Then we have

ta
(2.15) / S wi(e + est, )t < CuA(ty, b2)

1 j#i
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ta
(2.16) / Z wpwj(z + ¢;t, t)dt < C. M(t3)A(t1,t2)
t1 g i
ta
(2.17) Y wvj(z + cit, t)dt £ C, M(t2)8(t1, ta)
N WP

Hence we have

(218) sup w;(z,tz) é C. (1 + M(tz)) . A(tl,tz) + C.M(_tz)&(tl,tz)

Consequently for u;(z,t), we have

sup u;(2,t2) < supv;(z,t2) + sup w;(z,t;)
(2.19) » » »
SC.M(t)+ Cu (14 M(t2)) - A(t1,t2) + Ca M(22)6(t1,12)

We take " < T* and thereafter a sequence 0 = ty < t; < -+ < t§y = T such that
A(tj,tj4+1) < (4C.)7 ! and 8(¢;,t4+1) < (4C.)"1. Then, seeing that A(0,T) < C,p? and
8(0,T) < C,u by virtue of Lemma 2.1, we have N = O(p? + p), and

M(tj41) S CoM(t;) + CuA(t),t541)

2.20
(220 < C.M(t;) + C.

therefore we obtaln

(2.21) ui(2,t) < (1 + supu]) exp (ap’ + bp)

i,
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$2.2 Proof of the theorem 3

We examine in a more detailed way the argument developed in the last chapter, that
is, to decompose the solution u; into the sum of “(quasi-)linear part” v»; and “(essential-)
nonlinear part w;. Later on, we specify ¢;, which will be noted T, and the dependence of

v; and w; on a cut time 7. Let’s write down u; of the form u; = 'v;‘r + w,-T :

0 )
(0t —i-c,(9 )v:‘" = L;(+T) - E:A,.tuJ vJ

(vT) it
v?|t=T = u(-,T)
([ 9 T T T T _ T
9t TG Y T Li(w”) + Qi(w” ) +7; —8;
w] =1 = 0
(WT) T with 'I"-T = E Azt Vg vl + 'w,. 'Ut + ’Uh w, )
ikt
s = Z Ahl'w 'v
\ Jyh’t
Knowing that
(2.22) wi(z, ) SM=(1+ sppu?) exp (ap? + by),

i,®

we have, fort > T
supw?(2,t) < Cu (1+ M(2)) - A(T,2) + Co M()8(T, 1)

S Cu(1+ M)(A(T,t) + 8(T 1))

ZwiT("t)

Using Lemma 2.1. which says A(0,00) < C,.p and 6(0,00) £ C,pu, we conclude that, for
any € > 0, there exists T' such that

(2.25) A(T,0) + §(T,00) < C.[(1+ M) x (f{i € I})]"* - ¢
Then we have, for ¢t > T,

(2.23)

(2.24) < CLA(T,t)

(2.26) ”Ew?(-,t) <,
i LinL
hence we have
(2.27) sup||wf (+,t)]|;, <& (1S p < o)
i.e.
(2.28) sup |ui(=,t) - o] (e, t)HL, <e(12p=L ),

save for trivial constants. Consequently we prove the first assertion of the theorem.

Now we would like to estimate v; :
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T
Proposition 2.9.— 1)V(t) = sup v; (2,t)

i2 fi(t)
2>, ||V,-(-,t)“i, is also strictly decreasing where Vi(z,t) =

is strictly decreasing.
v (2,t)

V()

We pursue the proof of the theorem. By the above proposition, we have

”iT("t) '”ér("t)

fi(t) fi()

are strictly decreasing, where a positive bounded functions f;(t) verifies the following
condition :

— for ¢ € Iy, fi(t) is increasing and tends to a limit > 0 as t — +oo.

- for i & Iy, fi(t) tends to 0 exponentially as ¢ — +o0o. The interpolation between L? and
L achieves then the proof.

(2.29) max

1

and max
12

L L3

§2.3 Proof of the theorem 5

Let’s consider the following equations system with ¢ :

0’&,‘ (911,,'

24— = 0 L:
(B.) or Ty — eQilw) + L)

ili=0 = %(")
where ¢ is a positive constant.
For this Cauchy problem, we would like to seek a solution u;(z,t) of type u; =

[e o]
Z 6mu§m) (so-called Hilbert-Chapman-Enskog expansion).
m=0
Remark : From a physical point of view, € corresponds to the inverse of the “Knudsen
Number” and ¢ — 0 corresponds to a fluid dynamical limit to a free molecular flow.

To prove Theorem 5, it is sufficient to show the following theorem :

Theorem 2.10.— Suppose Conditions 5 and 6. Fore € [O, Cou (Xh0 JZ) 3 [, the series
U =Yoo emuf’") converge in H*(s = 1,2,---), so L*°, uniformly with respect tot € R
and then

llwill g+ ( 50 [|2if| oo )
(2.30) | B { C (i, J2)? iel,

= 1
Co(Thzo th)ze_%u i€l

1
where J, = (Z‘ ”D‘u?”z,) 2, constants C, and C,, depend only on the equations system
and constant A > 0. '
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Like as in Chapter 6, we use

dfi
= L;
©) { 2~ ()
filezo = >0
Condition 6 implies a more precise estimation for f; than Proposition 2.3. :

Proposition 2.11.— Suppose Conditions 5 and 6. There exists f? > 0 such that, for
i € I, f; tends to 0 with the same order i.e. there is A > 0 such that f;(t) = e * Pi(t)
with P; polynomial of t and for i € Iy, f;(t) is increasing and bounded, so tends to a limit
>0ast — +oo.

ui(z,)
fi(t)
wi(z,t) =320 ¢ w( )( t). Then we have for m =0,1,2,-

(e () -)

Let put w;i(z,t) = . Now we write down the equation for w;(z,t), and put

(2.31) 4 _ Ls(f)wgm) + FO™) (w)
2fi 3 13
w{™ o = { w(=), m=0
\ ! t=0 0, m=1’2,...
where

m-1 ) ff %
Z Bik ([ 1Tk ) "y (m)yym—n—1) form=1,2,-.--
(2.32) Fi™ (w) = . Pk

0 form =0
The energy estimation leads us :

Proposition 2.12.— Suppose Conditions 5 and 6. For s = 0,1, 2, --

o (5
dtz‘ Za'f

+23 {(p F(m)(w), D* (’"))
especially for m = 0, '

k gk w(o) wio)
aw g, -~ Setsor (5
f; £ L3
Corollary 2.13.— Suppose Conditions 5 and 6. Then we have, for s =0,1,2,---
(2.35) HD'w,(“)“ < C.J, for all i
L2

(2.33)

<0

D=

where J, = (Ez ”D‘u?“:;) '
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Proposition 2.14.— Suppose Conditions 5 and 6. Fors =1,2,---

. dt £ C, 2
(2.36) e hzzo.f,,

Proposition 2.15.— Suppose Conditions 5 and 6. Then we have, fors =1,2,---

f
(2.37) \ w < C. Z JE forall i
H k=0
Now let’s put ”wgm)“H < a(:m) for s =1,2,---, then we have by induction
m
259 o) < 0 = G, 3 o)

n=0

Let’s put f(z) = f.(2) = Zaﬁ")z", the above inequality means that
n=0

f(z) £(0)

(2.39) = C{f(2)},

then we have

(2.40) fo) = 22220 sy =, (ZJ%)
k=0 ;

It is easy to see that the right-hand side can be written in infinite series with a positive
convergence radius, which achieve the proof.

§2.4 Proof of Theorem 6

Like as in the previous section, we consider the following equations system with ¢ :

Ou.- Ou
{W-i-c,a = eRi(u) + Li(n)

Uili=0 = “;()

(M)

where ¢ is a positive constant.
The same argument shows

(2.41) [of™] . < for s =1,2,:--

where

( b£m+1) _ Ci Z bgnl) .. bsn,)

p=2n31+- n,:m

el

Similarly we achieve the proof.

(2.42) 4
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