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Far field condition for steady flows around a two-
dimensional rotating circular cylinder is well Kknown, but the
condition for transient case 1s not known well: the circulation
around closed curve with very large radius surrounding the
cylinder is zero or non-zero, that is, the value of steady case.
The condition depends on the initial conditions: (1) the circular
cylinder translates impulsively with rotating and (2) the
rotating cylinder is started impulsively. The purpose of the
present paper is to discuss numerically the influence of the

difference of the initial condition to later flows from starting

by using the vortex method.

1. Introduction

Unsteady flow around a rotating two dimensional cylinder,
traveling through a fluid is of fundamental interest for several
reasons; boundary layer control due to Magnus effect [1] and
reverse Magnus effect (e.g. [2-4]). Theoretical works concerning
this problem are generally based on boundary-layer theory: Badr
and Dennis [5] calculated unsteady flow past an impulsively
rotating and translating circular c¢ylinder by wusing the
techniques along one used by Collins and Dennis [6], and
exhibited the early stages of the formation of a Karman vortex

sheet for moderate Reynolds numbers. In their numerical approach,
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the circulation round the contour surrounding the cylinder
remains zero, as it was at the start. Hence their solutions do
not tend to a quasi-steady state rigorously.

The vortex method is an advantage in a sense that the far
field condition is imposed easily and essentially, there 1is no
numerical diffusion, and it is essentially reasonable for high
Reynolds number flows. From this advantage, there are many works
treated high Reynolds number flows past a circular cylinder by
the vortex methods (e.g. [7]). However, there are uncertainties
of many earlier works in the use of the vortex methods. As one of
uncertainties, the prediction of separation has not been
calculated rigorously in many works: the Pohlhausen method
assuming the attached flow to be quasi-steady [(8,9], and the
prediction on experimental measurements [4]. Chorin [10] proposed
a vortex method by which boundary layer flow can be simulated and
he calculated flows past a circular cylinder. Cheer [11,12]
extended his approach and obtained the more detailed results.
There is not any assumption to predict separation in this vortex
method._In works used this vortex method, the conformal mapping
technique is used in order to simulate the outer potential flow
as exactly as possible.

From these backgrounds, the purpose of the present paper is
(1) to discuss the numerical results depending on the far field
condition and (2) to study a method by which the vortex method
proposed by Chorin [10] is available to various bluff bodies. For
the second purpose, we use the panel method proposed by the
present authors [13], which has high accuracy near the surface of

the body, in stead of the conformal mapping. The availability of
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this method will be shown by studying flows around impulsive
starting circular cylinder without rotation. For the first
purpose, an impulsive translating circular cylinder with rotation
is treated in this paper. The far field condition of zero
circulation treated in [4,5] sounds to be reasonable for
impulsive rotating and impulsive translating problem, as initial
flow is rest. In the case that a rotating circular cylinder with
constant angular velocity starts impulsively, initial circulatory
potential flow 1is the exact solution of the Navier-Stokes
equation, so that the far field condition must be non zero
circulation condition at the time of termination of the
calculation. The 1limiting case of this problem for time being
infinite seems to be the same as that of early works [4,5]
physically, although solutions of the Navier-Stokes equation for
the above two problems are considered to be different from the
point of view of the mathematical analysis (e.g. [14]). The
present paper will discuss this difference by using the vortex

method.

2. Far Field Condition

We consider two initial cases: (1) A circular cylinder
starts and rotates impulsively and (2) a rotating circular
cylinder starts impulsively. We take the orthogonal coordinate
system fixed with the center of the circular cylinder by (ml,mz),
and ¢t by time. The surface of the circular cylinder is denoted by
($§+$§)1/2=1. The initial conditions for two cases are

respectively given by

Case (1): 2%=0 (¢£<0)
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2=(Qsing,-Qcosg) (p=1 and ¢>0)
2=(1.0) (¢20) as row
Case (2):  3=(@sing,-Qcosg) (p=1 and any t¢) o
U=(0,0) (£<0) as poe
2=(1,0) (¢>0) as pow
where (xl,m2)=(rcosg,rsin9) and Q 1is clockwise angular velocity.
From far field condition, we have
Case (1): fS 2.d2=0

oo

Case (2): (2)

- =>_ _
S uods-.2nQ=r0

0

where Sm is the circle with radius being infinite and 8 1is the
.arc length along the circle. Suppose that vorticity decays with
r, then far field conditions given by Eq.(2) hold for any time.
Let Fs and Fp denote the circulation due to the shedding
vortices and around the surface of the body respectively. Since
rs+rp:0 for Case (1) and FS+Fp=rO for Case (2) initially, these
relations are hold for any time:
Case (1): FS+Fp=0

(3)
Case (2): rs+rp:FO

3. Vortex Method and Numerical Approach

The vortex method used in the present paper is essentially
the same as that used by Cheer [11,12]. The present authors [15]
study this method proposed by Chorin [10] and clear the concept
‘of the vortex-sheet element: Near the surface of the cylinder,
the main flow is directed almost to tangential direction on the

surface of the cylinder, so that we have to divide the integral
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area for the discretization of vorticity field such that the
width of the longitudinal direction is much wider than the
lateral one.

The numerical approach of this method is the fractional
method: We first solve the outer inviscid flow by using the panel
method, second we create vortex-sheet elements from no-slip
boundary condition, and finally we advect all vortices as
material particles. In this time, random.walk'method is used for
the viscous diffusion: Its variance is 2At/Re (in the present
calculation At is taken as 0.1), where Re is the Reynolds number
based on the diameter of the circular cylinder and the constant
translating velocity. In the present paper, panels are consisted
of equi-polar angle and the number of panels is taken as M being
equal to 40.

The vortex-sheet elements have to be distributed in the
boundary layer, so in the present calculation the maximum width

1/2

of the boundary layer, H, is taken as 2/Re

The length of the
vortex-sheet element is taken as { equal to 2x/M. The induced
tangential velocity u due to the vortex-sheet element is given

by [11 or 15];

- upper side of vortex-sheet 4
U7\ g4/t : lower side of vortex-sheet (4) —
P !
where & is the circulation per unit length \ ' X
1 ‘
. . 1 ] t H
of this vortex-sheet element and o is the ! e !
1 £ 1
length of the part of the vortex-sheet : ! . !
. 1 1
element which is in the collocation panel,nm&;&; /mégUmmt 4
as shown in Fig.1l. The normal induced Fig.1l. Vortex-sheet

velocity is obtained from the integration element
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of the continuity equation by applying the finite difference of
first order for tangential velocity.

The creation of the vortex-sheet elements is done by the no-
slip condition: We first obtain the slip velocity on the surface
of the cylinder and second we create them from no-slip condition.
The tangential velocity at the edge of the maximum width of the
boundary layer is obtained from the panel method, the tangential
velocity due to the vortex-sheet elements in the boundary layer
is added, and finally we can obtain the slip velocity on the
surface of the cylinder. We note that provided the outer flow is
obtained from the flow tangency condition on the surface of the
circular cylinder, the normal condition on the surface of the
cylinder is satisfied essentially. We define the slip velocity on
the surface by u%g. Then we use the following vorticity creation
algorithm: We set the maximum circulation per unit length of the
vortex-sheet element as gmax=0-2, according to Cheer [11]. If 2”3
is less than Enax® W€ create the vortex-sheet element on the
surface of the cylinder whose strength is 2us. If Zus is larger
we create the vortex-sheet element on the surface of

]

respectively, where [] is Gauss symbol. The reason why the 2

than Enax

the cylinder whose strength and number are gmax and [zus/gmax
times of the slip velocity is used is caused from the use of the
random walk method for the viscous diffusion.

Vortex-sheet elements in the boundary layer and vortex blobs
in the outer flow are advected as material particles. Then, there
are cases that a vortex-sheet element flows out from the boundary
layer or a vortex blob flows into the boundary layer. In these

cases, the vortex-sheet element changes to the vortex blob and
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vice versa. We use the relation between { and o¢: ¢=t/n, where ¢
is the cut-off radius of ‘the vorfex blob. When the cut-off area
of the vortex blob contacts on the surface of the cylinder just,
the tangential velocity at the contact point induced by the
vortex blob is 0w, where ® is wvorticity of the vortex blob, on
the other hand, the tangentiél one Iinduced by the vortex-sheet
element is £, so that these velocities must be same: ow=f.
Further, we have to conserve the circulation: nozm=££. Thus, we
have obtained the above relation.

Let us consider aerodynamic forces. Forces acted on the
cylinder due to the pressure is obtained from the modified
Berunoulli's equation} because the pressure on the surface of the

cylinder is identical with that on the outer edge of the boundary

layer. Therefore, we have
X+iY=ifg pdz
b

where X and Y are the Z{ and Zo components of the pressure force
of the cylinder, Sb is the outer edge of the boundary layer
around the cylinder, and 2=Z,*iZ,. Outer flows are treated as

potential flow except vortex blobs. We finally have

_ 2
X+LY=-ipf %%dz - %pf ‘a%' dz
Sy Sy,

where F 1s the complex potential, ¢ is the velocity potential,
and "-" denotes the conjugate. From this formula, we have a
little different expression of pressure force with regard to the
far field condition:

Case (1)

2npReal (g,) FeVe . FeZe
= + + . R = -
X=2npReal(a,)+*p AT p?rJvJ Yy 2nplmag(a1) 7 :

- per u‘j
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Case (2) : (5)
r.y r.x

cyc B Ce v cre _
7 +o§rjvj vy=2nplmag(a,)-p—x3— ~PI;uy -pr

X=2npReal(al)+p iU o

J

where rj is the circulation of the vortex blob, (uj’vj) is the
velocity of rj, p is the density of fluid, I', and (mc,yc) are the
circulation of the shedding vortex blob from the boundary layer
in the lapse of small time At and its position respectively. &1
is the derivative of ay with respect to t, where a is given by
a =" ?%I m(s)z(s)ds - ?%f r(s)z(g)ds
Sp Sp

where ® and vy are the source and constant circulation
distribution per unit length on the surface of the cylinder
respectively, in order to solve the outer flow by panel method.
We note that Fp in Eq.(3)is given byfrp=-2ny. The friction force
may be obtained by Chorin's method [10], but its value 1is very
small, compared with the pressure drag, so in the present paper

we discuss on the pressure force only.

4. Numerical Results

The numerical results of vortex blobs and the streamlines
are shown in Fig.2 in the case of impulsively translating without
rotation and time (=40. We note that the separation points are
automatically determined. Comparing with results given by
Anderson et al. [16], we see that the present method is available
and almost comparable with the method using conformal‘mapping.

The numerical results of vortex blobs and streamlines for
Cases (1) and (2) are shown in Fig.3. We see that the figure of

vortex blobs is different: For both cases, the similar pattern
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such 1like Karman vortex sheet is obtained but the number of

clusters is different. The position of vortex blobs for Case (2)

Case (1)

Case (2)

Fig.3. Vortex blobs and streamlines with rotation (£=25)

is a little upward and the downwash velocity of clusters for Case
(1) is a 1little 1larger than that for Case (2). Figure 4 shows
vortex blobs and streamlines at an early time (¢{=5). We see that

there is a cluster of vortices in Case(2) but in Case(l) an
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jnitial cluster is just forming: This is the deference of number

of clusters, and the difference of downwash velocity seems to be

caused by the difference of early stages.

Case (1) Case (2)

Fig.4. Early stages with rotation (t=5)
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Fig.5. Velocity vectors of early stages (t=5)
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Case (1)

Fig.6. Velocity profile in the boundary layer (£=25)

The detailed velocity vector of early stages is also shown in
Fig.5. The velocity profiles in the boundary layer are shown in
Fig.6. We see from these figures 5 and 6 that flows of both cases
are different at the same time. Fiéure 7 shows the feature of
flow in the case where the 1ift coefficient is almost valley (see

in Fig.8), and we see that they are almost similar.

Case (1) Case (2)

(£=20) (t=23)

Fig.7. Vortex blobs and streamlines for almost valley 1ift



60

The 1ift and drag forces due to the pressure are shown in
Fig.8. Cl and Cd are the 1lift and drag coefficient, respectively,
based on the translating velocity and diameter of circular
cylinder. From this figure, we see that the drag force is almost
same and the 1lift forée is almost same except initial few steps,
although, as pointed out in section 3, the formula of 1ift force,
Eq.(5), is different. To know the dominant term of this result,
we divide 1ift force given by Eq.(5) into two terms; shédding
vortex and a; term, Cl(vortex) and Cl(source). Figure 9 1is the
results of these two terms. From this figure, we see that the
shedding term for Case (2) is smaller than that for Case (1) and
this discrepaﬁcy is supplemented by the fourth term of Eq.(5) due

to the far field condition.

Case (1) Case (2)

Cl&Cd 0=1.0 _:_. gj Cl&Cd 0=1.0 ; 81
60 6.0 %

s 3
50 _ 100‘%%
40t 401

& -]
3% £ sof S 7 %

30f jghi £ of
20t 5§ %ﬁy%#f Gg%% jﬁ %ﬁ§wf 207
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Fig.8. Lift and drag coefficients

Figure 10 is the time histories of the circulation, Fp, for both
cases. We see that rp is almost same except initial few steps.
From this fact, we may arrive at: The total circulétion in the
boundary layer is almost same, because the circulation around the

outer edge of the boundary layer is I'j and the circulation around
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the surface of the circular cylinder is FO.

Case (1) Case (2)

°  Cl(source) . ° CI
4‘3 Q=1.0 — Ci(vortex) _ 4((3)‘ Q=10 —cn{i%“rﬁi}

o

ok ¢ Mﬁ”V%WmW

=201

~40
5.0
6.0 4 = 60 L _ N

v0 100 200 ¢ 00 uo 100 200 t 300

Fig.9. Lift components of shedding vortex and others
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Fig.10. Time history of circulation Fp

This fact implies the possibility that the initial cluster of
vortices in Case (2) acts the cancel of the last term of Eq.(5),
which 1is derived by the far field condition.‘ The total
circulation of 1initial cluster for Case (2) shown in Fig.4 is
almost -5.24. If this cluster flows down with translating
velocity, the above mentioned fact may be confirmed. From these
results, we may arrive at the following conclusion, although we
can't say surely: The difference of initial condition is not so

important except initial few time steps and this difference
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appears such like the starting vortex, provided the limiting

boundary condition as t-o is the same.

6. Conclusions

The present paper proposes an alternative numerical method
on vortex methods; the combination of the vortex method with the
panel method. The numerical results shows that this method 1is
comparable with earlier results, so that it may be applied to
bluff bodies with complicated shapes.

Two different initial conditions of impulsively translating
circular cylinder with rotation are calculated numericall&: There
is difference of flows at the same time step, but the pressure
force is almost same except initial few time steps. The reason of
this latter fact ié discussed and is shown that the initial
cluster of vortices plays a role just like a starting vortex
around an impulsively starting aerofoil. This fact implies that
the initial condition is not so important except early time

stages, if the boundary condition as -« is the same.
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difference of the far field condition seems to be only starting

vortex.
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