goooboooogn
0 8240 19930 151-161

151

RECENT PROGRESS OF THE STUDY OF THE EULER-POISSON EQUATION

FOR THE EVOLUTION OF GASEOUS STARS

KIRFEZEARY HWH #  (Tetu MAKINO)

§1. Introduction. We are studying the following Euler-Poisson

equation:

(2)

3.2
(3) z 2—92= 4rp.

i=19x%.
I=19%;

is a constant such that
t
(

Here vy

p =p(t, x), v=

1 <y s 2. The unknown functions are

Vi Vo, v3) =v(t, x), S=25(t, x) and ¢ =
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o(t, x) of tz 0 and x = (x1, X x3)4£ R>. The equations (1)(2)
(3) describe the hydrodynamic evolution of the internal structure of

a self-gravitating gaseous star. The variable © means the density,

p the pressure, v the velocity, S the entropy per unit mass and ¢
the gravitational potential. The equation (1) is the Euler equation of
a compressible fluid without viscosity, the equation (2) is the equation
of state for an ideal gas, and the equation (3) is the Poisson equation
which determines the external force -pgrad$ of (1) by the density
distribution itself. Since we consider density distributions of compact

support, we replace (3) by the Newtonian potential

(3) o(t, x) = - Eg %ézf—%%dy.
R

For a detailed discussion of the equation in the astrophysical context
we refer to P. Ledoux and T. Walraveq, 6.

The problems relative to the eqﬁation (1)(2)(3) are: i) the exist-
ence and the uniqueness of the local solution to the Cauchy problem; ii)
the eXistence or non-existence of global solutions; iii) the stability
of stationary solutions; etc. The article T. M.,8,1986, was the first to
discuss these problems. After this article we continued the study of the
Euler-Poisson equation and obtained some results. However our achievement

cannot be said to be enough. We expect that more scholars inquire further

into ﬁhis study.
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§2. Construction of local solutions. First we discuss the Cauchy
problem for (1)(2)(3) wunder the initial-condition

(4)  plig =000 20, vl =v00), Sl_g=5"(x).

We obtained

Theorem 1 (T.M. and S. Ukai, 10,1987) Let po(x), vo(x) and SO(x)

belong to Cl(RB), and po(x) 2 0 1is .of compact support. Put

Yy-1 v-1_.0

- Y=g
s) 0= ? e, 0, 80,

IfI)1<ys5/3 and L e (RP) orir11) 1<y s2, 0°¢ i*®’) and
poéHB(R3), then there exists a solution (p, v, S) € CI(EO, T)x R3)

of (1)(2)(3)'(4), where T 1is a small positive number.

The crucial point of the proof of this existence theorem is the integrétion
of the Euler equation (1) for compactly supported density. The standard
mathematical treatment of the compressible Euler equation is to transform
it to a symmetric hyberbolic system to which Friedrichs-Lax-Kato thbry

is applicable (3, 4, 5, 7). But in the former study, as in 4, 7, the
density p was supposed to majorize a positive constant throughout the
whole space uniformly. However, in our problem of stars, the density is
expected to have a compact support or, at least, to vanish at infinity,

for otherwise the Newtonian potential would diverge (Olbers' paradox).
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This situation requires other symmetrization than that of 4,7.

Thus we introduced a new variable

(6) w=p <Y = p e <V .

Changing the variables from p to w, and dividing the second and third

equations of (1) by p formally, we get a system of the form
oU oU  _
(7) B+ B oa g = o),

where U = *(v, v, 8), G = *(0, -grad 9, 0), Ay(V), A(V), j=1,2,3, are
symmetric matrices and AO(U) is positive definite uniformly for

bounded S. These coefficients are smooth functions of U and there are
no problem even when w or o vanishes. Then Theorem II of T. Kato, 3,
is directly applicable. By this device Theorem 1 can be proved by the

standard technique using the Banach's fixed point theorem.

§3. Necessity of improvement of Theorem 1. We cannot content our-
selves with the sufficient conditions I) and II) required in Theorem 1.
The most serious reason for improvement is as follows. If 6/5 <y s 2,

thre exist stationary solutions of the form

1
2 2-Y —lT
(8) p =<4—IT§(A'.Y—I1‘)' G(A'XI)Y— y V. F O) S = log K;‘

where 8(r) is the Lane-Emden function, i.e., the solution of
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;
2

e , 2 de =T _ _ dae _
2 rat® =0 8= Flpp =0

(see 1, Chap.IV), and A and K are arbitrary positive constants. These
solutions are of class C1 but not satisfy the conditions of Theorem 1.
In other words, the solutions constructed in Theorem 1 are limited to .

"tame" solutions in the following sense.

Definition. (p, v, S) 1is called tame solution of (1)(2)(3) on
BL T) if 1) (p, v, S) éiCl([Q,T) X RB), p 2 0, the support of
o(t, .) is compact, and i1) Y 1/2&clcfo, 1) x#%), veco.) ;

B(RB)), and the additional equations (equations of free fall)

ovy ’ vV, 30
(9) —a—E- + Z VJ'a';"" + g‘)‘(—- =0, i=1,2,3
Jj=1 J I}

hold in the exterior of the support of 0. On the other hand (p, v, S)

will be called classical solution if only 1) 1is assumed.

Thus the spherically symmetric stationary solution (8) is classical but
not tame. We expect, therefore, that the conditions for the local existence

theorem will be weakened so as to allow these stationary solutions.

Open Problem 1. To establish the existence theorem of local solutions
for a class of initial data which includes the spherically symmetric

stationary solutions (8).
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§4. Result by P. Gamblin. Recently P. Gamblin proved the following

Theorem 2. (P. Gamblin, 2, 1992) If 1<~y <9/5, & H, with
7/2 <'s < (Y+1)/(y-1) if 2/(y-1) € ‘N and 7/2 <s if not, and if
0 < paéi Wl'p with 1 s p < 3, then there exists a Cl—solution of (1)

(2)(3)" ¢4) locally in time.

This is a nice result, because the stationary solutions

2\ /4
= <%§%— (1 + A2|x|2)_5/2

for y =6/5 satisfy the conditions of this theorem. Therefore this is
an answer to Open Problem 1 at least for y = 6/5. For the proof,

P. Gamblin skillfully uses the results by J. Y. Chemin,.-S. Alinhac, P.
Gérard and J. Rauch concerning the paradifferential calculus of J. M.

Bony .

5. Non-existence of global tamé solutions. Triggered by the work
13 of T. Sideris, we studied the question whether tame solutions
constructed in Theorem 1 can be continued to t = +G0. We began by
considering the equation in which the gravitation is neglected. Let us

denote by (1)O the equation (1) from which the term -p grad ¢ is

dropped. Then we obtained
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Theorem 3. (T.M., S. Ukai and S. Kawashima, 9, 1986) Let (p(t),
v(t), S(t)) be a tame solution of (1)0(2) on 0 st <T, If the support

of (p(0), v(0)) 1is compact and if p(0) # 0, ¢then T 1is finite.

This theorem claims that any non-trivial tame solution of (1)0(2) will
become not tame after a finite time. But we could not know what will

happen actually after that 1limit time. Thus we have

Open Problem 2. What will happen actualy for a solution. at the

limit time of the maximal interval of existence as a tame solution?

It was the next task to prove the same .conclusion as Theorem 3 for
tame solutions of the original equation (1)(2)(3) including the self-
gravitation. We began by dealing with spherically symmetric solutions,
that is, solutions of the form p = p(t, |x|), v = TéT vit, |x]),

S =3(t, |x]). We obtained

Theorem 4. (T. M. and B. Perthame, 11, 1990) Let (p(t), v(t),
S(t)) be a spherically symmetric tame solution of (1)(2)(3) on
0 £t <T. If the support of (p(0), v(0)) 1is compact and if p(0) %

0, then T 1is finite.

We conjecture that this is true for non symmetric tame solutions. Thus

we have
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Open Problem 3. To prove that the life span of any non trivial

tame solution of (1)(2)(3) is finite.

§6. An information about classical solutions. Classical solutions
can be global. Then we can ask the asymptotic behavior of global
classical solutions. But we know little. We note that along any classical
solution of (1)(2)(3)' the total mass M = g}Ddx and the total

energy

E = g(zpv ¥ "‘T p)dX - » gg o(t, X)E (¢ y)dxdy

are independent of t. Computing the second derivative of the function
2
H(t) = g‘p(t, x) x° dx,

we get

Theorem 5. (T. M. and B. Perthame, 11, 1990) Suppose Y 2 4/3.
Let (p(t), v(t), S(t)) be a global classical solution of (1)(2)(3)'.
If E > 0, then lim.inf R(t)/t 2 VE/M, where R(t) = sup{ le
t ~> +00
p(ty X) # 0 } .

§7. Blowing up solutions. On the other hand, we can construct

classical solutions which blow up after finite times.
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Theorem 6. (T. M.,12, 1992) If <y =4/3, then there exists a family
of classical solutions of (1)(2)(3) which tend to delta function after

finite times in the distribution sense.

In fact we can find particular solutions of the form

3/2 .
o 41 ydBd? v =8 s e,
where d2a/dt2 = - )\/a2 and
2
Y+ 2w P =(a/a) (/)

[N
]

Choosing O s A small and &a(0) <,ﬂ5§7;f63, we get blowing up solutions
since there exists a finite T such that a(t) — 0 as_t —> T-0.
We can say, therefore, that we have a'model of the gravitétional collapse
of a gaseous star-even in the Newtonian ( non relativistic ) theory.
However, this construction depends upon the assumption that Yy coincides

with the critical exponent 4/3. Thus we have

Open Problem 4. To construct blowing up classical solutions for Y

other than 4/3.

§8. Conclusion. We have summed up the results concerned with the

Euler-Poisson equation we have at the moment. Although we have obtained
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some results, our achievement should be said to be too slow. In fact the

following problem may be open.still now.

Open Problem 5. To classify in a strict mathematical way the stability

of the spherically symmetric stationary solutions,

Anyway, we believe that the Euler-Poisson equation is enough of
a challenge. We expsct that more scholars investigate this equation and

that the open problems listed above will be solved in the near future.
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