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On the Hausdorff dimension of the attractor for the
-heat convection equation
By Kazuo OEDA (Japan Women's University)
K& —F BATIRE)

§81. Introduction.

In our previous study [3]., we considered the heat convection
equation (HC) in a time-dependent domain Q(t) c R2 and showed
the existence of the absorbing set for (HC).

On the other hand, Foias-Manley-Temam [1] showed the
existence of the attractor for the Bénard problem and obtained
the estimates of the Hausdorff and fractal dimensions nf the
attractor.

In this paper we consider (HC) in a wider class of fixed
bounded domains of R2 with inhomogeneous boundary conditions and
we estimate the Hausdorff and fractal dimensions of the
attractors for (HC).

§2. Equations and assumptions.

Let Q be a bounded domain in H2 included in an open ball
B = B(0,d). The boundary 9Q consists of N connected components.
namely, 9Q = Fl + e 4 FN. where Fi are smooth (say, of class
C2) and they does not intersect each other.

We consider the following heat convection equation

u, + (u*vV)u

t -vp/p + {1 - d(G—TO)}g + vAu ,

1) div u o,

Ot + (u-v)e@ KAQ . in Q ,

(2) “'89 = B(x) , 9'89 = T(x) > 0 ,
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(3) u|t=0= a(x) u|t=0= h(x) , x € Q ,

where u, p and 0 denote the velocity of the fluid. the pressure
and the temperature, respectively ; g(x) means the gravitational
vector and v, Kk, o, B are physical constants.

Now we make an assumption on the boundary function 8.

Assumption. 8 is smooth and satisfies the condition

(4) fr B‘n ds = 0 (k =1, <<+ , N ,
K

where n is the outer normal vector to Fk.
Then, the next lemma is known

Lemma 1. Let 8 € HS/Z(SQ), then for any € > 0, there exists
b € H>(Q) such that b = 8 on 89, div b = 0 and

5) lcvvb, v ¢ elvvl® for any v € HL(Q).

Remark 1. We assume the function T(x) is continuous on 9%Q.

Then we can have a function 0(x) such that A0 0 in Q and

03 = T(x).

Now we make changes of variables : u =1 + b, 6 =8 + @;

dx*,y*), t = @/vett, i = w/an®, 8= wr /0e*

(x,y)

(pv2/d2)p*. where 'I‘0 = mgx T(x). Abbreviating asterisks

and p

* and using the same letters u, 0, o, x, v, t, the heat
convection equation (1) ~ (3) are rewritten as follows

U+ UV = -Vp+Au - (u*V)b - (b*V)u - R@ - (b*V)b + Ab

+ d3g/v2 - RO - 1/P)
(6)
divu-=20 .
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k{ g, +(u-v)8 = (1/P)A8 - (0§ - (bMY - (b-ME
(7) u|89= o , elaQ= o ,

(8) ul a-b , 6l,_ = h-0 ,

t=o=
where R = agTodg/kv and P = v/«

We introduce the following abstract heat convection

equatioh (AHC)
(AHC) %% + AUCt) + FUCt) + MUCt)Y = PO T,

here U = t(u,8), AU(H) =t(—Po(Q)(Au), ~(1/P)A8), FU(t) =

t(Po(Q)(u°V)u, (uv)9), MU(Ct) = t(PO(Q)((U°V)b + (b*V)u + RO),

(98 + (b-V)8), f = t(-(b°V)b + Ab + dsg/\)2 -R(8 - 1/P),

-(b-¥)0), P(Q) = t(PO(Q), IQ) and PO(Q) is the projection LZ(Q)

— HO(Q).
§3, Results.

To explain our results, we give some preliminaries.
Definition 1. Let U : [0,T] — H_(@ x L®(Q), T € (0,).

Then U is called a strong solution of (AHC) on [0,T] if it

satisfies the following properties (i) and (ii).

(i) U € C((O;T] H HO(Q) X LZ(Q)) and U(t) is absolutely

“continuous on (0,T1].
. 2 1 2 1
(ii) U(t) € D(A) = (H () n HO(Q)) X (H°(@) n HO(Q)) for

a.e. t € [(0,T) and U satisfies (AHC) for a.e. t € ([0,T].

Definition 2. 1f a strong solution U of (AHC) satisfies
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(9) U0 = U_ = tca-b, h-8) in Hy () x L2y

then it is called a strong solution of the initial value problem
for (AHC).

Here we put H = HO(Q) X LZ(Q) and V = H;(Q) X Hé(Q).
Then we have the following existence theorem ([41).

Theorem 0. Suppose the assumptions hold. Then for anu U0 € H

there exists a unique strong solution U with U(0) = UO such that
U € C(ro,T1 ; W) n L2¢0,T ; V) and dU/dt € LZ(5.T : H) where &
is an arbitrary number in (0,T). In particular, if U0 € V, then

U € Ccro,T1 ; vh) n L2(O,T ; D(A)) and dU/dt € L2(O,T v HD.
Put S(f) : Uo — UCt), UCt) being a solution, then we have
Theorem 1. There exists a V-bounded absofbing set}& in V for
(AHC) in the following sense : For every bounded set E,C v,
there exists t = t(B) > 0 such that S(t)B c A for all t > t®.
Furthermore, for any bounded setR” c H we can take t(B") > 0

satisfying S()B” c A for all t > t(®").

Next we state the definition of an attractor.

Definition 3. Let (S(t)}t>0 be a semigroup of continuous

operators in a Hilbert space H. Then a functional invariant set
for S(t) is a set X € H such that S(t)X = X for any t > 0.

Definition 4. Let X be a functional invariant set for S(t).
Then X is said to be an attractor in H if it possesses a
neighbourhood (Fof X in H such that for any o, €J distsctre .
X) —m 0 as t — o,

Then we have
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Theorem 2. Let)& be the absorbing set obtained in Theorem 1.

. _ ——H . ' .
Putting X = sgo tgs S(tb& , then X is an attractor for (AHC).

Here we introduce the Hausdorff dimension of X.
Definition 5. LLet E be a metric space and X be a subset of

E. The number uH(X,d) € [0,»] defined by
ny(X,d) = éig py(x,d.ey = §YB ny(X.d.ej
is the d-dimensional Hausdorff measure of X, where

. d
ny(X,d,e) = inf zri

and the infimum is for all covering of X by a family (Bi) of
balls of E of radii ri‘g €.
Definition 6. Let E be a metric space and X be a subset of

E. The number d, (X) € [0,~] is called the Hausdorff dimension of

H
X if it satisfies
o , d> dH(X)
uH(X,d) =

+

,» d <« dH(X) ,

where uH(X,d) is‘the d-dimensional Hausdorff measure of X.

Now we will give our main theorem.

Theorem 3. Let X be the attractor in Theorem 2. Then the
Hausdorff dimension dH(X) is finite and the following estimate
holdé

(10) dH(X) $ 1+ 2(72/71 + /ra/vl) .

- - - - 2
where v,= C,(x,+17)/2(1+P), y2_<2/P+|RI/2), va-(Cl+4)ﬂVb"

+aco (bl -1wbl®+ 31Rl/P+a®ngtZ/v5H% 100 . IRI=algl T d®/kv.
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ﬂg"i="gi"2m +||g2||2oo ;oA and A; are the smallest eigenvalues of
L L

the Stokes operator and -A with the homogeneous Dirichlet

condition, respectively.

Remark 2. The following estimate is known ([4]1,pl118) :
The function b given in Lemma 1 (satisfying (5)) also satisfies

an estimate of the form

(11) bl 9 < Ibl 1 < Ce eXp(4/8)“BH”]/2

2ay © 0 ntay T Q)

where C depends on the domain  and physical constants.

Remark 3. We will denote the fractral dimension of X by
dF(X). Then we can obtain the estimate

dF(X) £ 2+ 4(?2/1’1 + /73/71)

§4. Some lemmas.
To prove the theorems, we prepare some lemmas.

Lemma 2. Let X be a subset of a Hilbert space H and

!

(S(t))t>0 be a semigroup in H. Suppose that S(t)X = X for any t

> 0, S(t) is differentiable on X with the differential L(t,u)

and ﬁ R"L(to’U)"L(H) { +o for some tO > 0. Denote the Lyapunov

exponents for X by uj(jgl). If for some n g 1, “1 + e+ un+1 <

0, them u ., < 0, (ug + ==+ + un)/lun+1| < 1 and the Hausdorff

dimension dH(X) is bounded as
(u]+"°+u ),

: n
< n+l
.

(12) dH(X)

[ ZaN

n +

The next elementary lemma is also useful ([(41, p303).

Lemma 3. We assume that the sequence (“j}j>1 satisfies the
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following inequalities

(13) Hy + 00+ “j < -otj6 + 8 for any j 2 1.

where a, 8, 86.> 0. Let m € N be defined by

1/6

(14) m- 1< (28/c) m

[[FaN

Then u1+°-ﬁ+'u o

o < 0 and (u j+-es uj)+/|u1+-°-+ | <1

for j = 1,+°+,m.
To state the next lemma, we prepare a framework as follows.

Let (S(t)}t>0 be a semigroup in a Hilbert sapce H generated

by a nonlinear evolution equation

(15) %% = F(u(t)) for t > 0, u(0) =u €H

We assume (15) has a linearized equation
(16) dv | AL(S(t)u HU(t) Uuo) = &
dt F 0 ’ v

and moreover we assume (16) is well-posed for any u, and &€ € H.
Finally we assume S(t) is differentiable in H with the |
differential L(t,uO) defined by
17 L(t;uo)ﬁ = Uty for any &€ € H ,
where U(t) is a solution of (16).

Under these assumptions, we have ([4])

Lemma 4. If X is a functional invariant.set of S(t) and “j
(@] g 1) are Lyapunov exponents for X, then

(18) my + o+ Ca

where qm is defined by

(19) qm = llmqsgp qm(t)



219

o 1,t . -
= lim,syp C supy gup, S T (Ap(w-Q (t))dT)
I ES!
i =
and Qm(t,u0,§1,~'°,5m) is the projector from H onto the space
spanned by Ul(t), e, Um(t) ; Ui(t) being solutions of (16)

with U, (0) = E,.
1 1

We use later the known facts as below,

Lemma 5. Let {lj) and {13} be eigenvalues of the Stokes
operator and -A with the homogeneous Dirichlet condition on Q,
respectively. If Q c Rz, then
(20) Aj ~ cklj as j — o« (by Metivier),

”

1j as j — o (by Courant-Hilbert).

(21) 13 ~ CcA

Lemma 6. ([4].) Let A be a linear positive self-adjoint
operator in a Hilbert space H. Suppose A_1 is compact. Let (Aj}

-be eigenvalues of A. Then, for any family of elements wl. st
1/2

®n of V= D(A"" ") which is orthonormal in H,
m
(22) jZwaj,wj) 2 X+ e v Al

I1f, furthermore, lj ~ cxlja(a>0) as j — o, c depending on A,
then

m - o+l

(23) jzl(A(pj’wj) => ll + e 4 )\m 2 c ,'le

with another constant ¢~ depending A and o.

85. Proofs of the results.

We will only give the proof of Theorem 3 which is the main
theorem of our work. First, we introduce the linearized equation

of (AHC). Let ¢ =-t(u,9) be a solution.of (AHC) with ¢(0) = wo
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= t(uo,eo). For ¢ = t(U,Q) € (HZ(Q) n H;(Q)) X (HZ(Q) N Hé(Q)).

we define an operator
PO(Q){AU - ((u+b)-v)U - (U+-V)(u+b) - RB)
(24) AF(w)¢ = : _
(1/PYAB - ((u+b)-¥v)B - (U-V)(0+0)
Then the linearized equation (LAHC) of (AHC) is given by

db _ | ot
(LAHC) I = Ag(¢)d  ,8C0) = "(&,n)

Remark 4. (LAHC) is well-posed for any t(E.n) € H = HO(Q)
X LZ(Q). On the ofher hand, we can show S(t) is defferentiable
in H and its differential L(t.wo) is written for every t(E.n) €
Hoas L(t,e )t ,m) = "), 8(1)) where "(U(1),8(1)) is a
solution of (LAHC) with t(U(O),G(O)) = t(E,n). Therefore, we can
apply Lemma 4 to (AHC). Moreover, we see that fof some tO > 0,

&UEXIIL(tO,qu)M*-m where X is the attractor in Theorem 2., whence
0

Lemma 2 is applicable to (AHC). We omit these verification.

Now, let X be the attractor for (AHC), we define qm by

(25) q_ = lim_sup ,bsup sup 1pt ;
m {h,s8 .Kgg)ex t‘gi’"i’e” 1/ T (Ap(@(T))eQ (T))dT),
0 it 0o
i i’ =
where ¢ = t(u,G) is a solution of (AHC) with @©(0) = t(uO,GO) and
. t t .t
QmH is spanned by (Ul’gl)’ , (Um,em) ; (Ui.Gi) are

solutions of (LAHC) with t(Ui(O),Qi(O)) = t(Ei,ni). Then we

present the following lemma by which we can prove Theorem 3.

Lemma 7. Consider (AHC) equation. Then we have

[\ I o

Y Y
2 1 2
m + ')’2m + Y3 < m + 2Y]

(26) a, ¢ -7y £ 3 t Y3

where Yi are defined in Theorem 3.
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Remark 5. If Lemma 7 is proved, then from (18) of Lemma 4,
we get an inequality like a type of (13) of Lemma 3, from which
we can find m such that My +om o < 0 and, using Lemma 2,
we conclude that (10) of Theorem 3 holds.

Proof of Lemma 7.

We recall that X is the attractor for (AHC), a, is defined
by (25) and Qm is the projector. To estimate qm‘ let Wj(s) =
t(wj(s),ej(s)) be an orthonormal basis of H, Wj € V and

Yy S 4 span QmH. Now we calculate

R m

27y T (Ag@eq = & g

F (m)Wj, Wj)

n
|mg

{(Aw.,w.)—(((u+b)-V)w.;w‘)-((w.'V)(u+b),w.)—(R9.,w.))
J J J J J J J

+
j

upg

{((5 Ae ,0.)-(((u+b)*¥)0.,0.)-((w,.-¥)(6+0),0.))}.
1 J A j i

Here we notice

2
28)  E T murbr vl ¢ So B T 1% vcurb) lax

ol -1V (u+b)ll  (where p(x) iglle(x)lz)

HA

E hvw, 2

Nl’—a

CI(HVuH2+HVbH2

A

here we used lol® ¢ ¢, & Hvw. 1% | ¢, depending on Q.

le
2 ,

29y .2 1(RrO.,w.)|
iFl i’

A

since “ij2 + HGjHZ = 1 (normalized).
(30) .2 1w, v(8+8),8.)] = .2 |((w.-v8.,0+0))]
i=1 J J iF1 i J
1 2
$E &M e ¢ 55 (2196 1%« En

where we employed t(wj.()j) € V, Hwiﬂ ¢ t together with |ec,t)H]
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< 1/P for @ € x and |8] ¢ 1/P (maximal principle).,
Using (28), (29), (30) and noticing

02

- - 2
@1 aew 1%+ PThive 0%y aepy T avw i ive i?

and with the aid of Lemma 5 and Lemma 6, then we have

(32) Tr(AF(¢)°Qm)

2 2 2 IRI 2
< - areEy g8 v nPenve 1% e mec, arvul®+ivp
C
2 <32 2 |R| 2,
$ 7 Tap A tAmT ¢ (Bt 5omC, (hvull 2 1vbl

where 02 depends on Q.
Next, we estimate HVu(t)Nz. To do this, recall that t(u,9)

is a solution of (AHC), then we get

(33) 3 =SlucH1? + IvucHi?
= -((u*vYYb,u) - ((b*V)b,u) -(Ab,u) - (RO,u)
+ a3 2z, w) - (RB,w + P LR, W
¢ axgloul?e2c (i -1opt®+ 3IRIP +a®v 20 )2 1) + 209007,
where we used Lemma 1 with € = 1/8.

Thus we obtain

(34) lip,gup %f;HVu(t)szt

¢ 41vbh? + acicipl-vph3e3IrIP I eau 2ngn ) 2 1))
Hence, finally we have
(35) q_ = lip, gup —f T . (Ag(®)°Q ddt

—czz°1(1+P)'1(11+x;)m2+(zp' +IR] -2 ym

A
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(21

(31

(41
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+

(c +IvblZeach (bl -1+ alrIP  eav 200 n 2 101

i

'Ylm + Yzm + YS

Recalling Remark 4 and 5, we have proved Theorem 3.

References.

Foias, C., Manley, O., and.R. Temam, Attractors for the
Bénard problem : Existence and physical bounds on their
fractal dimension, Nonlinear Anal.T.M.A., 11, 939-967(1987).
Oeda, K., Weak and strong solutions of the heat convection
equations in regions with moving boundaries, J.Fac.Sci.Univ.
Tokyo, Sect. IA, 36, 491-536(1989).
Oeda, K., On absorbing sets for evolution equations in fluid
mechanics, RIMS Kokyuroku NO.745, 144-156(1991).

Temam, R., Infinite-dimensional dynamical systems in

mechanics and physics, Springer-Verlag, 1988.



