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The Invasion Problem for the HIV Infection
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1. Introduction |

During the past decade, human immunodeficiency virus (HIV)
disease has become one of the major public health problems in the
world. In many countries AIDS is already a major cause 6f death,
it is predicted that it will soon become so in many others [28].
On the other hand, the HIV/AIDS dynamics provides a large number
of new problems to mathematicians, biologists and
epidemiologists, since it has many features different from
traditional infectious diseases. Hence the study of HIV/AIDS has
stimulated the recent developments of mathematical epidemiology.
In the following we briefly discuss the characters which should
be taken into account in modeling the HIV dynamics.

It 1is well known that HIV virus has the long incubation and
infectious period (its longest estimate is about 8-10 years).
Moreover during that period, the infectivity of infected people
is varying depending on the time since infection (see [4][25]).
Accordingly, the time scale of HIV transmission is so long that
demographic change of the host population could affect the

transmission process. On the other hand, the death rate caused



by AIDS is too high to be neglected, so the present of HIV
affects the demographic structure (total size, age-structure,
growth rate, etc.) of the host population. In a word, there is
true interaction between demography and epidemics.

Next there exist various kind of risk groups for the HIV
infection. HIV virus is transmitted by homo- or hetero-sexual
intercourses, needle sharing Dbetween drug abusers, blood
transfusion, etc. Therefore, in the real, the susceptible
population 1is composed of subgroups, each of which hes a
different susceptibility to the transmission of HIV virus. Even
in a eubgroup, individuals can be distinguished by the degree of
risky behavior (see risk-based models [9]}[10][16][20]). Moreover
the age-structure of the host population would play an important
role, since social or sexual behavior of people heavily depend on
their age.

Since the whole dyﬂamics of HIV/AIDS is so complex that we
could not analyse it all at once. The reader interesting in the
recent developments of modeling HIV dynamics may refer to [6][7]
[16][19]. In this paper, we simply consider an age-structured
population model for the HIV infection in a homosexual community.

O0f our concern here is to study the invasion problem of the HIV

infection. That 1is, the main problem that we are interested in

here is to find the basic reproduction number R, such that the

introduction of some infectives into the susceptible population

triggers an epidemic when Ry,>1, and no epidemic occurs when R,<1.

In other words, the disease-free steady state is stable if R, is
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less than one and becomes unstable if R, exceeds unity. For this

purpose, it is sufficient to deal with the linearized equation

around the disease-free steady state. That is, in the initial
phase of the epidemic, we can ignore the fact that the density of
susceptibles decreases due to the infection process. This type
of argument has been systematically developed by Diekmann and his

collaborators in order to calculate R, (see [11]{12][13]).

2. An Age-Structured Model for the HIV infection
in a Homosexual Community

In the following, we consider an age-structured population of
homosexual men with a constant immigration. For simplicity,
individuals are assumed to be homogeneous with respect to their
sexual activity. However, note that the following argument can
be applied to the risk-based model without any essential
modification. Individuals ha#e sexual contacts with each other
at random and the duration of a partnership is negligibly short.
We divide the homosexual population into three groups: U
(uninfected but susceptible), I (HIV infected) and A (fully
developed AIDS symptoms). We do not introduce a latent class,
since the latent period of AIDS is Very short in compare with its
long incubation period. Thus all of I-individuals are
infectious. A-individuals are assumed to be sexually inactive,
because they are too ill to be active.

Let U(t,a) be the age-density of the susceptibles at time t.
Let 1 be the time since an individual has entered into I-

population or A-population. Let I(t,a,t) and A{(t,a,t) be the



"age-duration-distributions of respectively infected population
and AIDS population at time t. Let u(a) be the age-specific
natural death rate (or the rate of terminating sexual life),
§(a,t) the death rate due to AIDS, yv(a,t) the rate of developing
AIDS, f(a) the age-density of immigrants and let A(t,a) be the

infection rate (or the force of infection). Then the dynamics of

the population are governed by the following system:

(3,+3,)U(t,a)=-((a) +A(t,8))U(t,a)+¢ (a), (2.1a)

(3,+3,+2_)1(t,a,7)=-(n(a)+y(a,7))1(t,a,7),  (2.1b)

(3,+3,+3_)A(t,a,7)=-(n(a)+6(a, 7) A(t,a,7), (2.1c)

u(t,0)=0, . (2.14)

I(t,a,0)=A(t,a)U(t,a), (2.1e)
a

A(t,a,0)=j v(a,t)I(t,a,t)dT,. (2.1f)
0 .

The force of infection A(t,a) is assumed to have the following

expression:

w b
A(t,a)-:J J B(a,Q,T)X(a,Q,N(f,*))I(t’t;’ T)

N(t.L) drdz, (2.2)
0’0 ,

where N(t,a) is the age-density of sexually active population at

time t:
N(t,a)=U(t,a)+JaI(t,a,r)dT, . (2.3)
0 N

and R{(a,&L,r) 1is the transmission probability that a susceptible
person of age a becomes infected by sexual contact with an
infected partner of age L and duration t. The mating function

¥(a,t,N(t,*)) depending on the population density N(t,*) denotes
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the probability that an individual at age a has a partner aged &
at time t. From its physical meaning, the mating function must
satisfy the following condition:
N(t,a)x(a,5,N(t,#))=N(t,E)x(5,a,N(t,*)). (2.4)
Under appropriate conditions, existence and uniqueness of
solutions could be shown by using integral equation method
[27][29] or semigroup approach [26].
Here we mainly consider the initial invasion process of HIV
into the susceptibles. First it is easily observed that system

(2.1) has a disease-free steady state

U*( )-Jaf( y28) 45 1*(a,1)=0 (2.5)
a~° 09.(0)0’ a,T)=u, .

where Q(a) is the survival function defined by
a
&(a):=exp(-I0u(o)dc).
Let y be the age at which an infected individual has entered into
the infectious class. Let us define a new function J(t,rt,y) by
J(t,1,y):=I(t,y+T1,t). Then J is the density of infecteds at time
t and duration +t since infection by age at infection y. Using
the function J, we can formulate the linearized equation

describing the initial dynamics of infected population:

(at+aT)J(t,r,y)=-(u(y+r)+v(y+r,r))J(t,r,y), (2.6a)
W W *

J(t.o,y)=j j 8(y.5, TX(E,y, 0" )I(t, 7, 6-1)ddr,  (2.6b)
0t

J(0,7,y)=d,(1,Y), (2.6c)



where J0 is the 1initial data and we have used the relation
() xty,z,t*)=U" (&)x(z,y,U"). From (2.6a), we obtain

J(t.r.y)=J(t-r.0.y)—§%;ylexp( J v(y+s,s)ds) for t>r, (2.7)

=J0(r-t.Y)——§T§7£lexp( I v(y+T-t+s,T-t+s)ds) for Tat.

Therefore we know that the behavior of J(t,0,y) determine the
initial dynamics of the HIV epidemic. From (2.6b) and (2.7), w
arrive at the following integral equation for the boundary value
J(t,0,y):

t

J(t,O,y)=G(t,y)+j (k)

JjB(y G,t)X(&8,y, vt )Q(Q )F(C,T)J(t—r,O,C—T)dcdr

° (2.8)

where

T

F(E.r):=exp(—J y(&-1+s,s)ds),
7 0

w L 2(B) T, 1)

(6-1) T(g-t,r-t)

w
G(t,y):=j J 8(y 5, 1)X(5,y,U Iy Jo(T-t,5-1)dEdrT.

‘tT
1 ' .
Define a L -valued function B(t) by B(t)(#):=J(t,0,#*) and let

T(t) be a linear positive operator from LI(O,w) into Ll(O,w) as

.
(K(1)¥) (7)) B(y,E,T)X(G,y,ﬁ'E%églyf(n,r)w(n—f)dﬁ. (2.9)
T

Then we can rewrite (2.8) as  an abstract Volterra integral

.
equation in L :

t

B(t)=G(t)+J T(1)B(t-1)dr, t>0, (2.10)
0

37



38

where we adopt the convention such as G(t)(#):=G(t,#) for tsu;
G(t)=0 for t>w; N(r)=0 for v>w. It is easily seen that (2.10)
has a unique continuous solution for t>0 and the solution is

positive with respect to positive initial data.

3. Threshold Condition
The behavior of the solution B(t) can be investigated by the
Laplace tranformation technique [15]. The Laplace transformation

of a vector-valued function f(t), 0St<w is defined by

%(A)=J e Al (t)at,
0

whenever the integral is defined with respect to the norm
topology. Using a priori estimate for the growth bound of B(t),
we know that Laplace transform of B(t) exists for complex values
A when Rel 1is sufficiently large. Since Laplace transforms of

G(t) and N(t) exist for all complex values )\, we obtain

-

B(A)=G(A)+T(A)B(A), (3.1)

for complex )X with large real part. Let A:={)\& C: (I—i(k))-l

does not exist}. Then it follows that
B(A)=(I-T(A)) TG(A) for A€C\A. (3.2)

Since I-T(X) 1is invertible for )\ with large real part, B(t) can
be expressed by the inverse Laplace transform and the behavior of
B(t) is determined by the distribution of singular points A. In

particuler, if there exists a real dominant singuler point Ag s

the solution B(t) would show the exponential growth as time

evolves. Heijman {15] has shown that positive operator theory is



useful to show the existence of such a dominant singuler point.
In the fdllowing we briefly sketch the way how to prove the

existence of the dominant singuler point. First observe that

"AC ()€ C: léd(}[(k))}. In particular, if the operator A][(A) is
compact for all 3, (I—i[(}‘))-1 is a meromorphic function of A and
A is composed of its poles and A={\£ C: 1é}Pd(h(A))} where RU(A)

denotes the point spectrum of an operator A. By changing the

order of integral, we have the following expression for the

operator i(A):

- W
AN (9)=] 0, (7,2)0(z)d,  (3.32)
0

B(y,5,8-2) (5,7, U KrelT (5, 5-2) 5. (3.3b)

W

¢A(Y’Z)’=J e AE7Z)
z

On the real axis, N(A) is a positive operator and its spectral

radius r(i(x)) is decreasing for real A. If T(X) is compact, its

nonzero - spectral radius is an eigenvalue and so the roots of the
equation r(ﬁ(A))=l are the singuler points. It is clear that if
r(i(A)), AER isu strictly decreasing from +® to zero, there
exists only onexreal‘root Ag- If Perron-Frobenius type theorem
holds for i(A),‘kéIL it can be shown that 3, is dominaht, that

is, the element of A with the largest real part (see [15] Theorem
6.13 or [18] Lemma 5.6). For example, though we ommit the proof,
the following assumption is sufficient to justify the above rough

argument:
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Assumption 3.1: 1) The operator N(\) is compact for all A €C.

2) For AER, there exist a strictly positive functional FA and a
1
quasi-interior point e with respect to natural cone L+ such that

]T(J\)'UZ<F)\ ,b>e, lim}\_)_w<F}‘,e>=+m,

Using the above condition, according to the lines in [18], the

reader may easily give a proof to the following lemma:

Lemma 3.2: Under the assumption 3.1, the following holds:

1) A={nrecC: 1€ Pd(irm)}.

2) The operator N(A) is nonsupporting for all M é&R.

3) The spectral radius r(N(X)), A€R is strictly decreasing from

+o to zero.
4) There exists a unique A;& RNA such that r(k(Ao))=l and X, >0
if r(1(0))>1; X=0 if r(N(0))=1; <0 if r(T(0))<l.

5) Ap>sup{ReX: A€A-{}}}.

Let E+ be a cone of a Banach space E. A positive operator T

is called nonsupporting if and only if for every pair w€}E+—{0},

F e:E:—{O} there exists a positive integer p=p(¥,F) such that

<F,an>>0 for all n2p. For the nonsupporting property of a

positive operator, the reader may refer to Marek [22] and



VSawashima [24]. Nonsupporting operator on a Banach space with a
cone is a natural extension of the idea of primitive matrices to
infinite dimensional spaces. In particuler, it can be shown that
Perron-Frobenius type theorem holds for the nonsupporting compact
operator on a Banach space with a total cone. From the above

lemma, it follows immediately that

Proposition 3.3: Under the assumption 3.1, the disease-free
steady state is locally stable if r(I(0))<l1 and locally unstable

if r(W(0))>1. That is, the spectral radius r(N(0)) is the basic

reproduction number for the HIV epidemic.

From 1its biological interpretation, the positive operator

T(0) 1is called the next-generation operator [11]. In fact, if ¢

is »the age-distribution of newly infected individuals at a

moment, MN(0)Y gives exactly the same for the next generation

produced by .

4. Discussion

The characterization of the Dbasic reprbduction number by
proposition 3.1 1is still insufficient. In fact, for many
traditional models for infectious diseases (see [18]), we can
often prove 'that there exists a non-trivial (endemic) steady
state if and only if the basic reproduction number exceedsbunity,
otherwise there is only trivial steady state; that is, stationary

bifurcation occurs at Ry=1. For our model (2.1), though it is
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possible to show that there is at least one endemic steady state

-

if r(m(0))>1, we have not yet known what kind of bifurcation can

occur as R, increases. For the global dynamics of system {(2.1),

there remains a 1lot of open problems {(number of steady states,
their stability, etc.).

Although we so far consider a one-sex model, the
transmission of HIV by heterosexual contacts has increasingly
become important in the worldwide spread of HIV. As far as we
assume random mating and neglect the persistence of couples, it
is not difficult to extend our model to a two-sex model.
Serious difficulties appear when we intend to take into account
the fact that individuals form partnerships for non-negligible
periods of time. In this case, even to write down basic
nonlinear equations 1is not easy task (see [6][7][8]) and so
little 1is known for its dynamics. However, if we concentrate to
the 1invasion problem, instead of linearizing a full nonlinear
two-sex model, we can again directly start from constructing a
linear model that is only used to describe the initial phase for

the spread of the HIV infection (see [13][21]).
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