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1. INTRODUCTION .

Leslie matrix model has been developed as the useful tool for
the demographic analysis of animal populations with aée-specific
reproduction and survival (Lewis 1942, Leslie 1945). However, the
model is inadequate for plant populations because the reproduction
and survival of plants depend on mainly their stage and/or size rather
than their age. Thus Lefkovitch (1965) expanded Leslie matrix model

’ in,:’order‘ to describe the dynamics of the population with stage-specific
reproduction and survival. Thus, many authors (Sarukhan and Gadgil

. 1974, Bierzychudek 1982, Kawano et al. 1988) employed

~ Lefkovitch matrix model in order to analyze the demography of
perennial plant populations. ’

On the other hand, Leslie matrix model is recently reconsidered
among mathematical ecologists as a new tool to analyze the evolution
* of life history of species. This is because elements of the matrices can
be considered as life history parameters and fitness can be calculated
on the basis of them. Charlesworth(1980) discussed, in his book, the

evolution of senescence and of the timing of reproduction in age-
structured populations, using the Leslie matrix model.
Caswell(1982b) also used Leslie matrix model and concluded that
survival costs should vary with age and that fertility costs should vary
as the slope of the stable age distribution. However, their analytical
method cannot be directly applied to the study of the evolution of the
life history in perennial plants because their method was restricted in
the cases with (i) age-structured population and (ii) density-
independent dynamics.

As mentioned above, perennial plants show the size-dependent
life history due to their plasticity. For example, most of perennial
plants reproduce sexually when the size of individuals exceeds a
threshold and many ageing seedlings of trees may be found far
beneath the tree canopy (Oskar syndrome; Silvertown 1987) and so
on. Moreover, the behavior of perennial plants is strongly affected
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by the population density due to their immobility. Some authors
suggested that the density-dependency of seedling mortality is much
significant for the dynamics of perennial plant population (Solbrig et
al. 1988). Thus the evolution of the life history in perennial plants
will be also affected by the density-dependency. Therefore, in order
to examine the evolutionary significance of such a complicated life
history, we need a new method being able to deal with the case with
the stage-specific life history and density-dependent dynamics.

In the present paper, we will consider the evolution of the life
history in the population with stage-structure and density-dependent
dynamics. Here we use a density-dependent Lefkovitch matrix model.

2. Invadable condition

Let nj, it = (n1e, my, ... , ng)T , N be the population density of
stage-class i at time t, the stage-class vector at time tand the total
population density at time t, respectively, where s is the number of
stage-classe§ and

M N=Y .
i=1

Let L(Ny) be the nonnegative density-dependent Lefkovitch matrix,
each of whose element, 1j;(Ny), represents the transition probability
from the stage-class j to i. '

According to the knowledge of Lefkovitch matrix model
(Lefkovitch 1965), the dynamics of population with stage-struc‘ture
can be written as: |
(2) iy =L(Ny I, . )

The dynamical system (2) may have the oscillatory behavior or
chaotic behavior of the total density N; (Guckenheimer et al. 1977,
Allen 1989). However, we consider here only the situation such that
the state of the system (2) can reach to an equilibrium of the total
density. Let mj* > 0, i* = (n1*, n2*, ..., ng*)T , N* be the
population density of stage-class i at the equilibrium, the stage-class
vector at the equilibrium and the total population density at the
equilibrium, respectively. From Eq. (1), we obtain

G) Ntz sz ng*
i=1

At the equilibrium,
4 i* = L(N*) it*
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is satisfied. Note that the Lefkovitch matrix at the equilibrium,
L(N#*), has an eigenvalue 1 and &* is its right eigenvector from Eq.
(4). Thus N* satisfies the equation
(5) det [L(N*) -1] =
From Frobenius theorem (Gantmacher 1960), if @* is a nonnegative
eigenvector then the corresponding eigenvalue(i. e. 1) is the dominant
eigenvalue. |

Suppose that a population at a certain habitat is composed of
individuals with the same life history characteristics (we refer those
individuals to wild-type) and that the population is at the equilibrium
state (Fig. 1). Then a small number of individuals with different life
history characteristics from wild-type (we refer those individuals to
mutant-type) happened to invade the habitat. We discuss about what
kind of mutant-type could succeed in invading there. Let L{(Ny) and
. L'(Nt) be a Lefkovitch matrix describing the life history parameters
“of wild-type and mutant-type, respectively. We assume that L(Ny) and
L'(Ny is irreducible. The irreducibility means that an individual at

" any stage has the possibility that the individual reaches an arbitrary

stage after several steps. We also assume that L'(Nt) differs from
L(Ny slightly, i.e. only the small changes in life history parameters
occur by mutation. Thus 13;(Ny) is written by l'ij(Nt)zlij(Nt)+61ij(Nt).
Furthermore, it is assumed, for simplicity, that a mutant-type
individual gives the same density effect on others as a wild-type
individual and vice versa. :

The dynamics of the system containing two-type individuals is:

{ (6-1) R = L(N#ON) T,
6 - 2L6—n.t+1 = L'(N#+3N) B_I:t ,
where 8m= (8njy, ... , Ong)T is a stage-class vector of mutant-type
mdmduals i. e.
8N, = Z Bniy
i=1
From Eq (6-2), we obtain approx1mately as

—

B0 LON) mc S (0NN 2

() «=L'N¥%) asnt
because Ny — N* is sufficiently small at the invasion phase, where
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dl};(N¥) N dI (N*)
dN* ~ dN*
dL'(N¥) _
dN*
di(N®)  di(N¥)
dN* dN*

From Eq.(7), the mutant-type individuals are invadable, when
the dominant eigenvalue of L'(N*) is larger than 1.

Result 1 The sufficient condition such that a mutant -type can invade
the wild-type population is

(8) vI8L(N*)u > 0 , |

where u, vI are the right and left eigenvectors of L(N*)
corresponding to the etgenvalue 1, respectzvely, sattsfymg the
normalization condition vIu = 1 and 8L(N*) is the matrix whose
elements are 0ljj(N*). The necessary condition for the invasion of a
mutant-type is

9) vI8L(N*)u = 0

3. Meaning of the invadable condition

Suppose that a mutant-type can invade the wild-type population
and that the the mutant-type can drive out all of the previous wild-
type individuals (Fig. 2). At the new equilibrium, the mutant-type
population has another steady-state density, N**. The steady-state
population densxty satisfies the equations hke Eq ()5
(10) det [L'(N**) — I} =
Since only the small changes in life history parameters occur by
mutation, N** can be written as N* + dN*. The increment of the
population density, dN*, is obtained as ‘

(11) VTBL (N *)u = ...vT <6N *dlc;l(\r;i*) \ ’
_ vISL(N*)u
(12) ON* = W—
aNF =

where



dl 1 (N*) dl;s(N*)
1 St
dL(N*) _ . i )
TdN¥* : : :
dlg1 (N*) dlgs(N*)
“dN* dN*

The left-hand side of Eq.(11) represents the increase of the population
growth rate (3A in Eq.(8)) due to the changes in life history
parameters (OL(N*)). The right-hand side represents the decrease of
the population growth rate due to the increase of the population
density (ON*). When these two terms balance, the dynamics is at the
new equilibrium. The following result is derived from Eq.(12).

B * *
Result 2 If dlc'i(]i,\; ) <O forallijand ds%\i ) < 0 for at least one

set of (i,j), then the invadable condition is equivalent with the
condition of dN* > 0.

In other words, if the density-dependency only operates negatively for
all the entries of Lefkovitch matrix, then the equilibrium density of
the invadable mutant-type (N**) is larger than that of the wild-type
(N*). In this case, K- selection acts even on the stage-structured
population.

4. Evolution of perennial plants with vegetative
reproduction.

In this section, we show an example to analyze the life-history
evolution in perennial plants using the above results. In the example,
it is assumed that the hypothetical perennial plant has three stages (i.e.
the seedling stage(S), the immature stage(iuvenile: J) and the mature
stage(flowering: F)) and that the population can always reach the new
equilibrium composed of only mutant-type individuals after each
successful invasion.

The Lefkovitch matrix of the hypothetical perennial plants with
vegetative reproduction is

S J F
Seedling 0 0 fSo(N)
Juvenile Sis Sy; \Y,
Flowering 0 Sy Srr

203
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where Sjj represents the transition probability from the stage j to i, f is
- the number of seeds per plant , So(N) represents the germination rate
of seeds (0 = So(N) = 1) and V represents the average number of
vegetatives per flowering individual. When SFF is zero, this matrix
represents the life history of monocarpic perennial plants because
individuals at the flowering stage always disappear next year.

There are three ways to reserve the parent's genes next year:
seed production, vegetative reproduction and survival of flowering
plants. The expected contribution by each way to the population
differs because the probability of successful maturing is different in
each way. For simplicity, we make the following assumptions:
(a) The perennial species regenerates by both the seed production and
vegetative reproduction and only the flowering plants can reproduce
vegetatives belonging to the juvenile stage. Thus
(13) 0<Sys, Sy3+ SFJ, SEE <1 and V > 0.
(b) Only the germination rate of seeds is density-dependent and a
decreasing function of population density N , i. e. the derivative of
So(N ) is negative.
(c) There is a trade-off between the seed number (f) and the survival
rate of flowering individual (SFF) because seed production causes the
increase of the mortality risk of individuals due to much consumption
of assimilating products (Fig. 3).
(d) The mutation occurs only along the trade-off curve (f = g (SFF)
and g '< 0). : o

From Eq. (5), N * satisfies the following equation:
(14 S1sSFIfSo(N*) = (1-Sj)(1-SFF) - VSF3 >0
because So(N) is the positive function. The eigenvectors of L(N)
corresponding to the eigenvalue = 1 are

- Sjs
(1-Sy; )( 1-Spp ) —=VSE
(15 wu-= ( 1-Sgr)Sss >0,y=f1). 1 >0,
SriSss -
| Sp

where D = {(1-SFR)(1-S11) ~VSgy + (1-S3)) + (1-SFF)}S1s > O from
Eqgs. (13) and (14). Since only f and Sgr change due to mutation,
OL(N*) is
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0 0 So(N*)df

(16) BSLN®)=| ¢ 0 0
0 0 OSEF

Thus we obtain the invadable condition from Eqgs. (8), (14),(15)
and(16) as:
an 8¢ L

VSEj
(1- l—SJJ) -SFF

) > 0.

~ Eq.(17) suggests that whether V=0 or not affects the results of
evolution of plants' life history significantly. When V=0, Eq.(17)
includes only two variables, f and Sgg. It also suggests that the results
of evolution do not depend on the other variables, i. e. Sy and SgJ.

~Since Sy and Sgy depend on the survival rate and the growth rate at
juvenile stage, i. e. the environment at younger stages, the results in
this case are irrespective of the environment at younger stages and
depend only on the shape of the trade-off curve ( f=g(Sfp)).

" In contrast with the previous case, when V = 0, the results
depend on V, Sjy and Sgj. It implies that our result depends on the
survival rate and the growth rate at juvenile stage, i. e. the
environment at younger stages. However, our result is independent of

the germination rate of seedlings, So(N).
f

The value of has the maximum at ESS
LTI
(1- 1-S; J) —OFF
because f - increases in the course of evolution
VSEj

(1- 1_5”) —-SFF
(Eq.(17), Fig, 3). Thus, the slope of the line drawn from
(1- -i—:g—J , 0) to a point on the trade-off curve is mjnimum at the

ESS point (SEr*, f *). The results in both cases (V=0 and V = 0) are
summarized as follows: |
(DD No vegetative reproduction(V=0)
When the trade-off curve is concave as shown in Fig. 4a, (0,
g(0)) is ESS. In this case, monocarpic perennial plants are favored.
When the trade-off curve is convex, there are two cases.
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Case(1) If g'(0) < — g(0), then (SgF*, f*) is (0, g(0)). It means that,
if one produced seed needs much cost, monocarpic perennial plants
are favored (Fig. 4b).
Case(2) If g'(0) > — g(0), then the interior ESS is favored. It means
that polycarpic perennial plants are favored in this case (Fig. 4c).
(ID With vegetative reproduction(V = 0)

When the trade-off curve is concave as shown in Fig. 5a, (0,
g(0)) is ESS. In this case, monocarpic perennial plants are favored.

When the trade-off curve is convex, there are three cases as

shown in Fig. 5b, 5c¢ and 5d.

, 0 'VSgj
Case(1) If g'(0) < - —I—ggv-%};—and SFFmax < 1- EIITE then
~ 1-Sy

(SEr*, f *) is (0, g(0)). It means that if one produced seed needs
much cost, then monocarpic perennial plants are favored (Fig. 5b).

\ 80 VSm1
Case(2) If g'(0) > — - VSHy and SFFmax <1- 1-8)7° then the

1-Sy3 ,
interior ESS is favored, i. e. polycarpic perennial plants are favored
in this case. (Fig. 5c). If the environmmt at juvenile stage is
deleterious, i. e. Spyand Sjj are low, there is a high posibility that
monocarpic perennial plants are favoured.

VS
Case(3) If SFrmax > 1- S then the strategy set of (SFF, f)

SFJ (1_ VSFJ
1-S;35° g

changes toward the point of ( 1- )) by the

VS
successive mutant invasion (Fig. 5d). If Spp > 1-- 1—& , then the

dynamical system based on the matrix in the example has no
equilibrium because the right-hand side of Eq.(14) is negative from
the positivity of So(N) and the above inequality. . Since we have
assumed that the system of Eq. (2) has an equlhbnum we cannot

VS
apply our results to the cases where 1- I—SI::I,J < Spp In order to
: N | VSFJ
examine the invadability of the mutant-type with SFF > 1- 1-S;7°

is necessary to make a computer simulation model whlch describes the
invasion process of Eq. (6).
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Fig. 1  Atanequilibrium Invasion phase

Wild type : Lj;(N) Mutant type : L'ij (N)
- =Ly (N) + 8Ly, (N)
Fig. 2 Atan equilibrium At a new equilibrium
.
WILD ONLY MUTANT ONLY
detf LIN*)-1I]=0 ‘ det[ L'(N**)-11=0

f=g(Sgp)
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Fig. 4

(a)
ng(SFF)

ESS (0, g(0))

(b)

f=g( S,FF)

ESS (0, g(0))

I'r
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Fig.5
(a) (b)
f=g (Sgp) f=g (Sgp)
ESS (0, g(0)) ESS (0, g(0))
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