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OPTIMAL CHAOS WHEN FUTURE UTILITIES ARE DISCOUNTED ARBITRARILY WEAKLY

ALK Pk fn b (Kazuo Nishimura)
B o B a7 K2 X% 3 (Makoto Yano)

1. INTRODUCTION

Think of a dynamic optimization problem of the following form.

t -
MaxkO’kl"" B g0 vik,_1,k) s.t. ky = x.
The intended interpretation is as follows: kt is the level of capital stock
at time t, and v(k k.) is the maximum utility that the economy can

t-1°7¢
achieve in the period between time t-1 and time t when it has stock k. ; at

time t-1 and plans to have stock'kt at time t. The optimization problem

stipulates to choose a path of capital accumulation, k kl""’ starting

0°
from x that maximizes the discounted sum of utilities over the time
horizon. The solution to the optimization problem, in general, can be
described by a set valued function H; i.e., if path kt solves the
maximization problem, then k, € H(kt—l) for every t. In this sense, we
call H an optimal transition correspondence.

The question that this study deals with is whether or not an optimal
transition correspondence is a chaotic function of any sense, i.e., the

possibility of optimal chaos. The present study is not the first to

consider this question. In fact, the question was raised as soon as
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non- linear dynamics was introduced into economics at the end of 1970s (see
Nishimura and Yano, 1992a, for a more detailed discussion). Boldrin and
Montrucchio (1986) and Deneckere and Pelikan (1986) gave a positive answer
to this question for the case in which the discount factor of future
utilities, p, is in the vicinity of 0.01.

Nishimura and Yano (1992b) strenthens this result by demonstrating the
possibility of optimal chaos for the case in which the value of p is
arbitrarily close to 1. From the view point of economics, the value of
discount factor p is critical. It is related to the real interest rate,
roughly speaking, by i = 1/p-1. The case of p = 0.01 corresponds to an
interest rate around 9900%. Because the real world rate of annual interest
rarely exceeds 5%, the span of an individual period in the model with p =
0.05 must exceed 90 years. In other words, chaotic optimal accumulaiton
captured in the existing studies is detectable only if economic data over
several hundred years are observed. The result of this study, in contrast,
demonstrates that, at least theoretically, it is possible to interpret
erratic movements of economic variables over any span of periods as a
Fesult of intertemporal optimizations.

The purpose of this study is to provide an intuitive explanation for
the result of Nishimura and Yano (1992b). In the following part of this
study, Section 2 introduces our model. Section 3 discusses the
mathematiéal results on ergodic chaos on which our study is based. Section
4 provides a sufficient condition for an optimal transition function to be
ergodically chaotic. Section 5 states our main result. Section 6 provides

a proof.
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2. THE TW0- SECTOR LEONTIEF MODEL

The model we consider is of two sectors, each of which have Leontief

production functions (two-sector Leontief model). Think of two goods C and
K. Good C is a pure consumption good. Each sector uses both good K and
labor L as input. Good K is not consumed. Good K input must be made one
period prior to the period in which output is produced. In this sense, we
may call good K a capital good. Labor input is made in the same period as

output is produced. Sectors C and K have Leontief production functions as

follows:

(2.1) Cy = min{KCt—l’LCt/a};

(2.2) Yt = ﬂmin{KKt_19LKt/ﬂ}‘

For i = C,K, Kit—l > 0 is sector i’s capital input in period t-1, and Lit >

0 is sector i’s labor input in period t. Moreover, Cy 2 0 and Vi 2 0 are
outputs in period t. For the sake of simplicity, assume that every period
a level of each sector’s capital input is freely adjustable. Thus, by

denoting kt—l’ the aggregate capital input,

(2.3) k X 0.

t-1 = Kot 1*¥gg1 2
Denote by n, the aggregate labor input. Then,
Assume that labor supply is inelastic and time independent. Goods are

normalized so that the labor endowment n is equal to 1. Thus,

(2.5) n, < n=1.

Assume that the consumers’ preference is represented by a linear utility
function

(2.6) u(ct) =¢ 20



for ¢, > 0 in each period. The set of feasible input/output combinations

t
is
(2.7) F = {(k,n,y,¢) € R*| (2.1) through (2.6) are satisfied}.
The optimal growth model is described by

(2.8) max ey Ezzlptu(ct)

R TLITL,
s.t. ky < k, ke <y and (kt—l’nt’yt’ct)
vhere discount factor p satisfies
(2.9) 0<p <.

With respect to parameters p, p, f, and a, assume the following:

(2.10) p>1/p;
(2.11) f>a>0.

As (2.2) indicates, condition (2.10) implies that if labor input is not

binding, the marginal product of capital input in the capital good sector

€ Ffort=1,2,...
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is larger than 1 plus the long-run interest rate. Condition (2.11) implies

that the consumption good sector is capital intensive.

The above optimal growth model can be expressed in the form presented

at the outset of this study by defining v as

(2.12) vik,y) = max(n’C

) u(c) s.t. (k,n,y,c) € F .

By using this reduced form function, define the value function

t
(2.13) V(y) = max I_jpv(k, k) s.t. ky=y
and the optimal transition correspondence
(2.14) H(k) = {h € R| v(k,h)+V(h) > v(k,y)+V(y)

for any y > 0 such that v(k,y) is well defined.}.

In the case in which H(k) is a singleton for every k, we call H(k) an

optimal transition function.
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Let H'(k) = H(HY 1(k)), where HO(k)

k. It is easy to demonstrate
that if (kt-l’nt’yt’ct)’ t =1,2,..., is an optimal path from k solving the
optimization problem (2.8), then

(2.15) k, € H'(K)

for any t. By a routine method, the following can be established.

Proposition 1: For each k € R, the optimal transition correspondence,

H(k), is non-empty.

In order to construct the actual form of v, think of the case in which

¢ and yy are produced without wasting inputs. In that case, by (2.1) and

(2.2), ¢, =Koy 4 = LCt/a and y, = pKy, | = #LKt/ﬁ' Thus, if ke <y, by
(2.5), (2.3) and (2.4) can be written as follows:

(2.16a) Cy + kt/u Cke g

(2.16b) ac, + fky/u <15

(2.17) ¢, 20, k2 0andk, 4 >0,

It is easy to demonstrate that the constraints of (2.8) is equivalent to
(2.16a), (2.16b) and (2.17) together with the initial condition, kozK. By

using (2.16a), (2.16b) and (2.17), the actual form of v can be shown to be

1

. a 1
k - i if y<- szﬂk t gt
(2'18) V(kaY) = 1 ,QL 1
a . a
E - M Yy 1f Yy 2 - mﬂk + B‘—a'u, .

Figure 1 illustrates the projection of the graph of u = v(k,y).
Segment PQ illustrates the set of (k,y) at which both (2.16) and (2.17) are

binding. On that set, the graph of v makes a kink. Segment OP corresponds
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to the case in which only (2.16a) is binding and in which c, = 0. Half
line PZ corresponds to the case in which only (2.16b) is binding and in

vhich ¢, = 0. The domain of v is below lines 0P and PZ, i.e.,

(2.19) D = {(k,y)eR?| y ¢ uk if k < 1/f and y < p/f if k 2 1/B}.
3. CHAOS: DEFINITIONS

This section briefly explains the mathematical result on chaotic
dynamics on which this study is based. For the sake of discussion, let I
be a non-degenerate interval with endpoints a and b, a < b. Call function

f a transition function if it maps I into itself. Transition function

f:I-1 generates a trajectory of states ft(x), t =0,1,2,..., for any

initial point x € I, where ft(x) = f(ftnl(x)) and fo(x) = x. A transition
function, f:I-I, is expansive if it is continuous and piecewise twice
continuously differentiable and if there is g > 0 such that

(3.1) £2(x)] > 1+g

for every x € I at which f has a derivative (Lasota and Yorke, 1973). A
transition function, f:I-I, is unimodal if it is continuous and if there is
c €I, a<c<b, such that £ is strictly increasing on the interval
between a and ¢ and strictly decreasing on the interval between c and b

(Collet and Eckmann, 1980). Point x € I is a cyclical point of transition

function f:I-I if there is t > 1 such that ft(x) = x. In particular, if

ft(x) = x and f'(x) # x for 7 = 1,2...,t-1, x is a cyclical point of period

t. Call a trajectory starting from a cyclical point a cyclical trajectory.
Denote by yp the characteristic function; xB(x) =1 if x € B and XB(x) =0
if x ¢ B.
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Definition 1: A transition function f:I-I is chaotic in the sense of

ergodic oscillations if there is a unique probability measure v that is

absolutely continuous and satisfies that for almost every x € I,

(3.2) Lin,_ ¢ 'Y L (£7(x) = v(B)

for any Borel set B c I.

The work of Lasota and Yorke (1974) and Li and Yorke (1978) implies

the following.

Proposition 2: If a transition function f:I-I is expansive and

unimodal, it is chaotic in the sense of ergodic oscillations.

4. CHARACTERIZATION OF CHAOTIC OPTIMAL TRANSITION FUNCTIONS

It is intuitively reasonable to conjecture that given a level of
capital stock at the beginning of a period, say time t-1, it is optimal to
choose a stock level at the end of the period, i.e., at time t, in such a
way that both the capital and the labor constraints, (2.16a) and (2.16b)
may be satisfied. Figure 1 indicates, in other words, that if 1/4 < kt-l <

1/a, it is optimal to choose kt so that (k k,) lies on PQ. Moreover, if

t-1? t)
this is in fact the case, it is reasonable to conjecture that if 0 < kt-l <

1/8, it is optimal to choose kt so that (k kt) lies on OP.

t-1°
This intuition indicates that there may be a case in which the graph
of the optimal transition function lies on the kinked line 0P or, in other

words, the optimal transition function is



uk if 0

A
P

< 1/B
- B?guk + B%E” if 1/8 < k< p/f .

In what follows, we will demonstrate that such a case is in fact not void

(4.1) h(k) = {

A
P

for any value of p arbitrarily close to 1.

To this end, we will construct a condition under which h(k) is an
optimal transition function, which is unimodal and expansive. Note that,
without a loss of generality, we may restrict the domain of transition
function h to the interval
(4.2) I={keRl O0<k<ypu/f}.

Since g > 1 by (2.9) and (2.10), transition function h is expansive and
unimodal under the assumption that
(4.3) Bgaﬂ > 1.

In order to illustrate our construction of the optimal transition
function, denote by d,v(k,y) and dV(k), respectively, the partial
subgradient of v(k,y) with respect to y and the subgradient of V;

(4.4) 02v(k,y) = {-p > 0] v(k,y)+py > v(k,n)+pn for all (k,n) € D};
(4.5) oV(y) = {p 2 0| V(y)-py 2 V(n)-pn for all 5 > 0}.

Since v and V are concave, continuous and of free disposal, sets dyv(k,y)
and dV(y) are well-defined for any (k,y) € D and for any y > 0,
respectively.

For each given k, —52v(k,y) may be thought of as a correspondence that
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associates y with a closed interval in R. 1In Figure 2, denote the graph of

this correspondence by MClk. Similarly, dV(y), too, is a correspondence
that associates y with a closed interval in R. Denote the graph of this
correspondence by MV.

By definition, for each k € I, optimal transition function H(k) is
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determined at the intersection of curves MV and MCIk; i.e.,
(4.6) H(k) = {y 2 0] [-dyv(k,y)In(pdV(y)] # ¢} ,
where cX = {z € R| z = cx and x € X} for any subset X of R and any number
c.

Figures 2 and 3 illustrate typical relationships between curves MV and
MCIk. As (2.18) indicates, the shape of Mclk depends on k. If
0<k<1/8,

{1/u} if y < pk
(4'7) '6V2(k:Y) = . ’
{pl p 2 1/p} if y=pk
which is illustrated in Figure 2. If 1/f < k < u/f8,
; . 1
{1/u} if y <o opapk v g

a ify =- 2 + 1
(0.8) -a9(0y) - | {p| 1/u < p < (B/a)/u} y Fatk * gt

{(B/a)/u} if - B?gﬂk + B%E” <y'<u/p
{pl p > (B/a)/u} if y = u/B ,

which is illustrated in Figure 3.

A difficulty lies in the fact that curve MV is determined endogenously
by the solution to the optimization problem (2.8). For this reason, its
specific shape is generally intractable. By the concavity and monotinicity
of V, however, we may prove that curve MV is "downward sloping" (or, more
precisely, satisfies that if p € pdV(y), p’ € pdV(y’) and y < y’, then
p2p’).

Suppose, for the sake of discussion, that function h is the optimal .
transition function. Take the case of 0 < k < 1/4. Then, since h(k) = pk,
curves MV and MClk must intersect each other on the vertical part of Mclk’
as is shown in Figure 2. Instead, take the case of 1/f < k < p/f. Then,

since h(k) = - Bgauk+ﬂ%z, curves MV and MCIk must intersect each other on
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the first vertical segment of MC‘k, as is shown in Figure 3. Thus, the
intersection of curve MV with the kinked line XYZ must be unique and at y =

u/8, and that with the kinked line XABCZ must be unique and at y =

_a 2+ 1
ot Fa

In what follows, we construct a sufficient condition for this
condition to hold because, as is demonstrated below, the converse is also
true (see Lemma 1). To this end, we focus on the case in which 1/f is a
cyclical point of transition function h; as is noted above, the position of
curve MV in the general case is intractable. We first demonstrate that
function h is the optimal transition function if the cyclical trajectory
from 1/8, which h generates, is the unique optimal path from 1/4 (Lemma 1).
Ve then construct a condition under which the cyclical trajectory is

actually the unique optimal path from 1/ (Theorem 1).

Lemma 1: If 1/4 is a cyclical point of tramsition function h (it can
be of any periodicity) and if the cyclical path from 1/4 is the unique

optimal path from 1/§, then h is the optimal transition function.

Note: The hypothesis of this lemma is stronger than what is needed.
The following proof goes through if it is assumed is that h(1/f) and h(g/8)
are the unique optimal choices of an end-of-a-period stock levels for

beginning- of- a- period stock levels 1/4 and p/f, respectively.

Proof: It suffices to demonstrate that

(4.9) (k) = {h(k)}

for every k € I. The hypothesis of the theorem implies
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(4.10) H(1/6) = {u/B}
and
(4.11) H(u/B) = {n(p/B)} ,

the latter of which follows from ux/f = h(1/4). By (4.10), (4.6) implies
that if the MV and Mclkzl/ﬂ curves intersect each other only at y = p/f.
Since the MV curve is "downward sloping," this implies
(4.12) pV(y) > 1/p if 0 <y < u/f
as Figure 2 indicates. Similarly, by (4.11), (4.6) implies that if the MV
and MC|k=#/ﬂ curves intersect each other only at y = h(g/f). Since the MV
curve is "downward sloping," this implies
(4.13) pdV(y) < (B/a)/p if y > h(p/B).

In order to complete the proof, take k such that 0 < k < 1/4. Let
y < pk. Since this implies y < p/f, by (4.12), pdV(y) > 1/u. By (4.7),
moreover, y < pk implies —62v(k,y) = {1/p}. These facts imply
-8ov(k,y)ndV(y) = ¢. Thus, y ¢ H(k) for any y < h(k). Since Proposition 1
implies H(k) # ¢ and since (k,y) € D implies y < gk, by (4.1), (4.9) holds
for k such that 0 < k < 1/4.

Next, take k such that 1/§ < k < p/f. Let y < h(k). Then, as above,
it can be shown that
(4.14) y < h(k) implies y ¢ H(k).
Let h(k) <y < p/f. Since this implies h(k) > h(p/f), by (4.13),
pdV(y) < (B/a)/s. By (4.8), moreover, h(k) < y < p/f implies
-9ov(k,y) > (B/a)/p. These facts imply - d,v(k,y)npdV(y) = 4. Thus,
(4.15) h(k) <y < p/f implies y ¢ H(k).
Since H(k) # ¢ by Proposition 1, (4.14) and (4.15) implies (4.9) for k such
that 1/8 < k < p/B.
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Either if k = 1/ or if k = p/f, (4.9) holds by (4.10) and (4.11). If
k =0, (k,y) € D implies y = 0. Thus, H(k) = {0}; (4.9) holds. Q.E.D.

We establish the optimality of the path from 1/, ht(l/ﬂ), under the
assumption that 1/ is a cyclical point of transition function h. For this
purpose, we use the value-loss method (McKenzie, 1986). We say that vector
(q,p) is a support price vector of activity (k,y) if
(4.16) v(k,y) + py - o lak 2 v((,€) + pé - o tag

for all ((,{) € D; recall D is the domain of v. Given an activity (k,y) €

D and a support price vector (q,p) of that activity, we define the value

loss of an alternative activity ((,¢) € D as follows.

(4.17) A(¢5¢5a,p5k,y)
= v(k,y) + py - o gk - [v((,6) + pé - o Mag].
Then, by (4.16), A(¢,¢3q,p5k,y) > for any ((,£) € D.
See Figure 1. Along the cyclical path from 1/6, k, = h*(1/4),
activity (kt—l’kt) lies either at point P, on segment OP but not at the
endpoints, or on PG but not at the endpoints. We first characterize

support price vectors in these cases. Denote

(4.18) v = (Fa)/a.
The mext lemma is concerned with the case in which (h, ;,h;) is at point P
= (1/8,4/) -

Lemma 2: Price vector (qO’ql) is a support price vector of activity
(1/B8,p/0) if and only if the following conditions are satisfied.
(4.19) qy 2 0 ;

(4.20) ~Qy + pEqy 2 0 5
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(4.21) g + pEay 2 p(1+7) -
Suppose, moreover, that (4.19), (4.20) and (4.21) are satisfied with strict
inequality. Then, for (k,y) € D,

(4.22) A(k,y;q,q451/8,p/) > 0 if and only if (k,y) # (1/8,u/f).

Proof: By (2.18), v(1/8,4/f) = 0. Thus, point (v,k,y) = (0,1/8,1/6)
lies on the graph of function v = v(k,y) at (k,y) = (1/8,4/8). The plane
through point (0,1/8,u/f) is expressed as
(4.23) v= 0 gk 1/8) - ay(5-4/B) = £(ky).

In Figure 1, P = (1/8,4/f), Q@ = (1/a,0) and Z = (1+1/8,u/f). The
0 at P, v(1/ae,0) = 1/a at @,

corresponding utility levels are v(1/8,4/f)
and v(1+1/f,u/8) = 0 at Z. Let 0’ = (0,0,0), P> = (0,1/8,4/6),
0 = (1/a,1/2,0), 2 = (0,1+1/8,4/8) and K* = (1/a,1+1/8,0) in the v-k-y

space. Then, by (2.18), the graph of v = v(k,y) consists of triangle

0°P’Q’° and the face surrounded by lines P’Q’, P’Z’ and Q’K’. By the
concavity of v = v(k,y), therefore, the plane defined by (4.23) supports
the graph of v(k,y) at point P’ if and only if the rays from P’ through 0,
Q> and Z’ all lie below the plane defined by (4.23), i.e., if and only if

the following inequalities hold.

(4.24) -0 Yag/B + au/B = £(0,0) 2 v(0,0) = 0;
(4.25) o lag(1/a-1/8) + ap/B = £(1/a,0) 2 ¥(1/a,0) = 1/a ;
(4.26) o ey = £(141/8,5/8) 2 v(1+1/B,4/B) = 0.

These expressions are equivalent to (4.19), (4.20) and (4.21).

Moreover, if the inequality conditions in (4.24), (4.25) and (4.26)
are satisfied strictly, then A(k,y;qo,ql;l/ﬂ,u/ﬂ) = 0 if and only if (k,y)
= (1/B,u/B). This implies (4.22). Q.E.D.
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The next lemma is concerned with the case in which (ht-l’ht) lies, in

Figure 1, on segment PQ but not at the endpoints.

Lemma 3: Suppose that (k. ,,k.) satisfies ki = h(k, ) and ke 4>
1/6. Then, (qt-l’qt) is a support price vector of (kt-l’kt) if and only if

there is q, ; such that

(4.27) 0<qg, 4 <0
and
(4.28) Q= [-7194.1 + 2(1+7)]/(8) -

Suppose, moreover, that (4.27) is satisfied with strict inequality. Then,
for (k,y) €D,
(4.29) A(k’y;qt—l’qt;kt—l’kt) > 0 if and only if y # h(k) or k <'1/4.

Proof: First, we will prove that (qt—l’qt) is a support price vector

of (kt-l’kt) if and only if there is A, 0 < A < 1, such that

1 ] ba
(4'30) (ﬂ qt—l’ﬂqt) - A(17'ﬁ) + (1_A)(O’" I )' )
Since (v,k,y) = (V(kt—l’kt)’kt—l’kt) is on the plane defined by v = k - e
the concavity of v(k,y) implies that

1 1
(4.31) V(kt—l’kt) + ﬁkt— k 1 > v(k,y) ¥ ﬁy -k

t-
for any (k,y) € D. Since, moreover, (v,k,y) = (V(kt—l’kt)’kt~1’kt) is on

the plane defined by v = % - éégy, the concavity of v(k,y) implies

(4.32) v(k {ok) + %’.kt S0k, > v(k,y) + ﬁ#y . 0.k

for all (k,y) € D. Let 0 < A < 1. Multiply A to expression (4.31) and
(1-1) to expression (4.32). By adding the resulting expressions together,

the claim at the beginning of the proof follows. Since Q_q = PA by
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(4.30), there is A, 0 < A < 1, such that (4.32) holds if and only if there
is q; 4 such that (4.27) and (4.28) hold. |

See Figure 1. If (k,y) lies in triangle 0PQ, (4.31) holds with
equality. If (k,y) lies in the region surrounded by lines PZ, PQ and the
horizontal axis of Figure 1, (4.32) holds with equality. Let 0 < A < 1.
Then, by construction, A(k’y;qt-l’qt;kt-l’kt) = 0 if and only if (k,y) lies
on both triangle OPQ and the region surrounded by lines PZ, PQ and the
horizontal axis, i.e., (k,y) lies on segment P(. Since U_q = pA by

(4.30), 0 < A <1 means 0 < q, 4y < p. Thus, (4.29) holds. Q.E.D.

Finally, the next lemma is concerned with in the case in which

(k kt) lies on segment OP but not at the endpoints.

t-1°
Lemma 4: Suppose that (k, ,,k.) satisfies k. = h(k, ;) and

0 < kt—l < 1/f. Then, (qt-l’qt) is a support price vector of (kt—l’kt) if

there is q 4 such that

(4.33) QG 4 2P
and
(4.34) Q= 941/ (pn) -

Suppose, moreover, that (4.33) is satisfied with strict inequality. Then,
for (k,y) €D,
(4.35)  A(k,y;q, 1,945k, 1-k¢) > 0 if and only if y # h(k) or k > 1/4.

Proof: We will first prove that (qt-l’qt) is a support price vector

of (k if there is p > 1 such that

t-1°5¢)
-1 1
(4'36) (,0 qt~1’—qt) = ‘0(1)'ﬁ)'
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Since kt = pky 4 by the hypothesis of the lemma, by (2.18),

1 1
(4.37) ﬁkt - kg2 i k
for all (k,y) € D. Since (v,k,y) = (O’kt¥1’kt) is on the plane defined by
v=xk- %y, the concavity of v(k,y) implies that
1 1
(4.38) viky q,ki) + ﬁkt - kg 2 v(k,y) + i k

for any (k,y) € D. By (4.37) and (4.38), for any § > 0, it holds
‘ 1 ' 1
(4.39) vk, qki) + (1+§)ﬁkt - (1+6)k, 4 2 v(k,y) + (1+6)ﬁy - (1+6)k
for any (k,y) € D. By defining p = 1+6, the claim at the beginning of the
proof follows. Since q, 4 = py by (4.36), there is p > 1 such that (4.36)
holds if and only if there is q, ; > p such that (3.34) holds.

If and only if (k,y) lies below 0P, (4.37) holds with strict
inequality. Thus, if 6 > 0, A(k’y;qt—l’qt;kt—l’kt) = 0 if and omly if y =
k. Since Q1 = P¥ = p(1+6), 6 > O means UG 1 > P (4.35) holds. Q.E.D.

The following theorem provides a sufficient condition that guarantees
that function h is the optimal transition function. The sufficient
condition consists of two parts: A and B. Part A is simply that 1/F is a
cyclical point of period N > 3. Part B implies that the cyclical

trajectory from 1/4 is the unique optimal path from 1/,8.10

Theorem 1: Function h:I-I is the optimal transition function, which
is expansive and unimodal, if the following conditions are satisfied.
A: 1/f is a cyclical point of period N > 3.
B: vThere are prices CPYL PERERRLY such that the following is

satisfied:

(1) QN = 9p;
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9 > 0
(i1) -Qq *+ ppgy > 0 ;
19y + ppay > p(1+7)
(iii) Let k = h"(1/f) and t = 2,3,...,N.
v g, - { a1/ (o8) ff ki 4 <1/
[-ray +p(1em)]/(op)  if k> 1/6 .

s .1 >p it k< 1/p
0<q q<p if ke 4 >1/8
(Note that, given condition A, ke 4 # 1/ for t = 2,3,...,N.)

Proof: By Lemma 1, it suffices to prove that path kt is the unique

optimal path from 1/4. By construction, (k kt) lies either at point P,

t-1°
on segment OP but not at its endpoints, or on segment P{Q but not at its
endpoints. For each 7 = 0,1,2,..., define (qN-r’qN-r+1""’qN-r+N—1) =

(qO’ql""’qN—l)' Under conditions B-i, B-ii and B-iii, by Lemmas 2, 3 and

4, (qt—l’qt) is a support price vector of activity (kt—l’kt) for t =

1,2,... Define

(4'40) At(k7Y) = A(k’y;qt-l’qt;kt—l’kt)'

Then, for any (k,y) € D,

(4.41) At(k,y) >0, t =1,2,...

In order to prove the optimality of path kt’ take an arbitrary

alternative path ht’ t = 0,1,..., such that (h h.) € D and h0 = 1/4.

t-1°7¢
Then, by the definition of value losses, for any T,

T t T
(4.42) thlp (V(kt-l’kt) - v(ht-l’ )) = Et 1P At(ht—l’ht) - P qT(hT_kT)

Since qq € {qO,ql,...,qN 1} by definition, by taking T - o,

t
(4.43) zzlp V(kt 1° t) lp V( t- 17h ) = 1p ! (ht-l’ht) 20
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for any path ht’ t = 0,1,..., such that (ht—l’ht) € D and h0 = 1/f. This
impliés that path kt is optimal.

In order to prove the uniqueness of path kt’ suppose that there is
another optimal path ht’ t = 0,1,..., from 1/§. Then, there is t* such
that h s # h(h,x_ ;). Under the hypothesis of the theorenm, (4.19), (4.20),
(4.21), (4.27) and (4.33) are all satisfied with strict inequality.
Therefore, by (4.22), (4.29) and (4.35), hy # h(ht*—l) implies
(4.44) by (hex {ohes) > 0.

This implies, however, by (4.41), (4.43) and (4.44),
(4.45)  B2_pSv(k, k) - B ptv(h, 1ohy) 2 A (hes jshis) > O,
which contradicts the optimality of path hy. Q.E.D.

5. NISHIMURA AND YANO’S RESULT
Nishimura and Yano (1992b) demonstrates that for any value of discount
factor p arbitrarily close to 1, it is possible to choose values of
parameters 4, a, and § in such a way that transition function h(k) is

optimal at the same time as it is unimodal and expansive. That is to say,

Proposition 3: No matter how close to 1 the value of discount factor

p, 0 < p <1, is, it is possible to choose values of parameters g and 7 in

such a way that h(k) is an ergodically chaotic optimal transition function.

Note that the conditions that we have imposed on parameters so far are

equivalent to the following:

(5.1) 0<p<t;
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(5.2) pu > 135
(5.3) p>7>0;
(5.4) a>0.

(Recall that 7 = (f-a)/a.) In addition, we require

(5.5) pp < {7
6. PROOF OF THE MAIN RESULT

In what follows, we will first construct a condition under which 1/4
is a cyclical point of h(k) with the order of periodicity N = 3x2" for n =
0,1,... We will then construct a condition under which there is price path
PRRRPL that satisfies condition B-i, B-ii and B-iii-a of Theorem 1. The
main result follows from Theorem 1. We set
(6.1) a=1.

In order to construct a condition under which 1/f is a cyclical point
of h(k) with the order of periodicity N = 3x2" for n = 0,1,..., define the
following expressions.

(6.2) n(n) = [2%(-1)" 13 ;

(6.3) f[ﬂ2n;7] ) [ﬂzn]z i 72m(n)+(~1)n[ﬂ2n] ] 74m(n)+(-1)n _

Lemma 5: Let n = 0,1,2,... Point k = 1/§ is a cyclical point of h(k)

n
with the order of periodicity N = 3x2" if and only if f[p2 ;7] = 0. (Note:

" This condition gives rise to the general form of conditions (5.8), (5.21),

(5.32) and (5.44).)



61

Proof: We will prove this inductively. For this purpose, it is
convenient to shift the origin of the transition function function y = h(k)
to (1/8,1/6) by defining « = k-1/§ and ¢ = y-1/f. Then, by (4.1), h(k) is
equivalent to

LK + %(p—l) if -1/ <k <0
(6-4) () = { - %n + %(u—1) if 0<k< %(u—l).
If and only if 0 is a cylical point of 7, 1/8 is a'cyclical point of h.

For n = 1, it is easy to see that the lemma follows. 0One way to
construct a condition under which ¥ = 0 is a cyclical point 7(x) with order
6 = 3x2! is to construct, first, transition function n2(n) and, then, to
find a condition under which 0 is a cyclical point of n2 with the order of
periodicity equal to 3. To this end, in Figure 5, we depict function 5(k)
by kinked segmenthOPOBO. As the diagram indicates, P, indicates (0,7(0)),
B, indicates (n(O),nz(O)), and A, inidcates (02(0),03(0)). By
construction, (nt'l(O),nt(O)) must lie on kinked segment A P B, for any t =
1,2,... Curve B,P.Q R, illustrates function 02(x) = non(k). If 0 is a
cyclical point of n2 with the order of periodicity equal to 3, then
(0,n2(0)) is at P, and (n2(0),n2X2(0)) is at B;. Moreover,

A = (n2X2(0),n2X3(0)) must lie on the open segment between P, and S;

1
otherwise, it is impossible to construct a period-3 path from 0. In order

to construct a condition under which 0 is a cyclical point of 02 with order
3, it suffices to focus on function 02 restricted to the interval between

kg and Ky , where Ky and kp are, respectively, the k- coorinate of points
1 1

1 1
A1 and B;. On this interval, nz(n) can be expressed as follows:
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ey
o

/i2 1 £ if K <
- E g - B( L )( ) i nBl_ K <

20y .
(6.5) 77 (k) = &Zﬁ_ DE1) it 0k

1

Repeating similar arguments, we may inductively construct conditions

n
under which 0 is a cyclical point of n2 with the order of periodicity

equal to 3. That is to say, we may find kinked segment AnPan such that

n n n n n
) 2 . 27x2 27x3 .
(0,7° (0)) is at B, (1° (0),1° *(0)) is at B_, and (n” **(0),7° **(0)) is

at An. Moreover, denoting by Ky and kB , respectively, the k- coodinates

n
of points An and Bn, function n2 (k) restricted to the interval between k)
n
and kg is as follows:
n
If n is even,
ol ,1 . EE 4 2n—1 . '
n lim’ = K+B[1— 7] [1-7 ][1%2][1%“ n] if /sAnsfsso
(6.6) 77 (k)= o . 9 4 ol 1
.y K+ [1—3][1—3—][1- ] ---[1-2—1—31 if  0<k<kyp -
72m(n)+(-1)n AL U 55 e ~ By
If n is odd,
- R R e B Pl
- K+ 1- ][1— ][1- ]---[1— ]if/c <k<0
po | et (AT [ ] i
(6.7) 1° (x)= s . e
A AR E - N -2 B P i
2 ’”Zf[l 7] [1 7 ][1 57] [1 ﬁTﬁ] i 0SSRy -

n-1
(Note: Since 1 > p2 /7m(n), the constant term in (6.6) and (6.7) is

positive if n is even and negative if n is odd.)
Given the transtion functions defined by (6.6) and (6.7), it is easy

to demonstrate that for either odd or even n, point 0 is a cyclical point

n
of n2 (k) with the order of periodicity 3 if
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2n
6-9) yam [ } o,

an) [ 2n(n)+(-1)
which is equivalent to f[ ] 0 by (6.3). Q.E.D.

Let El = u/f and Et = h(ﬁt_l) for t = 2,3,... Note the following:

Lemma 6: Let N = 3x2@. Then,

E L ”2n-1 uzn #2n
(6.9) “1/h = B(ﬂ‘ )[ ][l 7 J [1 m(n)J 1+72m(n)[1_72m(n)+(-1)n}

Proof: This follows from (6.6) and (6.7). Q.E.D.

Next, we will construct a condition under which there is price path
Qgs+ -+ >ay that satisfies condition B-i, B-ii and B-iii-a of Theorem 1. As
is shown below, conditions B-i and B-iii-a determines a relationship
between q and qy - This relationship can be illustrated by a line in
Figure 4, which we call line L. Because the region in which condition B-ii
is satisfied can be indicated by I', conditions B-i, B-ii and B-iii-a are
satisfied if and only if line L cuts the interior of region r.

As Figure 4 indicates, this condition can be characterized by the
slope of line L and the position of the point on L at which the
ql—coordinate is 1/p. In order to determine this position, consider the
sequence, denoted by 61,...,5N, that follows condition B-iii-a of Theorem 1
from q; = 1/p. Moreover, set ao = HN. Then, by construction, (ao,al) lies
on line L, and its ql—coodinate is 1/p. In order to characterizes the

position of the qo—coodinate of (EO,EI), aO = aN’ we first prove the
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following.

Lemma 7: Let N = 3x2™. Then,

[ e et e

2m(n)l 72m(n)+(-1)n]
1..
n n
2
(pn)
Proof: Let t = 2,...,N. Then, Et-l # 1/p for any t = 2,...,N, since

El is a cyclical point of order N. Recall that we have set a = 1. Thus,

whenever Et—l > 1/8, Et =Lk +% and at = -;% at—1+lil by (4.1) and

7 t-1
condition B-iii-a. In contrast, whenever k. , < 1/8, k. = pk,_, and
at = E% at—l‘ This parallel indicates that HN~p is equal to the right- hand

side of (6.11), which is parallel to that of ky-1/8, given (6.9).  Q.E.D.

Define

a1 e[ se] = [en?] ¢ PO (] - @0

Lemma 8: Let N = 3x2™. There is a price sequence Qgs - -+ >dy that

satisfies conditions B-i, B-ii and B-iii-a of Theorem 1 if and only if

g[(pu)zn;7} < 0.

Proof: We first prove, inductively,

(6.12) P2 5 1

for n = 1,2,... Since {7 > pp > 1 by (5.2) and (5.5), 7 > pu and
7> (pp)z. By 7 > ppu, (6.12) holds for n = 1. By 7> (pp)2, (6.12) holds
for n = 2. Suppose that (6.12) holds for n = i and i+1. Then, by the
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definition of m(n), [7(*2)/ (o) ] -

: i-1 . (i+2)-1
) 2 120 (o) 2 1> 1%d1 = 1. This implies (6.12)
for n = i+2; (6.12) is proved.

In order to complete the proof, as is noted above, it suffices to
demonstrate that line L cuts region I' in Figure 4. Recall that (q,,d,)
lies on L and that its ql—coodinate is 61 = 1/p. Therefore, in the case in
which line L is upward-sloping, it cuts region I' if and only if ﬁN <p. In
the case in which line L is downward-sloping, it cuts region I' if and only
if EN > p. Moreover, as the above examples indicate, it may be proved that
line L is down-sloping if and only if, given N = 3x2", n is an even number
and that it is upward-sloping if and only if n is an odd number. These
facts imply that line LN cuts region I' if and only if (EN—p)(-l)n > 0.

Since pp > 1 by (5.2), the term in the first pair of parentheses on
the right-hand side of (6.10) is negative. By (6.12), moreover, the terms
in the second through (n+1)-th pairs of parentheses are all negative as
well. Since, therefore, the terms in the first (n+l1) pairs of parentheses
are all negative, (EN—p)(—l)n > 0 if and onlf if the term in the last pair

of parentheses is negative, i.e.,

2 2 (-1
(6.13) 1+1 m(ni{1-7 o) (n ) ] <0 .
(on)? (on)?
n
which is equivalent to g[(pp)2 ;7] < 0 by (6.11). . Q.E.D.

The next theorem characterizes a condition under which h(k) is an

optimal transition function.
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Theorem 6: Let n = 0,1,... and p*, ux* and 7* be values of p, p and v
_ ol ol
satisfying f[ﬂ* ;7*] = 0 and g[(p*p*) ;7*] < 0. Denote by h*(k) the
transition function h(k) that corresponds to these values of parameters.
n .

If g[(p*y*)2 ;7*] is sufficiently close to 0, h*(k) is an optimal
transition function, which is ergodically chaotic.  In addition, point 1/4*
is a cyclical point of h*(k) with the order of periodicity N = 3x2", where

f* is the value of § corresponding to p* and 7*.

n .
Proof: Since f{u*z ;7*] = 0, by Lemma 5, point k* = 1/6* is a

3x2™. Since

1

cyclical point of h*(k) with the order of periodicity N

n
g[(p*u*)2 ;7*] < 0, by Lemma 8, there is a price sequence qs,qI,...,qﬁ that
satisfies conditions B-i, B-ii and B-iii-a of Theorem 1. By Theorem 1,

therefore, it suffices to prove that the price sequence can be constructed

in such a way that it satisfies condition B-iii-b as well.

Consider p, p and 7 that satisfy f[g2n;7] = 0 and g[(pp)zn;7] = 0.
The structural similarity between the expression of HN—p, given by Lemma 7,
and that of KN—l/ﬁ, given by Lemma 6, implies the following: If (Et’Et+1)
lies on segment 0P, but point P, of Figure 1, (at’at+1) lies on segment AX,

but point A, of Figure 4. If (ﬁ lies on segment PR, but point P, of

t’ﬁt+1)
Figure 1, (;,d,,,) lies on segment YA, but point A, of Figure 4. (In this

case, q;,4/d, = 1/(pp) if and only if k /K = p, and G, /Q, = -7/(pp) if
and only if Et+1/Et = -p/r. The structural similarity between the
expression of qy-p and that of EN—l/ﬂ implies that whenever Et+1/§t = u,

Q;,4/d; = 1/(pu) must hold and that whenever ke, /% = -n/1s G, (/4 =
-1/(pp) must hold. This implies the above claim.) In short,
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ﬁt > p if Kt < 1/8
(6.14). |
0 < Et <p if ﬁt > 1/f .
Ve now construct a price sequence qa,qI,...,qﬁ that satisfies

conditions B-i, B-ii and B-iii of Theorem 1. To this end, set q6 = p, and

n
choose qI in such a way that (qB,qI) is on line LN' Since g[(p*u*)2 ;7*]

may be made sufficiently close to 0, it is possible to find parameters p, p

and 7 satisfying f[(p)zn;7] = 0 and g[(pp)2n;7] = 0 in an arbitrarily small
neighborhood of p*, u* and y*. Since, in that case, point (qs,qI) is
arbitrarily close to point A in Figure 4, and since line AX lies below the
/> 1/8, qI < p implies that

1. Let q§,...,q§ be the sequence

450 line, it holds ¢} < p. Since ﬁl

condition B-iii-b is satisfied for t

that follows condition B-iii-a from the q = qI. Then, for t = 1,2,...,
T-1, (qf,qf,;) is arbitrarily close to point (at’at+1)' This implies that
if (at’at+1) 1iés on open segment YA, (qz,q§+1)‘must lie on open segment
Y*A* and that if (Et,ﬁt+1) lies on open segment AX, (qf,qf ;) must lie on
open segment A*X*, where A*, X* and Y* are the points corresponding to A, X
and Y in the case in which the parameter values are p*, p* and 7*.
Therefore, by (6.14),

q% > p* if kz < 1/p*
(6.15)
0 < qz < p* if kz > 1/p* .

This implies that qa,_qf,...,qﬁ satisfies condition B-iii-b. Q.E.D.

We now prove that no matter how close to 1 discount factor p is, there

are values of parameters p and 7 such that h(k) is an optimal transition
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function. For this purpose, we demonstrate that if n is sufficiently

n n
large, the set of (p,s,7) that satisfies f[pz ;7] = 0 and g[(p#)z ;7] <0
together with conditions (5.1) through (5.5) contains (p,u,7) of which the

p-coodinate is arbitrarily close to 1.

n
By (6.11), g[(pp)2 ;7] < 0 is equivalent to

2nlu‘?n .- 12m(n) J 74m(n) +4t74m(n) +(-1)"
2

(6.16) p

n
By (6.11), f[pZ ;7] = 0 is equivalent to

6.17) 4% - () (0" | 2(zm(@) (D" g dn(n)+(-1)"
2

By (6.17), (6.16) is equivalent to

1
n
(6.18) p < -1+{1+47 |2
Ll
17 +47
By (6.17) again, condition (5.5), i.e., pu < {7, is equivalent to
1
n-1 =
242 of
(6.19) p <
n
72m(n)+(—1)n+J72[2m(n)+(-1) ]+4t74:m(n)+(-1)n
Moreover, condition (5.2), i.e., pg > 1, is equivalent to
1
2 ot

(6.20) p>

72m(n)+(-1)n+J72[2m(n)+(—1)n]+474m(n)+(-1)n

Finally, condition (5.3), i.e., g > 7 > 1, is equivalent to

72m(n)+(—1)n+J72[2m(n)+(—1)n]+474m(n)+(-1)n -
2

We will prove the following theorem.

(6.21)
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Theorem 7: = For any arbitrary large n, choose p and 7 in such a way

that the following conditions is satisfied.

(6.22) 1¢qc< {1%&5]3/(2n+1) ,

(6.23) 1/92/3 ¢ 5 < 1741/6 .
Moreover, choose g in such a way that (6.17) is satisfied. Then, h(k) is

an optimal transition function, which is ergodically chaotic.

Proof: Under the hypothesis of the theorem, it suffices to
demonstrate that conditions (6.18) through (6.21) together with (5.1),

i.e., 0 < p <1, are satisfied. First, note that

1
n
(6.24) | lin_ e 1edy 120
Ll
7+{ 7" +47
Next, note that it is possible to prove
1
211
2 27
(6.25) . > 2n+1 1)/3 °
72m(n)+(-1)n+J72[2m(n)+(-1)n]+474m(n)+(-1)“ 1+{5)7(2 +1)/
Since
2n-1 ln
29 2
(6.26) lin = 1/,1/8
N-m n+1 ’
(15) 2 I3
it holds that
2 S
(6.27) lim__ 275 1/41/8.

72m(n)+(-1)n+J72[2m(n)+(-1)n]+474m(n)+(71)n

Thus, (6.24) and (6.27) imply that for a sufficiently large n, conditions
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(6.18) and (6.19) hold if

(6.28) p <1/

Note that it may be demonstrated that
1

1/6

2 olt

20+ ()" ] 2(2n(m)+ (1), an(@) ()"

(6.29)[ 2

gn
(1445)7 2" -2)/ 3} ’

Since

(6.30)

y [ 2 }EH 3

im (1+43)7(2n+172)/3 = 1/y717,

for a sufficiently large n, condition (6.20) is satisfied if

(6.31) o 14218,

In summary, by (6.28) and (6.30), conditions (6.18), (6.19) and (6.20) are
satisfied if (6.23) is satisfied. |

It is possible to demonstrate

(6.31)

12m(n)+(—1)n+J72[2m(n)+(;1)n]+474m(n)+(-l)n 2 [1543]7_(2n+1)/3 |
272
Thus, if and only if

(6.32) | 7 < [1%&5]3/(2n+1)

condition (6.21) is satisfied. Let y > 1. Then, by (6.23), 0 < p < 1;
condition (5.1) is satisfied. Thus, under the hypothesis of the theorem,
conditions (6.18) through (6.21) together with (5.5) are satisfied. Q.E.D.

Proposition 3 directly follows from Theorem 2. (For a proof, note the

n
following: As n | o, [l%i§]3/(2 +1) | 1. Thus, by (6.22), v [ 1. As 7|



proposition follows from Theorem 7.)
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