
1

co-NP 集合の NP 集合による近似について

岩間 一雄 \dagger

九州大学工学部情報工学科
iwama@csce.kyushu-u.ac.jp

1. Introduction

Let us say that a set L_{1} in a class $C_{1}app$ roximates a set L_{2} in a class C_{2} if L_{1} is a subset of
L_{2} . When both A and B approximate $L,$ A is said to be better than B if $A\supset B$ and $A-B$

contains infinitely many elements. A is called optimal if no better approximation than A exists.
For example, let L_{sat} be the set of all satisfiable CNF predicates, L_{neg-af} be the set of CNF

predicates in which every clause includes both negative and affirmative literals. It is well known

that L_{sat} is NP-complete. One can see easily that L_{neg-af} is in P and it approximates L_{sat} . It
also turns out that L_{neg} , the set of CNF predicates in which every clause includes at least one
negative literal, is a better approximation than L_{neg-af} . (The approximation is an independent
notion from the so-called subproblem: The satisfiability problem for some restricted domain (say,

for Horn predicates) is clearly easier than the same problem for general CNF predicates. In the

case of the approximation, the class C_{1} does not have to be an easier class than C_{2} , namely, for

example, it does not loose any sense if C_{1} is the family of NP-complete sets and C_{2} is P.)

An apparent research goal is to seek better approximations in a different class, and that is

not new: A set A not in P has been called P-levelable if for any set B in P which approximates
A , there exists another $B’$ in P which also approximates A and is better than B . Most natural
sets that are NP-complete, PSPACE- complete and so on are known to be P-levelable (under

the assumption that those sets are not in P), i.e., they have no optimal approximation (see the

summary in [2]). In this paper, we discuss the case when C_{1} is the class of NP-complete sets
(NPC) and C_{2} is that of coNP-complete sets (coNPC). Its motivation and significance are as
follows:

In [6] the present author et al. introduced the test-case generation with known answers
for the CNF satisfiability problem. Namely, our generator consists of two generators, one for
yes-instances (satisfiable predicates) and the other for no-instances (unsatisfiable predicates).
This allows us (i) to prepare test problems with their answers and (ii) to mix yes- and no-
instances as we wish; both are very important in testing algorithms empirically. It turns out
that polynomial-time generatable sets are in NP. The set of all yes-instances, L_{sat} , is in NP
and can be generated in polynomial time in a relatively easy fashion (if we do not count the
distribution). However, the set of no-instances, $L_{\overline{sat}}$, is in coNPC and cannot be generated in
polynomial time unless NP $=$ co-NP. Thus we probably should try to generate not the whole

$\uparrow Supported$ by Scientific Research Grant, Ministry of Education, Japan, No. 02302047 and No. 04650318.

数理解析研究所講究録
第 833巻 1993年 1-10

2

$L_{\overline{sat}}$ but its subset S . Clearly S should be as large as possible and must not be an easy subset
like one in P. The latter could be met by selecting S as an NPC set. Thus our primary goal is
to seek a good NPC approximation of $L_{\overline{sat}}$.

The first result in this paper is that as with the P-levelability mentioned above, there is
no optimal NPC approximation of $L_{\overline{sat}}$. This is a somewhat good news for our motivation since

it appears that we can get a better and better approximation without limit. Unfortunately that

is not a direct consequence of the result since its proof is nonconstructive. That is the reason
why the following second result makes sense: It is shown that there are an infinite sequence
of (explicit) sets $L_{0},$ $L_{1},$

$\cdots,$
$L_{i},$ $L_{1+1},$ \cdots such that each L_{i} is in NPC, each L; approximates

$L_{\overline{sat}}$ and L_{i+1} is better than L_{i} for each i . We will also conjecture that a slight modification of
this construction results in a constructive version of the first result, namely, that for any NPC
approximation of $L_{\overline{sa\ell}}$, we can construct effectively a better approximation.

As mentioned previously, it is expected that the present results will contribute to more
appropriate generation of test-cases or languages in general. Related works are as follows:
Sanchis et al. [11] shows that although most P and NP languages appear to have polynomial-
time generators, the question of whether au NP languages have such generators cannot be
resolved without answering some major open questions in complexity theory. One interesting
point is that the difficulty for NP languages is the same as that for P languages in the case of

generation. There are many other papers which mainly focuses on the distribution of generated
instances, see [5, 3, 1]. Note that any of those works seldom mentions the generation of co-NP
languages. As for optimization problems, see $[10, 8]$. See [13] for generation of several kind
of graphs. Also recent papers $[9][12]$ have investigated both experimentally and theoretically
that what kind of SAT instances are really hard (every SAT algorithm takes exponential time
almost always). Their claim is, not surprisingly, that if the instances are generated syntactically
at random then those hard ones exist around such parameter values that the probability of
satisfiability is 50%.

2. Limitlessness of Better Approximation

Although most description in this section will be made by means of SAT, the statements them-
selves are not solely restricted to that particular problem. A literal is a logic variable x or
its negation \overline{x} . A clause is a sum of literals. A (CNF) predicate is a product of clauses. A
specific assignment of true and false to all variables is called a cell. A predicate f is said to
be satisfiable (unsatisfiable) if there is a (no) cell that makes f true. It is said that a clause A

covers a cell T if the assignment denoted by T makes A false. A clause A is said to cover a
clause B if all the cells covered by B are covered by A. (Intuitively, A is larger than $B.$)

In proving our main theorem, we need mappings like the padding function [2]. Consider,

3

for example, the following δ and ψ that are defined for predicates f of n variables x_{1} , –, x_{n} :
Note that (x_{n+1}) and (x_{n+2}) below are clauses including a single literal.

$\delta(f)=\{f$.$(x:_{1}^{1}))_{(\overline{x_{n+2}})}f(x_{n}^{n}$ $ifnisevenifnisodd$

$\psi(f)=\{f\cdot(x^{n}f\cdot(x_{n}\ddagger_{1}^{1}))_{(\overline{x_{n+2}})}$ $ifnisevenifnisodd$

Remark. δ has the following properties: As will be seen, they are important in the sense
that our later theorems hold for any specific mapping with these properties. Similarly for ψ .

(i) δ is one-to-one.

(ii) δ is computable in polynomial time.
(iii) δ^{-1} is computable in polynomial time including the case that there is no predicate g

such that $g=\delta^{-1}(f)$, which is denoted by $\delta^{-1}(f)=\Lambda$.
(iv) The size of $\delta(f)$ is larger than f .
(v) δ and ψ are disjoint, i.e., for any sets A and B of predicates, $\delta(A)\cap\psi(B)=\emptyset$.

Before presenting our main theorem (NPC approximation of $coNP$ sets), we shall first
review the result on the P-levelability (P approximation of harder sets) and make a slight
extension of that.

Proposition 1. Let A be a set of predicates that is not in P and is closed under the
mapping ψ . (The predicates may be simply strings and the mapping may be any one having
the properties (ii) and (iv).) Then any P approximation B of A is not optimal.

Proof [2]. Suppose that B is optimal. A set C is defined as follows:

$C=$ { $f|f\not\in B$ but $\psi(f)\in B$ }

As B is in P , and ψ is computable in polynomial time, C is also in P. Now consider, for each
f in A , the following sequence: $f,$ $\psi(f),$ $\psi^{2}(f)=\psi(\psi(f)),$ \cdots . Since ψ is closed under A , each
value is in A . Now the set

$D_{f}=\{f, \psi(f), \psi^{2}(f), \cdots, \psi^{n}(f), \cdots\}$

is infinite and is in P since ψ makes the size strictly larger. Because B was assumed to be
optimal, D_{f} must eventually be contained in B ; it must “cross” the boundary denoted by the
set C.

As A is not in $P,$ $A-B$ is infinite. For each f in $A-B$, the sequence D_{f} reaches some
member g of C and the size of g is larger than that of f . Thus only finitely many f may reach
any fixed g , and hence there must be infinitely many such g . Thus C is infinite. Since $C\cap B=\emptyset$

by the definition of $C,$ $C\cup B$ contains infinitely more elements than B and is still in P since
both C and B are in P , which contradicts the assumption that B is optimal. \square

4

Proposition 2. Let A be a set of predicates that is not in NP and is closed under ψ .
Then any NP approximation B of A is not optimal.

Proof. Almost the same as above but we define C as

$C=\{f|\psi(f)\in B\}$

Then C is in NP and so is $C\cup B$ as well. (If we would add the condition $f\not\in B$ then we could

no longer claim that C is in NP.) Although C and B are no longer disjoint, we can show that
$C\cup B$ is infinitely larger than B by the similar argument as above. \square

Thus it was an easy extension of of Proposition 1 to prove the limitlessness of the better
NP approximation. As one can see, the key point in both proofs is to find the way of still

expanding the optimal approximation B . The only condition in doing so is that the extension
must be made within A , which is guaranteed by the mapping ψ since it is closed within A .

Now what would happen if the NP approximation is replaced by the NPC approximation?
Since B is NP-complete, there are another NP-conplete set X and a polynomial-time reduction
α such that $B\supseteq\alpha(X)$ and $\overline{B}\supseteq\alpha(\overline{X})$. Then if we would try to expand B as above, we have
to pay attention to this set $\alpha(\overline{X})$ since if the expansion of B would imply an overlap between
B and $\alpha(\overline{X})$, then the NP-completeness of B would no longer be claimed. It should be noted
that unlike A ($i.e.$, particular set $L_{\overline{sat}}$), we have no specific information about this $\alpha(\overline{X})$.

Theorem 1. Suppose that A is a $coNP$ set of predicates and B is an NPC approximation
of A such that both A and \overline{A} are closed under ψ and \overline{B} is closed under δ . (Again ψ can be any
such mapping satisfying (ii) and (iv) and similarly for δ if it satisfies (i) to $(v).)$ Then if NP \neq

$coNP$ then B is not optimal.

Proof. Since B is NP-complete, there is another NP-complete set X and a polynomial-
time reduction α such that $B\supseteq\alpha(X)$ and $\overline{B}\supseteq\alpha(\overline{X})$. the first case to be considered is that
there are such X and α that $\alpha(\overline{X})$ is in A. (In this case, two sets B and \overline{A} are P-inseparable [4].
Recall that $\overline{A}(=L_{sat})$ can be perfectly generatable and B is probably so too since B is in NP.
Then, although details are omitted, we were able to construct the so-called one-way function,
which no one has ever succeeded in. Thus, this first case seems to be a little unrealistic.) This
case is easy to treat since we can apply the same expansion of B as Proposition 2. Clearly we
do not have to care about an overlap of B with $\alpha(\overline{X})$ because the latter is outside A .

Hence, from now on, we can assume that there are no such α and X or that any pair of
the set X and the reduction α satisfies that $\alpha(\overline{X})\cap A\neq\emptyset$. Let $C=\alpha(\overline{X})\cap A$.

Now we show the following important property about this set C : Let

$C_{0}=\{\delta^{-\infty}(f)|f\in C\}$

where $g=\delta^{-\infty}(f)$ iff $\delta^{-1}(g)=\Lambda$ and for some $i\geq 0,$ $\delta^{i}(g)=f$. Then C_{0} is infinite by the
following reason: Suppose hypothetically that C_{0} is finite. Then given f in $\alpha(X\cup\overline{X})$, we can

5

decide whether f is in C or not in polynomial time. (One can apply δ^{-1} to f repeatedly, which
must end shortly since δ^{-1} makes f shorter. If f is in C then the sequence must end up in C_{0} .
It may do so as well if f is in \overline{A} but never if f is in $\alpha(X)$ because of the closure property of
$\delta.)$ Now we can modify the reduction α into the following $\alpha’$: If $\delta^{-\infty}\cdot\alpha(x)$ is not in C_{0} then
$\alpha’(x)=\alpha(x)$. Otherwise $\alpha’(x)$ is some trivial element in \overline{A} . One can easily see that $\alpha’$ is also

polynomial-time computable and it can act as a reduction just like α . But this time $\alpha’(\overline{X})\subseteq\overline{A}$

or $\alpha’(\overline{X})\cap A=\emptyset$, which contradicts our current assumption.

Now let $D=\delta(C)$ and

$E=$ { $f|\delta^{-1}(f)\in B$, ol $\delta^{-1}(f)=\Lambda$ and $\psi(f)\in B$ }

(i) $E\subseteq A$ by the closure property of δ and ψ .
(ii) Since B is in NP and δ^{-1} and ψ are polynomially computable functions, E is also in

NP.
(iii) $E\cap D=\emptyset$. (Reason: If f is in $D,$ $\delta^{-1}(f)$ must be in C by the definition of D . Either

$\delta^{-1}(f)\in B$ or $\delta^{-1}(f)=\Lambda$ contradicts this fact because B and C are disjoint.)

(iv) The difference $C-D$ is infinite. Otherwise the above C_{0} must be finite.
(v) The difference $E-B$ is infinite: Apply δ^{-1} to each f in the infinite $C-D$ repeatedly.

Then it eventually reach such g_{1} or g_{2} that $\delta^{-1}(g_{1})$ is in B for the first time and $\delta^{-1}(g_{2})=\Lambda$.
Since $C-D$ is infinite and δ is one-to-one, the set of those g_{1} and g_{2} is also infinite. If the set

of g_{1} is infinite then so is $E-B$ since such g_{1} exists in $E-B$. Hence suppose that the set of
g_{2} is infinite. Then we can use the argument of Proposition 2 considering the sequence $\psi(g_{2})$,
$\psi^{2}(g_{2}),$ \cdots , to show that $E-B$ is infinite. It should be noted that this sequence never goes into
D because of the property (v) of δ and ψ .

Now we obtained E U B which is a subset of A ((i) above) and is infinitely larger than
B ((v) above). It remains to show that $E\cup B$ is NPC: We modify α into $\delta\cdot\alpha$ that is clearly

polynomial-time computable. $\delta\cdot\alpha(\overline{X})$ includes D and maybe some members in \overline{A} , which does
not overlap with E by (iii) or with B by the closure property of δ . Also $\delta\cdot\alpha(X)$ must be
contained in $E\cup B$ since $\alpha(X)$ is in B and E contains such f that for some g in $B,$ $\delta(g)=f$. \square

It should be noted again that the proof does not depend on any specific property of SAT,
δ or ψ . For many other natural problems, it does not seem to be so hard to find δ and ψ that
satisfy the condition (i) to (v) and the closure property described in the theorem.

3. Sequence of Better Approximations.

Suppose that we have an NPC approximation A of $L_{\overline{sat}}$. Then Theorem 1 says that there does
exist another NPC approximation B that is better than A but says nothing about how to get
B . At present we cannot find such a method, but can show an infinite sequence of better and
better approximations each of which is constructed effectively.

6

A CNF predicate f is said to be provable if for some variable x , xhi is implied from f by

applying the following three operations repeatedly:
(i) An arbitrary literal is added to an arbitrary clause A .
(ii) Two clauses $(A+x)(A+\overline{x})$ are merged into a single clause A .
(iii) An arbitrary clause A is duplicated to AA .

Example. Let $f=(\overline{x_{1}}+\overline{x_{2}})(x_{1}+\overline{x_{3}})(x_{2}+x_{3})(\overline{x_{1}}+x_{2}+\overline{x_{3}})(x_{1}+\overline{x_{2}}+x_{3})$. Then f is
provable as follows: By operation (iii), $(x_{2}+x_{3})$ is duplicated. $\overline{x_{1}}$ is added to this $(x_{2}+x_{3})$ and

then merged with $(\overline{x_{1}}+x_{2}+\overline{x_{3}})$ to imply $(\overline{x_{1}}+x_{2})$. x_{1} is added to the other $(x_{2}+x_{3})$ and then

merged with $(x_{1}+\overline{x_{2}}+x_{3})$ to get $(x_{1}+x_{3})$. Now f became $(\overline{x_{1}}+\overline{x_{2}})(x_{1}+\overline{x_{3}})(\overline{x_{1}}+x_{2})(x_{1}+x_{3})$.
By merging the 1st and 3rd and also the 2nd and 4th, we get $\overline{x_{1}}x_{1}$.

Note that among the three operations, only the third one increases the number of clauses.
Let $d(n)$ be a function in an integer n . Then $PRV(d(n))$ denotes the set of predicates f such

that f is provable by using operation (iii) at most $d(n)$ times where n is the number of clauses
in f . Then it is not hard to see that:

(a) $PRV(d(n))$ approximates $L_{\overline{sat}}$ for any $d(n)$.
(b) $PRV(0)$ is in NP.
(c) $PRV(d(n))$ is still in NP if $d(n)$ is a polynomial.

Further results are shown in $[6, 7]$:
(d) $PRV(d(n))$ can be generated in polynomial time if $d(n)$ is a polynomial. (The gener-

ation is simply a reverse of the procedure of proving given above.)
(e) $PRV(2^{O(n)})=L_{\overline{sat}}$.

Our main results in this section are:

Theorem 2. For any polynomial $d(n),$ $PRV(d(n))$ is NP-complete.

Theorem 3. If d_{1} and d_{2} are polynomials such that $d_{1}(n)<d_{2}(n)$ for all $n\geq 1$, then
$PRV(d_{2}(n))$ is better than $PRV(d_{1}(n))$.

Thus, for example, $PRV(n),$ $PRV(n+1),$ $\cdots,$ $PRV(n+i),$ \cdots is an infinite sequence of
better NPC approximations of $L_{\overline{\ell at}}$. For a set L of predicates, let $PRV(d(n), L)$ denote the set
of predicates f such that f can be reduced to some predicate g in L by the three operations (at
most $d(n)$ times for (i\"u)).

Open Question. Does there exist a polynomial $d(n)$ such that for any NPC approxima-
tion A of $L_{\overline{sat}},$ $PRV(d(n), A)$ is a better NPC approximation than A ?

7

4. Proofs of Theorems 2 and 3 (Sketch).

We first show a key lemma for both theorems. (Note that the property (e) of the previous section
is an old result in the field of switching theory. The following lemma demonstrates that there
is a predicate for which we need an exponential number of operations to get only one prime
implicant.)

Lemma 1. We can construct a predicate f of t clauses such that exactly $q(t)=\Theta(c^{t})$ (for

some $c>1$) apphcations of the duplication operations are needed to show its provability.

Proof. The predicate f consists of the following (1) to (3).

$U(n)(1,2)U(n-1)(\overline{1}, \overline{2})U(n-2)(3,4)U(n-3)(\overline{3}, \overline{4})\cdots U(2)(n-1, n)U(1)(\overline{n-1}, \overline{n})$ (1)

$V(n)(1, \overline{2})V(n-1)(\overline{1},2)V(n-2)(3, \overline{4})V(n-3)(\overline{3},4)\cdots V(2)(n-1,\overline{n})V(1)(\overline{n-1}, n)$ (2)

$W_{1}(n)(1, \overline{2})W_{1}(n-1)(\overline{1},2)W_{1}(n-2)(3,4)W_{1}(n-3)(\overline{3},\overline{4})\cdots W_{1}(2)(n-1, n)W_{1}(1)(\overline{n-1}, \overline{n})$

$W_{2}(n)(1,2)W_{2}(n-1)(\overline{1}, \overline{2})W_{2}(n-2)(3, \overline{4})W_{2}(n-3)(\overline{3},4)\cdots W_{2}(2)(n-1,\overline{n})W_{2}(1)(\overline{n-1}, n)$

$W_{3}(n-2)(3, \overline{4})W_{3}(n-3)(\overline{3},4)W_{3}(n-4)(5,6)W_{3}(n-5)(\overline{5}, \overline{6})\cdots W_{3}(2)(n-1, n)W_{3}(1)(\overline{n-1}, \overline{n})$

$W_{4}(n-2)(3,4)W_{4}(n-3)(\overline{3}, \overline{4})W_{4}(n-4)(5,\overline{6})W_{4}(n-5)(\overline{5},6)\cdots W_{4}(2)(n-1, \overline{n})W_{4}(1)(\overline{n-1}, n)$

$W_{n-3}(4)(n-3, \overline{n-2})W_{n-3}(3)(\overline{n-3}, n-2)W_{n-3}(2)(n-1, n)W_{n-3}(1)(\overline{n-1}, \overline{n})$

$W_{n-2}(4)(n-3, n-2)W_{n-2}(3)(\overline{n-3},\overline{n-2})W_{n-2}(2)(n-1,\overline{n})W_{n-2}(1)(\overline{n-1}, n)$ (3)

where $U(i)(k, k+1)=(U(i)+z_{k})(U(i)+z_{k+1}),$ $U(i)(k, \overline{k+1})=(U(i)+z_{k})(U(i)+\overline{z_{k+1}})$, and
similarly for $U(i)(\overline{k}, k+1)$ and $U(i)(\overline{k}, \overline{z_{k+1}})$. Furthermore, $U(1),$ $U(2),$ $\cdots,$ $U(n-1),$ $U(n)$ are
$u_{1},$ $\overline{u_{1}}+u_{2},$ $\cdots,$ $\overline{u_{1}}+\overline{u_{2}}+\cdots+\overline{u_{(n-2)}}+u_{(n-1)},$ $\overline{u_{1}}+\overline{u_{2}}+\cdots+\overline{u_{(n-2)}}+\overline{u_{(n-1)}}$, respectively.
Namely,

$(F+U(1))(F+U(2))\cdots(F+U(n))$ (4)

can be modified to F (a sum of literals) by repeated merge operations. Similarly for $V(i)$ and
$W_{j}(i)$. Variables $z_{1},$ $\cdots,$ z_{n} are called main-variables and those in $U(i),$ $V(i)$ and $W_{j}(i)$ are called
sub-variables.

We first show that f is provable. Removing the sub-variables of (1) as above, we get $2^{n/2}$

clauses uf the following form

$x_{1}+x_{2}+x_{3}+x_{4}+\cdots+x_{2i-1}+x_{2i}+\cdots+x_{n-1}+x_{n}$, (5)

where $(x_{2i-1}, x_{2i})=(\overline{z_{2:-1}}, z_{2};)$ or $(z_{2i-1}, \overline{z_{2i}})$. It should be noted that we need an exponential
number of duplication operations in this process. Similarly we get $2^{n/2}$ ones from (2) hke

$y_{1}+y_{2}+y_{3}+y_{4}+\cdots+y_{2:-1}+y_{2i}+\cdots+y_{n-1}+y_{n}$, (6)

8

where $(y_{2i-1}, y_{2i})=(z_{2i-1}, z_{2i})$ or $(\overline{z_{2i-1}}, \overline{z_{2:}})$. Now, from the first line of (3), we can imply $2^{n/2}$

clauses like

$z_{1}+z_{2}+x_{3}+x_{4}+\cdots+x_{n-1}+x_{n}$, and

$\overline{z_{1}}+\overline{z_{2}}+x_{3}+x_{4}+\cdots+x_{n-1}+x_{n}$, (7)

where $x_{3}+x_{4}+\cdots+x_{n-1}+x_{n}$ is exactly the same as (5). Thus we can combine (5) and (7) to

imply all the predicates denoted by

$x_{3}+x_{4}+\cdots+x_{n-1}+x_{n}$. (8)

Similarly, we can get

$y_{3}+y_{4}+\cdots+y_{n-1}+y_{n}$ (9)

from (6) and the second line of (3). Then using the third line of (3), x_{3} and x_{4} are removed
from (8). Also y_{3} and y_{4} are removed from (9) using the forth line of (3). We can continue this

procedure until both

$x_{n-1}+x_{n}$ and $y_{n}-\iota+y_{n}$

are implied, from which, as one can easily see, $z_{n}\overline{z_{n}}$ can be implied.

We shall next show that what we did above is the only possibility of proving f . As an
easier case, suppose that (1) is replaced by $2^{n/2}-1$ clauses, say (1’), that consist of all the clauses

denoted by $x_{1}+x_{2}+\cdots+x_{n}$ except a single (any) one, which we denote by $z_{1}’+z_{2}’+\cdots+z_{n}’$. Then
we can show that the set of clauses (1’), (2) and (3) is satisfiable: Set values to $z_{1},$ $z_{2},$ $\cdots,$ z_{n}

as follows: If $(z_{2i-1}’, z_{2i}’)=(\overline{z_{2l-1}}, z_{2i})$ then $z_{2i-1}=1,$ $z_{2i}=0$. If $(z_{2i-1}’, z_{2i}’)=(z_{2i-1}, \overline{z_{2i}})$ then
$z_{2i-1}=0,$ $z_{2i}=1$. Then all the other $2^{n/2}-1$ clauses then this $z_{1}’+z_{2}’+\cdots+z_{n}’$ clearly

become 1. In terms of (2), either $V(n)(1, \overline{2})=(V(n)+z_{1})(V(n)+\overline{z_{2}})$ or $V(n-1)(\overline{1},2)=$

(V $(n-1)+\overline{z_{1}}$) $(V(n-1)+z_{2})$ becomes 1 by the above assignment regardless of the values of
the sub-variables in $V(n)$ and $V(n-1)$. Therefore, if for example the former is 1, then all the
other clauses, $V(n-1)(\overline{1},2),$ $V(n-2)(3, \overline{4})$, and so on can be made 1 by assigning proper values
only to the sub-variables in $V(n-1),$ $V(n-2)$, and so on (namely, $v_{n-1}=v_{n-2}=\cdots=v_{1}=1$).

As for the first line of (3), either $W_{1}(n)(1,\overline{2})$ or $W_{1}(n-1)(\overline{1},2)$ becomes 1 regardless of $W_{1}(n)$

or $W_{1}(n-1)$, and all the other clauses can be made 1 only by properly setting $W_{1}(n-2),$ \cdots .
Similarly for the second line (either $W_{2}(n-2)(3,\overline{4})$ or $W_{2}(n-3)(\overline{3},4)$ becomes 1) and for the
rest of (3).

This argument also holds for (2) and for each line of (3). Namely, if we try to delete sub-
variables before main-variables, we have to do so by expanding each line into all the possible
clauses of $z_{i}’ s$. On the other hand, considering that sub-variables are able to be deleted only by
the standard expansion, it turns out that to try to combine, say $U(n-2)(3,4)$ and $V(n-2)(3,\overline{4})$

before deleting the sub-variables does not help to our goal. Therefore, if we could prove the

9

predicate using only a polynomial number of the duplication operation, it would be only by: (i)

We first expand (completely) the last several (not too many) lines of (3). (ii) Then using those
clauses not including sub-variables we try to delete main-variables of the rest of the lines before

deleting sub-variables. This, however, is impossible since the process intuitively means that we
try to delete main-variables from z_{n} towards z_{1} , which is the opposite direction compared to the
successful proof (but using exponential delete operations) described before. We omit the details
which need rather tedious case-analysis. \square

Lemma 2. There is a predicates of 5 clauses that is provable if we can use the duplication
operation once but is not provable only by (i) and (ii).

Proof The predicate shown in the example of Section 3 meets the condition 口

From these two lemmas, the following lemma is then implied:

Lemma 3. For any polynomial $d(t)$, we can construct a predicate f of $o(\iota^{1/2})$ clauses
such that we need exactly $d(t)$ apphcations of the duplication operation to show its provability.
(Proof is omitted.)

Lemma 4 [7]. There is a polynomial-time reduction α from 3-CNF predicates into CNF
predicates such that $\alpha(f)$ is in $PRV(0)$ iff f is satisfiable and $\alpha(f)$ includes $O(t^{2})$ clauses if f

has t clauses. (Namely $PRV(0)$ is NP-complete.)

Now it is not hard to complete the proof for Theorem 2. We design a similar reductoin
as Lemma 4: For a 3-CNF predicate g_{0} of t clauses, we first set a sufficiently large number,
say $n=t^{3}$. By Lemma 3, we then a predicate g_{1} such that exactly $d(n)$ duplication operations
are needed to imply a single literal, say σ . (This can be done by replacing each clause A in f

of lemma 3 by $(A=\sigma).)g_{1}$ contains $O(t^{1.5})$ clauses. We then construct g_{2} such that we can
imply tr $fromg_{2}$ only by operations (i) and (ii) iff the 3-CNF predicate g_{0} is satisfiable. Now the
target predicate g is $g_{1}g_{2}g_{3}$ where g_{3} is a trivial (satisfiable) predicate just to adjast the number
of clauses of g to n . One can see that g is in $PRV(d(n))$ iff go is satisfiable.

Theorem 3 is almost trivial by Lemma 3.

Acknowledgement. The author would like to thank Jose Balcazar for his suggestion of
possible extensions of P-levelability to the current form.

References

[1] M. Abadi, E. Allender, A. Broader, J. Feigenbaum, and A. Hemachandra. On generating
solved instances of computational problems. In Proc. CRIPT88, 1988.

[2] J. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity Π. Springer, 1989.

10

[3] S. Ben-David, B. Chor, O Goldreich, and M. Luby. On the theory of average case complexity.
In Proc. $21stACM$ Symp. on Theory of Computing, pp. 204-216, 1989.

[4] S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with application
to pubhc-key cryptography. Information and Control, Vol. 61,, 1984.

[5] R. Impagliazzo and L. Levin. No better ways to generate hard np instances than picking
uniformly at random. In Proc. $31st$ IEEE Symp. on Foundations of Computer Science,
pp. 812-821, 1990.

[6] K. Iwama, H. Abeta, and E. Miyano. Random generation of satisfiable and unsatisfiable
CNF predicates. In Proc. 12th IFIP World Computer Congress, pp. 322-328, 1992.

[7] K. Iwama and E. Miyano. Security of test-case generation with known answers. In Proc.
AAAI Spring Symposium Series, 1993.

[8] B. Krishnamurthy. Constructing test cases for partitioning heuristics. IEEE Trans. Com-
put., Vol. 36, pp. 1112-1114, 1987.

[9] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems.
In Proc. Tenth National Conference on Artificial Intellegence, pp. 459-465, 1992.

[10] L. Sanchis. On the complexity of test case generation for NP-hard problems. Inform.
Process. Lett., Vol. 36, pp. 135-140, 1990.

[11] L. Sanchis and M. Fulk. On the efficient generation of language instances. SIAM J. Comput.,
Vol. 19, pp. 281-296, 1990.

[12] V. Shvatal and E. Szemeredi. Many hard examples for resolution. J. Assoc. Comput. Mach.,

Vol. 35, pp. 759-768, 1988.

[13] G. Tinhofer. Generating graphs uniformly at random. In Computational graph theory,
pp. 235-255. Springer, 1990.

