goooboooogn
0 8330 19930 31-41

On Using Oracles That Compute Values

o+ 7 VEBW-EE

Stephen Fenner(F§ X A ' K)* Steve Homer(R A b ¥ K)
Mitsunori Ogiwara(3kKJE T8 EXEER)? Alan L. Selman(= 2 — 3 — ZJHILK)S

Abstract

This paper focuses on complexity classes of partial functions that are computed in
polynomial time with oracles in NPMV, the class of all multivalued partial functions
that are computable nondeterministically in polynomial time. Concerning deterministic

polynomial-time reducibilities, it is shown that

1. A multivalued partial function i1s polynomial-time computable with k£ adaptive
queries to NPMV if and only if it is polynomial-time computable via 2¥ — 1 non-

adaptive queries to NPMV.

2. A characteristic function is polynomial-time computable with k adaptive queries
to NPMV if and only if it is polynomial-time computable with k& adaptive queries
to NP.

3. Unless the Boolean hierarchy collapses, k& adaptive (nonadaptive) queries to NPMV

is different than £ + 1 adaptive (nonadaptive) queries to NPMV for every k.

Nondeterministic reducibilities, lowness and the difference hierarchy over NPMV are
also studied. The difference hierarchy for partial functions does not collapse unless the
Boolean hierarchy collapses, but, surprisingly, the levels of the difference and bounded
query hierarchies do not interleave {as is the case for sets) unless the polynomial hier-

archy collapses.

*Dept. of Computer Science, Portland, ME 04103. Research partially supported by the National Science
Foundation under grant no. CCR-9209833.

"Dept. of Computer Science, Boston, MA 01003. Research partially supported by the National Science
Foundation under grant no. CCR-9103055

‘Dept. of Computer Science, Chofu-shi, Tokyo 182, Japan. Research partially supported by the National
Science Foundation under grant no. CCR-9002292.

$Dept. of Computer Science, Buffalo, NY 14260. Research partially supported by the National Science

Foundation under grant no. CCR-9002292.

32

1 Introduction

In this paper we study classes of partial functions that can be computed in polynomial
time with oracles in NPMV and NPSV; namely, we study the classes PFNPMV 5nd PENPSV,

NPMYV is the set of all partial multivalued functions that are computed nondeterminis-
tically in polynomial time, and NPSV is the set of all partial functions in this class that are
single-valued. NPMV captures the complexity of computing witnesses to problems in NP.
For example, let sat denote the partial function defined by sat(2) maps to a value y if and
only if z encodes a formula of propositional logic and y encodes a satisfying assignment of
z. Then, sat belongs to NPMV, and the domain of sat (i.e.. the set of all words & for which
the output of sat(x) is non-empty) is the NP-complete satisfiability problem, SAT. Also,
NPMYV captures the complexity of inverting polynomial time honest functions. To wit, the
inverse of every polynomial time honest function belongs to NPMV, and the inverse of every
one-one polynomial time honest function belongs to NPSV.

The class of partial functions with oracles in NP, namely, PFNF has been well-studied
[Kre88], as have been the corresponding class of partial functions that can be computed
nonadaptively with oracles in NP, viz. PFNF [Sel92], and the classes of partial functions
that are obtained by limiting the number of queries to some value k > 1, namely, PFNPH
and PF:PM [Bei91]. A rich body of results is known about these classes.

Here we raise the question, “what is the difference between computing with an oracle
in NPMV versus an oracle in NP.” The answer is not obvious. If the partial function sat is
provided as an oracle to some polynomial-time computation 3. then on a query z, where
z encodes a satisfiable formula of propositional logic, the oracle will return some satisfying
assignment y. However, if the oracle to M is the NP-compete set SAT, then to this query
2, the oracle will only return a Boolean value “yes.” On the other hand, by the well-known
self-reducibility of SAT, M could compute y for itself by judicious application of several
adaptive queries to SAT. Indeed Theorem 1.1 states that unbounded access to an oracle in
NPMYV is no more powerful than such an access to an oracle in NP. However, in Section 3
we will see that the situation for bounded query classes is much more subtle. In general,
function oracles cannot be replaced by set oracles — but set oracles are still useful. We will

show that every partial function in PFNPMVI]

can be computed by a partial function of the
form f og, where f is in NPMV and ¢ belongs to PFNPK] Moreover, most surprisingly,
the relationship between access to an oracle in NPMV and access to an oracle in NP is
tight regarding set recognition; that is, PNPMVI] = PNP[E] * This means that when we are
computing characteristic functions, & bounded queries to an oracle in NPMV give no more

information than the same number of queries to an oracle in NP.

We will show that the levels of the nonadaptive and adaptive bounded query hierarchies

interleave (for example, & adaptive queries to a partial function in NPMYV is equivalent to.

2% — 1 nonadaptive queries to a partial function in NPMV), and we will show that these
bounded query hierarchies collapse only if the Boolean hierarchy collapses.

In Section 4 we study nondeterministic polynomial time reductions to partial functions
in NPMV. Unlike the case for deterministic functions, we will see that just -one query to
an NP oracle can substitute for an unbounded number of queries to any partial function in
NPMYV. The hierarchy that is formed by iteratively applying NP reductions is an analogue
of the polynomial hierarchy, and we will show that this hierarchy collapses if and only if
the polynomial hierarchy collapses.

"In Section 5 we will study the difference hierarchy over NPMV. We define f — ¢ to be a
partial function that maps to y if and only if f maps z to y and g does not map 2 to y, and
we define NPMV(k)={fi—(fa— (-~ f&)): f1, -, fx € NPMV}. Since the properties
of the bounded query hierarchies over NPMV are largely similar to those over NP, one
might hope that the same thing happens here — that the query hierarchy over NPMV and
the query hierarchy over NP are similar. However, the contour of this hierarchy is, to our
astonishment, totally different than its analogy for NP. Although BH = |J ;NP(k) C PNP

with no assumption, we will show that NPMV(2) is included in ppNFMV

if and only if
PH = AY. Also, in this section we will introduce the notion of NPMV-lowness, and we will
give a complete characterization of NPMV-lowness.

Consideration of reduction classes with oracles in NPSV, to be studied in Section 6,
is motivated in part by a desire to understand how difficult it is to compute satisfying
assignments for satisfiable formulas. The following technical notions will help to make this
clear. Given partial multivalued functions f-and g, define g to be a refinement of f if
dom(g) = dom(f) and for all € dom(g) and all y, if y is a value of ¢g(z), then y is a value
of f(z). Let F and G be classes of partial multivalued functions. Purely as a convention, if
f is a partial multivalued ‘function, we define f €. G if G contains a refinement. ¢ of f, and
we define 7 C. G if for every f € F, f €. G. Let PF denote the class of partial functions
that are computable deterministically in polynomial time. The assertion “NPMV C,. PF”
would mean that every partial multivalued function in NPMV has a refinement that can be
computed efficiently by some deterministic polynomial time transducer. It is well-known
that sat €. PF if and only if NPMV C. PF if and only if P = NP [Sel92]. Thus, one
does not expect that sat €. PF. Is sat computable in some larger single-valued class of
partial functions? It is shown in [Sel92] that PF C NPSV C PFNF, and it is an open
question whether sat €. NPSV or whether sat €, PFEP. We will consider classes of the
form PFNPSVIE] and PFI;PSVM, where & > 1, and we will show that the adaptive and the

33

34

nonadaptive classes form proper hierarchies unless the Boolean hierarchy collapses. Thus,
these classes form a finer classification in which to study the central question of whether
sat has a refinement in some interesting class of single-valued partial functions.

Finally, we note in passing that the complexity theory of decision problems, i.e., of sets,
is extremely well developed. Although the computational problems in which we are most
interested are naturally thought of as partial multivalued functions, the structural theory
to support classification of these problems has been slight. By introducing several natu-
ral hierarchies of complexity classes of partial multivalued functions, with strong evidence
supporting these claims, we intend this paper to make significant steps in correcting this

situation.

2 Preliminaries

We fix £ to be the finite alphabet {0,1}. Let f : ©* — Y* be a partial multivalued
function. We write f(a) — y, if y is a value of f on input string z. Define graph(f) =
{{z,y) | fla) — y}, dom(f) = {a | Fy(fl2x) — y)}. and range(f) = {y | Ia(f(z) — y)}.
We will say that f is undefined at z if @ & dom(f).

A transducer T is a nondeterministic Turing machine with a read-only input tape, a
write-only output tape, and accepting states in the usual manner. 7" computes a value y
on an input string z if there is an accepting computation of T on @ for which y is the
final content of Ts output tape. (In this case, we will write T'(2) — y.) Such transducers
compute partial, multivalued functions. (As transducers do not typically accept all input
strings, when we write “function”, “partial function™ is always intended. If a function f is

total, it will always be explicitly noted.)

e NPMYV is the set of all partial, multivalued functions computed by nondeterministic

polynomial time-bounded transducers;
e NPSV is the set of all f € NPMV that are single-valued:

o PF is the set of all partial functions computed by deterministic polynomial time-

bounded transducers.

PFNF is the class of functions computed in polyvnomial time with oracles in NP. PF%P
is the class of functions that can be computed nonadaptively with oracles in NP; that is,
a partial function f is in PFNF if there is an oracle Turing machine transducer T such

that f € PFNF via T with an oracle L in NP and a polynomial time computable function

f:{0,1}* — (c{0,1}*)* such that, for each input = to T, T only makes queries to L from
the list f(z).

Now we describe oracle Turing machines with oracles that compute partial functions.
For the moment, we assume that the oracle is a single-valued partial function. Let L be a
symbol not belonging to the finite alphabet ¥. In order for A/ to access a partial function
oracle, M contains a write-only input oracle tape, a separate read-only output tape, and a
special oracle call state ¢. When M enters state ¢, if the string currently on the oracle input
tape belongs to the domain of the oracle partial function, then the result of applying the
oracle appears on the oracle output tape, and if the string currently on the oracle input tape
does not belong to the domain of the oracle partial function, then the symbol L appears on
the oracle output tape. Thus, if the oracle is some partial function g, given an input z to
the oracle, the oracle, if called, returns a value g(«) if one exists, and returns 1 otherwise.
The oracle may not provide its own input, so that any change to the oracle input must be
made by M. (It is possible that M may read only a portion of the oracle’s output if the
oracle’s output is too long to read with the resources of M.)

If ¢ is a single-valued partial function and M is a deterministic oracle transducer as just
described, then we let M|[g] denote the single-valued partial function computed by M with

oracle g.

Definition 1 Let f and g be multivalued partial functions. f is Turing reducible to g in
polynomial time, f Slpng, if for some deterministic oracle transducer M, for every single-

valued refinement ¢' of g, M[g'] is a single-valued refinement of f.1

Let F be a class of partial multivalued functions. PF” denotes the class of partial
multivalued functions f that are gjp‘-reducible to some g € F. PFFH (respectively, PFTD"g])
denotes the class of partial multivalued functions f that are <F-reducible to some g € F
via a machine that, on input z, makes k adaptive queries (respectively, O(log |2|) adaptive
queries) to its oracle.

Pth; denotes the class of partial multivalued functions f that are S%-reducible to some

g € F via an oracle Turing machine transducer that queries its oracle nonadaptively. PFt];[k]

'A notion of polynomial-time Turing reducibility between partial functions is defined in [Sel92]. It is
important to note that the definition given here is different than the one in [Sel92]. Here the oracle “knows”
when a query is not in its domain. In the earlier definition, this is not the case. The authors recommend that
the reducibility defined in [Sel92] should in the future be denoted as <E¥ which is the common notation for
reductions between promise problems. We make this recommendation because conceptually and technically
this reducibility between functions is equivalent to a promise problem reduction. Also, we note that the
reducibility defined in [Sel92] is not useful for our purposes here. In particular, it is easy to see that iterating
reductions between functions in NPMV does not gain anything new unless the oracle is endowed with the

ability to know its domain:

35

36

denotes the class of partial multivalued functions f that are <f-reducible to some g € F
via a machine that makes & nonadaptive queries to its oracle.

p7, pFlk] pFllogl PZ and Pt}t-[k], respectively, denote the classes of all characteristic
functions contained in PF*, PF7H, ppZlcel pFZ and PF’Z;M.

For a class of sets C, we may say that PFC denotes the class of partial single-valued
functions that are S%-reducible to the characteristic function of some set in C. (Note that
functions in PFC are single-valued.) PFCIE], prclios]l ppé PF?,_[A'], p¢, PCil pCllog] pE and
Pft[k] are defined similarly.

Obviously PFNY € PFNFMV - Conversely, for a function f € NPMV, define f’ to be a
function such that f(z) = min{y : f(z) — y}. f’ is a single-valued refinement of f and in
PFNP. Therefore, the following theorem holds.

Theorem 1 PFNPMV c PENP - That is, every function in PENPMV 14 a single-valued
refinement in PFNF

Consider the function maacligue that on input a graph G outputs a clique of maximum
size, if G has a clique. Then, maazclique is a- multivalued partial function that belongs to

PFNPMV - Similarly, the following function maxT sat is a multivalued partial function that

belongs to PFNFMV,

'maa:Tsat(a:) — gy, if y is a satisfying assignment of x with the maximum number of true’s.

Let f be a function that maps a pair (z,n) to y if and only if y is a satisfying assignment
of z with n true’s. Since the number of variables in a formula is bounded by its length,
it holds that mazTsat(z) = f(z,n,), where n, is the largest n,1 < n < |z| such that
(x,n) € dom(f). This implies that mazTsat € PFNTMY,

We should note that several of the classes we investigate here seem to capture the
complexity of finding witnesses to NP-optimization problems. This observation is explored
by Chen and Toda [CT92] and by Wareham [War92].

Theorem 1 states that unbounded access to an oracle in NPMV is no more powerful

than such an access to an oracle in NP.

3 Bounded Query Classes

Now we state our main results; proofs are given in the full draft paper. General

techniques developed in this section are reminiscent of the “mind-change” technique of
[Bei91, KSW87].

Theorem 2 For every k > 1, PENPMVI = ppNPMVE*=1) Npyjy o pRNPI ¢ NPMV o
PFEP[zk_u C PENPMVIk+1] PFSPMV[Q::H_I].

For general bounded query classes, it is not known whether PFNPMVIK] ppNPA], But,
for reduction classes of sets, this type of equivalence holds.
PNPMV[E] _ pNP[4]

Theorem 3 For every k > 1,

Theorem 4 For every k > 1, PtNtPMV[k] = PEPM,

We denote the k-th level of the Boolean hierarchy as NP(k). By definition,
e NP(1)= NP, and
e for every k > 2, NP(k) = NP — NP(k‘ -1).

The Boolean hierarchy over NP, denoted by BH is the union of all NP(k), & > 1.
The following theorems give evidence to show that bounded query hierarchies do not

collapse.
Theorem 5 Let k > 1. If PENPMVIk+1] PFNPMVIE ¢hen BH collapses to its 25 -th level.

Theorem 6 Letk > 1. If PFEPMVUCH] = PFEPMV[H, then BH collapses to its (k4 1)-st

level.

Analogous to the theorems stated so far, the following theorems hold for reduction

classes that make logarithmic many queries to partial functions in NPMV.

Theorem 7 1. PFNPMVieg] PFNPMV,
2. NPMV o PFNPllogl = NPMV o PFNP.
3. PFNPMVillog] ¢ NPMV o PFNFPlloel,
4. NPMV o PFNPllog] ¢ ppNPMVllog]

Theorem 8 PNPMVllog] — pNPMV _ pNP{log] — pNP

37

38

4 Nondeterministic Polynomial-Time Reductions

We define nondeterministic reductions between partial functions so that the access mech-
anism is identical to that for deterministic reductions. Namely, let f be a single-valued
partial function and N be a polynomial-time nondeterministic oracle Turing machine. N[f]
denotes a multivalued partial function computed by N with oracle f in accordance with the

following mechanism:
e when N asks about y € dom(f), f returns f(y) and
e when N asks about y & dom(f), f answers a special symbol L.

Let f and g be multivalued partial functions. We say that f is nondeterministic
polynomial-time Turing reducible to g, denoted by f §¥P g if there is a polynomial-time
nondeterministic Turing machine N satisfying the following conditions: for every and for

every single-valued refinement g’ of ¢,
o z € dom(f) if and only if 2 € dom(N[g’]) and
o if N[¢'] maps z to y, then f maps z to y.

In other words, N[¢'] is a refinement of f.

Let F be a class of partial multivalued functions. NPMV7 denotes the class of partial
multivalued functions that are <JF-reducible to some g € F. NPMVZH denotes the class
of partial multivalued functions that are S?P—l'educible to some ¢ € F via a machine that
makes k adaptive queries to its oracle.

NPMV?, denotes the class of partial multivalued functions that are <YF-reducible to
some g € F via a machine that makes nonadaptive queries to its oracle. NPMVftM denotes
the class of partial multivalued functions that are §¥P-reducible to some g € F via a
machine that makes & nonadaptive queries to its oracle.

For a class of sets C, we write NPMVC to denote the class of multivalued partial func-

tions that are computed by an nondeterministic Turing machine relative to an oracle in'C.
NPMVCH NPMVE, and NPMVY are defined similarly.

NPMV
For £ > 1, XMV, denotes NPMV~
k

Lemima 1 For every k > 1, XMV, = NPMV =il gd Jor every f € EMVy, dom(f) €

WP
uk-

From this lemma we yield the following theorem.

39

Theorem 9 Let f be a partial multivalued function. For ¢very k > 1, the following state-

ments are equivalent:

(1) f is in TMV,;

(ii) f is polynomially length-bounded, dom(f) € S, and graph(f) € F;
(iii) f is polynomially length-bounded and graph(f) € L.

Theorem 10 For every k > 1, XMV, = EMVy, if and only if T3, = T}.

Thus, these classes form function analogues of the polynomial hierarchy, and, unless the

polynomial hierarchy collapses, they form a proper hierarchy.

5 The Difference Hierarchy

Let F be a class of partial multivalued functions. A partial multivalued function f isin

coF if there exist ¢ € F and a polynomial p such that for every x and y
e f(z) maps to y if and only if |y| < p(|z|) and g(z) does not map to y.

Let 7 and G be two classes of partial multivalued functions. A partial multivalued
function A is in F A G if there exist partial multivalued functions f € F and ¢ € G such

that for every = and y,
o N(x) maps to y if and only if f(x) maps to y and ¢g(x) maps to y.

A partial multivalued function A is in F Vv G if there exist partial multivalued functions

f € F and g € G such that for every 2 and v,
e h(z) maps to y if and only if f(z) maps to y or g(2) maps to y.

F — G denotes F A coG.
NPMV(k) is the class of partial multivalued functions defined in the following way:
1. NPMV(1) = NPMV, and

2. for k > 2, NPMV(k) = NPMV — NPMV(k — 1).

Lemma 2 For every k > 1, f € NPMV(k) if and only if f is polynomially length-bounded
and graph(f) € NP(k).

This lemma is proved by induction. We use it to obtain the following theorem.

40

Theorem 11 For every k > 1, NPMV(k + 1) = NPMV (k) if and only if NP(k + 1)
NP(k).

Theorem 12 NP = co-NP if and only if NPMV C coNPMV if and only if coNPMV C
NPMV.

A function f is said to be NPMV-low if NPMV/ = NPMV.

Theorem 13 A function f is NPMV-low if and only if f € NPMV with dom(f) € NP N
co-NP.

Theorem 14 NPMV(2) C. PFNPMV if and only if S5 = AL,
Theorem 15 PFNPMVIE C NPMV(2F+! — 1),

By Theorem 11, the levels of the difference hierarchy of partial functions are distinct if
and only if the same levels of the Boolean hierarchy are distinct. Yet, whereas the Boolean
hierarchy resides entirely within PN by Theorem 14, this is unlikely to be true of the

difference hierarchy of partial functions.

6 Reduction classes to NPSV

In this section, we study the reduction classes to NPSV, PFNPSV PFNPSVIE] PFNPSV[}Og},

PF%PSV and PFNPS\ (] These classes contain only single-valued functions. The following

proposition is easy to prove.

Proposition 1 1. PFNP = PFNFSY g PRNP = PRNPSY,

2. PFNP[k] C PFNPSV[] C PFNPM\/[) and PFNP[log] C PFNPSV [log) C PFNPMV[log]
. NPSV(k NPMV
3. PFRP ¢ pphPSVIEl ¢ ppNPMVIK

4. PP = PNPSY and PNP = pNPSY,

. PNP(K] ¢ pNPSV[k] ¢ pNPMVIK] g pNPllog] ¢ pNPSV(log] ¢ pNPMV(log]

Rl

NPk NPSV[k NPMV[k
P“[]gPtt []QPN (k]

=

The following theorems follow as corollaries of results proven in the previous sections.

Theorem 16 For every k > 1, PNPSVIF = pNPlk],

Theorem 17 For every k > 1, Py > 1 = PP,
Fi\iPSV[kH] = PFZPSV[H for some k > 1, then BH collapses to its (k+1)-

Theorem 18 IfP

st level.

Theorem 19 If PFNPSVIk+1] — ppNPSVIA] for some k > 1. then BH collapses to its 25-th

level.

[Bei91]

[CT92]

[Kre88]

[KSW87)

[Sel92]

[War92)

R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theor. Computer
Science, 84(2):199-223, 1991.

Z. Chen and S. Toda. On the complexity of computing optimal solutions. Depart-
ment of Computer Science and Information Mathematics, University of Electro-

Communications, Chufo-shi, Tokyo 182, Japan, 1992.

M. Krentel. The complexity of optimization problems. J. Computer Systems Sci.,
36:490-509, 1988.

J. Kobler, U. Schéning, and K. Wagner. The difference and truth-table hierarchies
for NP. Theoretical Informatics and Applications (RAIRO), 21:419-435, 1987.

A. Selman. A taxonomy of complexity classes of functions. J. Comput. Sytsem
Sci., 1992. In press.

H. Wareham. Masters thesis. Department of Computer Science, Memorial Uni-
versity of Newfoundland, 1992.

41

