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1. lntroduction and preliminaries

This note is divided in two parts. The first part gives a hierarchy result on one-way

[on-lineJ multicounter machines (IMCM’s) with polynomial time or space bound, and the

second part explores the relationships between lMCM’s and cooperating systems of one-way

finite automata (CS-lFA’s).

A multicounter machine consists of a finite state control, a reading head which reads the

input from the input tape and a finite number of counters. We can regard a counter as

an arithmetic register containing an integer which may be positive or zero. In one step, a

multicounter machine may increase or decrease a counter by 1. The action of the machine

is determined by the input symbol currently scanned, the state of the machine and the sign

of each counter: positive or zero. The machine starts with all counters empty and accepts

if it enters a final state and halts. (The reader is referred to $[3, 4]$ for the formal definition

of a multicounter machine.)

We assume in this note that all our machines have endmarkers $(\sqrt{}$ , $ $)$ on the input tape

and never fall off the input tape beyond endmarkers. One-way [on-line] machines read the

input tape from left to right and can enter accepting states only when reading the right

endmarker $.

A deterministic machine $M$ accepts in time $T(n)$ if each input $w$ accepted by $M$ is

accepted within $T(|w|)$ steps.1 A nondeterministic machine $M$ accepts in time $T(n)$ if for

each input $w$ accepted by $M$ there is a computation of $M$ on $w$ which accepts in at most

$T(|w|)$ steps. A deterministic machine $M$ accepts in space $S(n)$ if for each input $w$ accepted

by $M$ , each counter of $M$ requires space not exceeding $S(|w|)$ . A nondeterministic machine

1For a word $w,$ $|w|$ is the length of $w$ .
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$M$ accepts in space $S(n)$ if for each input $w$ accepted by $M$ there is a computation of $M$

on $w$ in which each counter of $M$ requires space not exceeding $S(|w|)$ .

For each $r\geq 1$ , let $1DCM(r)- Time(T(n))(1NCM(r)- Time(T(n)))$ denote a $1DCM(r)$

(INCM $(r)$ ) accepting in time $T(n)$ .

For each $r\geq 1$ , let $1DCM(r)- Space(S(n))(1NCM(r)- Space(S(n)))$ denote a $1DCM(r)$

(INCM $(r)$ ) accepting in space $S(n)$ .

We denote by $f[1DCM(r)- Time(T(n))]$ the class of languages accepted by $1DCM(r)-$

Time $(T(n))s$ , and $f[1NCM(r)- Time(T(n))],$ $f[1DCM(r)- Space(S(n))]$ , and so forth have

analogous meanings.

Many investigations about the classes of languages accepted in polynomial time or space

by multicounter machines have been made $[3, 4]$ . It was shown in [4] that for each $s>1$

and each $r\geq 1,$ $f[1DCM(r)- Time(n^{s})](f[1NCM(r)- Time(n^{s})])\subsetneq f[1DCM(r+s+1)-$

$Time(n^{s})](f[1NCM(r+s+1)- Time(n^{s})])$ , where $f[1DCM(r)- Time(n^{s})](f[1NCM(r)-$

$Time(n^{s})])$ denotes the class of languages accepted in time $n^{s}$ by one-way deterministic

(nondeterministic) r-counter machines, $1DCM(r)s(1NCM(r)s)$ . As far as we know, it

is unknown whether for each $X\in$ {D,N} and for each $\dot{r}\geq 1,$ $s>1,1XCM(r)s$ accepting

in time (or space) $n^{s}$ are less powerful than $1XCM(r+1)s$ in the same time (or space)

bound. [For time (or space) $n$ , it was shown in [3] that $1DCM(r)s(1NCM(r)s)$ are less

powerful than $1DCM(r+1)s(1NCM(r+1)s).$] In the first part of this note, we will give

an affirmative answer to this question.

Recently, several properties of CS-lFA’s as recognizers were investigated in [3]. A CS-

1FA is a one-dimensional version of cooperating systems of two-dimensional finite automata

(CS-2-FA’s) [1, 2, 8] (where the maze and labyrinth search problems for CS-2-FA’s were

studied).

The cooperating systems of finite automata may be considered as one of the simplest

models of parallel computation: there are more than one finite automata and an input tape

where these finite automata operate simultaneously (in parallel) and can communicate with
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each other on the same cell of the input tape. More precisely, A cooperating system of $k$

finite automata, $M=(FA_{1}, FA_{2}, \cdots, FA_{k})$ , consists of $k$ finite automata $FA_{1},$ $FA_{2},$ $\cdots,$
$FA_{k}$ ,

and a read-only input tape where these finite automata independently (in parallel) work

step by step. Each step is assumed to require exactly one time for its completion. Those

finite automata whose input heads scan the same cell of the input tape can communicate

with each other, that is, every finite automaton is allowed to know the internal states of

other finte automata on the cell it is scanning at the moment. The system $M$ starts with

each $FA$; on the left endmarker $\phi$ in its initial state and accepts the input tape if each $FA_{i}$

enters an accepting state and halts (when reading the right endmarker $ of the input tape).

(The reader is referred to[ll]for the formal definition ofa cooperating system of[one-way]

finite automata.)

For each $k\geq 1$ , we denote a cooperating system of $k$ one-way deterministic (nondeter-

ministic) finite automata by CS-IDFA$(k)(CS- 1NFA(k))$ . In the second part of this note,

we continue to investigate the properties of this model. It is shown that $f$ [$CS$-IDFA(2)]

$(f[CS- INFA(2)])=f[1DCM(1)](f[1NCM(1)])$. It is also shown that for each $k\geq 2$ ,

$f$ [$1DCM(k)$-Time(n)] 9 $f[CS- 1DFA(k+1)]$ and $f[CS- 1DFA(k+1)](f[CS- 1NFA(k+1)])$

$\subsetneq f[1DCM(k)- Time(cn)](f[1NCM(k)- Time(cn)])$ , where $c$ is a positive constant.

2. Hierarchies based on the number of counters for lMCM’s with polynomial

time or space dound

It seems not so easy to find $a$ particular language $L$ for proving that $L\in f[1DCM(r+1)-$

$Time(n^{s})](f[1NCM(r+1)- Time(n^{s})])-f[1DCM(r)- Time(n^{s})](f[1NCM(r)- Time(n^{s})])$

or $L\in f[1DCM(r+1)- Space(n^{s})](f[1NCM(r+1)- Space(n^{s})])-f[1DCM(r)- Space(n^{s})]$

$(f[1NCM(r)- Space(n^{s})])$ for $s>1$ and $r\geq 1$ . We will use another approach to derive the

desired results.

Let $L(1)=\{0^{i}20^{t}|i\geq 1\}$ , and for each $k\geq 1$ , let $L(k+1)=$ { $0^{i}$ lw10’ $|i\geq$ l&w\in L(k)}.

Given $s,$ $k\geq 1$ , let $f_{s}(k)(f_{s}’(k))$ denote the minimum number of counters required for
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deterministic IMCM’s to accept $\{a\}^{*}L(k)\{a\}^{*}$ in time $n^{s}$ (in space $n^{s}$ ), and $g_{s}(k)(g_{s}’(k))$ de-

note the minimum in $n^{s}$ (in time $n^{s}$ ), and $g_{s}(k)(g_{s}’(k))$ denote the minimum number of coun-

ters required for nondeterministic lMCM’s to accept $\{a\}^{*}L(k)\{a\}^{*}$ in time $n^{s}$ (in space $n^{s}$ ).

Furthermore, for each $r,$ $s\geq 1$ , let $D_{s}(r)=\max\{k|f_{s}(k)=r\},$ $N_{s}(r)=\max\{k|g_{s}(k)=r\}$ ,

$D_{s}’(r)=\max\{k|f_{s}’(k)=r\}$ and $N_{s}’(r)=\max\{k|g_{s}’(k)=r\}$ .

Lemma 2.1. For each $r,$ $s\geq 1,$ $D_{s}’(r)\leq N_{s}’(r)\leq r\cdot s$ , and thus $D_{s}(r)\leq N_{s}(r)\leq r\cdot s$ .

Proof: It follows from the definitions that $D_{s}(r)\leq N_{s}(r)$ and $D_{s}’(r)\leq N_{s}’(r)$ for each

$r,$ $s\geq 1$ . We below establish by a contradiction that $N_{s}’(r)\leq r\cdot s$ for each $r,$ $s\geq 1$ .

Suppose that there exists some $1NCM(r)- Space(n^{s})M$ accepting $\{a\}^{*}L(r\cdot s+1)\{a\}^{*}$ .

For each $m\geq 1$ , let

V $(m)=\{a^{j}0:_{1}10^{i_{2}}1\cdots 10^{i_{r\cdot\cdot+1}}20^{i_{r\cdot\cdot+1}}10^{\iota_{r\cdot*}}1\cdots 10^{i_{1}}a^{j}|1\leq i_{1},$$i_{2},$
$\cdots,$

$i_{r\cdot s+1}$ \leq m&

$(j+i_{1}+i_{2}+\cdots+i_{rs+1})=(r\cdot s+1)m\}$ .

Clearly, $V(m)\subseteq\{a\}^{*}L(r\cdot s+1)\{a\}^{*}$ and $|V(m)|=m^{r\cdot s+1.2}$ With each $w\in V(m)$ , we

associate one fixed accepting computation, $c(w)$ , of $M$ on $w$ which accepts in space $|w|^{s}$ .

Since the number of distinct memory configurations of $M$ just after reading the symbol 2

during $c(x2x^{R})$ for words $x2x^{R}\in V(m)$ cannot exceed $O(m^{r\cdot s})^{3,4}$ it follows that for large

$m$ , there exist two different words $x2x^{R},$ $y2y^{R}\in V(m)$ such that the memory configration

of $M$ just after reading 2 during $c(x2x^{R})$ is the same as that of $M$ after reading the sym-

bol 2 during $c(y2y^{R})$ . Clearly, from $c(x2x^{R})$ and $c(y2y^{R})$ , we can construct an accepting

computation (in space $|x2y^{R}|^{s}$ ) of $M$ on $x2y^{R}$ . This is a contradiction, because $x2y^{R}$ is not

in $\{a\}^{*}L(r\cdot s+1)\{a\}^{*}$ . Thus the lemma follows. $\square$

2For a finite set $A,$ $|A|$ denotes the number of elements in $A$ .
3A memory configuration of $M$ is an $(r+1)$-tuple $(q, c_{1}, \cdots, c_{\tau})$ , where $q$ is the current internal state

of $M$ and $c$; is the contents of the i-th counter of $M$ for $1\leq i\leq r$ ,
4For a word $w,$

$w^{R}$ denotes the reversaJ of word $w$ .
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Theorem 2.1. For each $r,$ $s\geq 1$ and each $X\in$ {D,N}, $f[1XCM(r)- Time(n^{s})]\subsetneq f[1XCM(r+$

$1)- Time(n^{s})]$ .

Proof: For each $X\in$ {D,N}, let $M$ be a $1XCM(r)- Time(n^{s})$ accepting $\{a\}^{*}L(X_{s}(r))\{a\}^{*}$ .

By Lemma 2.1, $X_{s}(r)\leq r\cdot s$ . We conside a $1XCM(r+1)- Time(n^{s})M$ ‘ which acts as

follows.

Suppose that an input word
$a^{p}0^{q}1w10^{q’}a^{p’}$ ,

where $w\in\{0^{i_{1}}10:_{2}1\cdots 10^{i_{X_{*}(r)20^{t_{X}’}\cdot(r)10^{i_{X_{t}(r)-1}’}}}1\cdots 10^{i_{1}’}|\forall j(1\leq j\leq X_{s}(r))[i_{\dot{J}}, i_{j}’\geq 1]\}$ and

$p,$ $p’\geq 0,$ $q,$ $q’\geq 1$ . [Input words in the form different from the above can be easily rejected

by $M’.$ ] $M’$ simulates the action of $M$ on $w$ by using its $r$ counters, and checks by using

the remaining counter whether $q=q’$ . $M’$ enters an accepting state only if it finds out that

(1) $M$ accepts $w$ (i.e. $w\in L(X_{s}(r))$ ) and (2) $q=q’$ . Noting that for each $w\in L(X_{s}(r))$

and each $w’=a^{p}0^{q}1w10^{q}a^{p}’\in\{a\}^{*}L(X_{s}(r)+1)\{a\}^{*},$ $|w|^{s}+p+p’+2(q+1)\leq|w’|^{s}$ , it

will be obvious that $M’$ accepts $\{a\}^{*}L(X_{s}(r)+1)\{a\}^{*}$ in time $n^{s}$ . From this and the fact

that $\{a\}^{*}L(X_{s}(r)+1)\{a\}^{*}\not\in f[1XCM(r)- Time(n^{s})]$ , it follows that $\{a\}^{*}L(X_{s}(r)+1)\{a\}^{*}\in$

$f[1XCM(r+1)- Time(n^{s})]-f[1XCM(r)- Time(n^{s})]$ . $\square$

Using a similar technique, we can get the following theorem.

Theorem 2.2. For each $r,$ $s\geq 1$ and each $X\in$ {D,N}, $f[1XCM(r)- Space(n^{s})]\subsetneq f[1XCM$

$(r+1)- Space(n^{s})]$ .

3. ReIationship between lMCM’s and CS-lFA’s

In this section, we establish a relation between lMCM’s and CS-lFA’s. We first show

that CS-lDFA(2)s (CS-INFA(2) $s$ ) and IDCM(l)’s $(1NCM(1)s)$ are equivalent in accept-

ing power.
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Theorem 3.1. (1) $f$ [$CS-$ IDFA(2)]$=X[1DCM(1)]$ , and (2) $f$ [$CS$-INFA(2)] $=X[1NCM(1)]$ .

Proof: (1) Let $M$ be a IDCM(I) with $s$ internal states. We will construct a CS-IDFA(2)

$M’=(FA_{1}, FA_{2})$ to simulate $M$ . If a finite automaton moves its input head one cell to the

right every $m$ steps, we say that the speed of its input head is $1/m$ . $M’$ acts as follows:

1. $FA_{1}$ and $FA_{2}$ store the internal state of $M$ in their finite controls.

2. For each cell of the input tape:

(a) If $M$ reaches the cell with the memory configuration $(q_{0}, c_{0}),$ $c_{0}\leq s$ , then

(i) if $M$ leaves the cell with the contents of the counter $s+c(1\leq c<s)$ , then

$FA_{2}$ moves at speed $1/(1+c)$ on the cell and $FA_{1}$ moves at speed 1 on the

cell;

(ii) otherwise $FA_{1}(FA_{2})$ simulates the action of $M$ on the cell, and if the con-

tents of the counter of $M$ on the cell exceeds $2s$ , then $FA_{1}(FA_{2})$ rejects the

input tape (because $M$ enters a loop, that is, $M$ never leaves the cell). In

this case, $FA_{1}$ and $FA_{2}$ are on the same cell.

(b) If $M$ reaches the cell with the memory configuration $(q_{0}, c_{0}),$ $c_{0}>s$ , (in this

case, $FA_{1}$ and $FA_{2}$ are on the different cells) then

(i) if $M$ leaves the cell with memory configuration $(q_{x}, c_{0})$ in $s$ steps, then $FA_{1}$

and $FA_{2}$ move at speed 1 on the cell;

(ii) if $M$ leaves the cell with memory configuration $(q_{x}, c_{0}+\delta),$ $1\leq\delta<s$ , in

$s$ steps, then $FA_{2}$ moves at speed $1/(\delta+1)$ on the cell and $FA_{1}$ moves at

speed 1 on the cell;

(iii) if $M$ leaves the cell with memory configuration $(q_{x}, c_{0}-\delta),$ $1\leq\delta<s$ , in

$s$ steps, then $FA_{1}$ moves at speed $1/(\delta+1)$ on the cell and $FA_{2}$ moves at

speed 1 on the cell;
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(iv) otherwise there is a sequence of memory configurations, $(q_{0}, c_{0}),$ $(q_{1}, c_{1}),$ $\cdots$ ,

$(q_{j}, c_{j}),$ $j\leq s$ , of $M$ on the cell such that $q_{i}=q_{j}$ for some $i(0\leq i<j)$ . If

$c$. $\leq c_{j}$ (it means that $M$ enters a loop), then $FA_{1}(FA_{2})$ rejects the input

tape; If $c:>c_{j}$ , then $FA_{1}$ stays on the cell until $FA_{2}$ reaches the cell.

Note that (A) if the contents of the counter of $M$ exceeds $s$ when $M$ leaves a cell of

the input tape, then $M’$ stores it by using the difference between the times at which $FA_{1}$

and $FA_{2}$ leave the cell, and (B) otherwise $M’$ can simulate the action of $M$ using the finite

control. It is easy to verify that $M’$ is able to simulate M. (1) of the theorem follows from

this and (2) of Lemma 3.1 below.

(2) It is shown in [5] that every INCM(I) is equivalent to some $lNCM(1)- Time(n)$ (i.e.

some INCM(I) which accepts in real-time). Let $M$ be a $lNCM(1)- Time(n)$ . We will

construct a CS-INFA(2) $M’=(FA_{1}, FA_{2})$ to simulate M. $M’$ acts as follows:

1. $FA_{2}$ moves at the same speed 1/2 on each cell of the input tape.

2. $FA_{1}$ stores the internal state of $M$ in its finite control.

3. For each cell of the input tape:

(a) If $M$ does not change the counter on the cell, then $FA_{1}$ moves at speed 1/2 on

the cell.

(b) If $M$ increases the counter by 1 on the cell, then $FA_{1}$ moves at speed 1 on the

cell.

(c) If $M$ decreases the counter by 1 on the cell, then $FA_{1}$ moves at speed 1/3 on

the cell.

So the contents of the counter of $M$ on each cell of the input tape corresponds to the

difference between the times at which $FA_{1}$ and $FA_{2}$ leave the cell. It is easy to verify that

$M’$ is able to simulate M. (2) of the theorem follows from this and (2) of Lemma 3.1 below.
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$\square$

Remark 3.1. If a problem is undecidable for CS-lDFA(2)s (CS-INFA(2) $s$), then it is

undecidable for CS-IDFA$(k)s(CS- 1NFA(k)s)$ , for all $k\geq 2$ . From this observation and

the fact $[9, 10]$ that the containment problem is undecidable for lDCM(l)’s and the equiv-

alence and universe problems are undecidable for lNCM(l)’s, it follows by Theorem 3.1

that for all $k\geq 2$ , the containment problem is undecidable for CS-IDFA$(k)s$ , and the

equivalence and universe problems are undecidable for CS-INFA $(k)s$ .

Remark 3.2. It is well known [6] that context-free languages over a one-letter alphabet

are regular (so are the lanugages in $f[1NCM(1)]$ ). From Theorem 3.1, it follows that the

languages in $f$ [$CS$-INFA(2)] over a one-letter alphabet are regular. On the other hand,

we can easily prove that there exists a nonregular language over a one-letter alphabet

(e.g, $\{0^{2^{n}}|n\geq 1\}$) in $f$ [$CS$-IDFA(3)]. Hence it follows that over a one-letter alphabet,

CS-lDFA(2)s (CS-INFA(2) $s$ ) are less powerful than CS-lDFA(3)s (CS-INFA(3) $s$ ). It is

unknown whether over a one-letter alphabet, CS-IDFA$(k)s(CS- 1NFA(k)s)$ are less pow-

erful than CS-IDFA$(k+1)s(CS- 1NFA(k+1)s)$ for $k\geq 3$ .

Remark 3.3. It is an important open problem in the computing theory whether the classes

of languages accepted by determinstic and nondeterministic $L(n)$ tape-bounded Turing ma-

chines are the same for $L(n)\geq\log(n)$ . Combining Theorem 3.1 with the result in [7], we

can give another possibility to investigate the above problem. That is, $f$ [$CS$-INFA(2)] is

contained in the class of languages accepted by deterministic $\log(n)$ tape-bounded Turing

machines if and only if the classes of languages accepted by determinstic and nondetermin-

istic $L(n)$ tape-bounded Turing machines are the same for $L(n)\geq\log(n)$ .

Lemma 3.1. For each $k\geq 1,$ (1) every $1DCM(k)- Time(n)$ can be simulated by a CS-

$1DFA(k+1)$ , and (2) every CS-IDFA$(k+1)(CS- 1NFA(k+1))$ can be simulated by a
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$1DCM(k)- Time(cn)(1NCM(k)- Time(cn))$ , where $c$ is some positive constant.

Proof: (1) The proof is very similar to that of (2) of Theorem 3.1, and we leave it to the

reader.

(2) For each $X\in$ {D,N} and each $k\geq 1$ , let $M=(FA_{1},FA_{2},\cdots,FA_{k+1})$ be a CS-IXFA$(k+$

1). We will construct a $1XCM(k)- Time(cn)M’$ to simulate $M$ , where $c$ is some positive

constant dependent only on $M$ . Let $c_{1},$ $c_{2},$ $\cdots,$ $c_{k}$ denote $k$ counters of $M’$ . $M’$ acts as

follows:

1. $M’$ stores the internal states of $FA_{1},$ $FA_{2},$ $\cdots,$ $FA_{k+1}$ in its finite control.

2. For each cell of the input tape:

(a) $M’$ stores in its finite control the internal state of each FA. $(1 \leq i\leq k+1)$ when

$FA_{i}$ leaves the cell, and the order { $t_{1},$ $t_{2},$
$\cdots,$

$t_{k+1}\rangle$ in which $FA_{1},$ $FA_{2},$ $\cdots,$ $FA_{k+1}$

leave the cell subsequently (i.e., $FA_{t_{1}}$ firstly leaves the cell, $FA_{t_{2}}$ secondly leaves

the cell, and so on).’

(b) Furthermore, for each $i(1\leq i\leq k)$ , the interval between the times at which

$FA_{t;}$ and $FA_{t_{t+1}}$ leave the cell is stored by counter $c.$ .

It was shown in [11] that if $M$ accepts its input tape, it can do so in linear time. Thus,

it is easy to verify that $M’$ can simulate M. $\square$

Lemma 3.2. (1) $f$ [$CS$-IDFA(2)] $- \bigcup_{1\leq k<\infty}f[1DCM(k)- Time(n)]\neq\emptyset$ , and (2) $f$ [IDCM

(2)$- Time(cn)$] $- \bigcup_{1\leq k<\infty}f$ [CS- $1NFA(k)$] $\neq\emptyset$ for some positive constant $c$ .

Proof: (1) It is shown in [3] that $L_{1}=\{0^{p}1^{m}|p\geq m\geq 1\}^{*}$ is not in $\bigcup_{1\leq k<\infty}f[1DCM(k)-$

$Time(n)]$ . On the other hand, it is easy to prove that $L_{1}$ can be accepted by some CS-

$slfFA_{i_{1}},$ $FA_{i_{2}}$ , ) FA.. $(1 \leq i_{1}<i_{2}<\cdots<i_{r}\leq k+1)$ leave the cell simultaneously, we refer the
order on them as ( $i_{1},$ $i_{2},$

$\cdots,$
$i_{r}$ }
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IDFA(2).

(2) For a word $w$ in $\{1\}\{0,1\}^{*}$ , let $n(w)$ be the integer represented by $w$ as a binary

number. It is shown in [4] that $L_{2}=\{w20^{n(w)}|w\in\{1\}\{0,1\}^{*}\}$ is accepted by a IDCM(2)-

Time$(cn)$ , where $c$ is a positive constant. On the other hand, using the technique in the

proof of (2) of Lemma 2 in $[11]$ , we can prove that $L_{2}$ iS not in $\bigcup_{1\leq k<\infty}f$ [CS-INFA$(k)]$ 口

Lemma 3.3. For each $k\geq 1$ : (1) $f[1DCM(k)- Time(n)]-f[CS- 1NFA(k)]\neq\emptyset$ , and (2)

$f[CS- 1DFA(k+1)]-f[1NCM(k-1)- Time(cn)]\neq\emptyset$ for any positive constant $c$ .

Proof: It is obvious that $\{a\}^{*}L(k)\{a\}^{*}$ (defined in Section 2) is accepted by some

$1DCM(k)- Time(n)$ , but not accepted by any $1NCM(k-1)- Time(cn)(c$ is positive con-

stant). Furthermore, by using the technique in the proof of Lemma 2 in [11], we can prove

that $\{a\}^{*}L(k)\{a\}^{*}$ is accepted by some CS-IDFA$(k+1)$ , but not accepted by any CS-

$1NFA(k)$ . Hence the lemma follows. $\square$

We get the following theorem from Lemmas 3.1 and 3.2, and we know by Lemma 3.3

that this result cannot be “tightened”.

Theorem 3.2. For each $k\geq 2,$ (1) $f[1DCM(k)- Time(n)]\subsetneq f[CS- 1DFA(k+1)]$ , and (2)

$f[CS- 1DFA(k+1)](f[CS- 1NFA(k+1)])\subsetneq f[1DCM(k)- Time(cn)](f[1NCM(k)- Time(cn)])$ ,

where $c$ is a positive constant.
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