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THE YAMABE PROBLEM AND NONLINEAR
BOUNDARY VALUE PROBLEMS

KAZUAKI TAIRA (平良 和昭)

Institute of Mathematics, University of Tsukuba, Tsukuba 305, Japan

ABSTRACT. We study the Yamabe problem in the context of manifolds with bound-
ary- a basic problem in Riemannian geometry- from the point of view of nonlinear
elliptic boundary value problems. By making good use of bifurcation theory from a
simple eigenvalue, we show that nonpositive scalar curvatures and nonpositive mean
curvatures are not always conformal to constant negative scalar curvatures and the
zero mean curvature.

1. INTRODUCTION

Let $(\overline{M},g)$ be a smooth compact, connected Riemannian manifold with boundary
$\partial M$ of dimension $n\geq 3$ , and let $M=\overline{M}\backslash \partial M$ be the interior of $\overline{M}$. A basic problem
in Riemannian geometry is to seek a conformal change of the metric $g$ that makes
the scalar curvature of $M$ constant and the mean curvature of $\partial M$ zero. When the
boundary $\partial M$ is empty, this problem is the so-called Yamabe problem. The solution
of the Yamabe problem is completely given by H. Yamabe [Y], N. S. Trudinger [Tr],
T. Aubin [Au] and R. Schoen [S] (cf. [LP]). Recently, J. Escobar [E] has studied the
problem in the context of manifolds with boundary, and has given an affirmative
solution to the problem formulated above in almost every case.

In this paper we consider the case where the given metric $g$ already has a constant
negative scalar curvature $k$ of $M$ and the zero mean curvature of $\partial M$ as in Ouyang
[O] (cf. [K], [KW]). Our problem is the following:

Problem. Given a nonpositive smooth function $R’$ in $M$ and a nonpositi$ve$ smooth
function $h’$ on $\partial M$ , find a metric $g’$ of $\overline{M}$, conformal to $g$, such that $R’$ and $h$ ‘

are th$e$ scalar curvature of $M$ and the mean curvature of $\partial M$ with respect to $g’$ ,
respectively.

We shall show that nonpositive scalar curvatures $R’$ and nonpositive mean cur-
vatures $h$‘ are not always conformal to negative scalar curvatures $k$ and the zero
mean curvature; it depends on the shap$e$ of the zero set of $R’$ (see Main Theorem
below).

If $g_{jk}$ are the components of the metric tensor $g$ with respect to alocal coordinate
system $x^{1},$

$\cdots,$
$x^{n}$ , then $g_{jk}$ and its inverse $g^{jk}$ are used to raise and lower indices.
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Covariant differentiation is denoted by $\nabla$ . If $f$ is a function on $M$ , then its covariant
derivative is the one-tensor $\nabla f$ with components

$\partial f$

$\nabla_{i}f=\overline{\partial x^{\dot{l}}}$

The second covariant derivative of $f$ is the two-tensor $\nabla^{2}f$ with components

$\nabla_{ij}f=\frac{\partial^{2}f}{\partial x^{1}\partial x^{j}}-\sum_{\ell=1}^{n}\Gamma_{ij}^{\ell}\frac{\partial f}{\partial x^{l}}$.

Here the functions
$\Gamma_{ij}^{\ell}=\frac{1}{2}[\frac{\partial g_{kj}}{\partial x^{1}}+\frac{\partial g_{ki}}{\partial x^{j}}-\frac{\partial g_{ij}}{\partial x^{k}}]g^{k\ell}$

are the Christoffel symbols. The metric extends to an inner product on tensors of
any type; for example, the norm of $\nabla f$ is

$| \nabla f|^{2}=\sum_{j=1}^{n}\nabla^{j}f\nabla_{j}f=\sum_{i,j=1}^{n}g^{ij}\nabla;f\nabla_{j}f$ .

The divergence operator is the formal adjoint $\nabla^{*}of.\nabla$ given on one-forms $u=$
$\sum_{\dot{\iota}=1}^{n}u_{i}dx^{i}$ by

$\nabla^{*}u=-\sum_{i=1}^{n}\nabla^{i}u_{i}=-\sum_{i,j=1}^{n}g^{ij}\nabla_{j}u;=-\sum_{i,j=1}^{n}g^{ij}\frac{\partial u_{i}}{\partial x^{j}}+\sum_{i,j,\ell=1}^{n}g^{ij}\Gamma_{ji}^{l}u\ell$ .

The Laplace-Beltrami operator, or simply Laplacian, is the second-order differential
operator $\Delta$ given on functions $f$ by

$\Delta f=\nabla^{*}\nabla f=-\sum_{i=1}^{n}\nabla^{i}\nabla_{i}f=-\sum_{)}^{n}g^{ij}\frac{\partial^{2}f}{\partial x^{i}\partial x^{j}}+\sum_{iij=1,j,\ell=1}^{n}g^{ij}\Gamma_{j:}^{\ell}\frac{\partial f}{\partial x^{\ell}}$.

The Riemannian curvature tensor is the tensor with components $R^{t_{kij}}$ computed
in a local coordinate system $x^{1},$

$\cdots,$
$x^{n}$ by

$R^{l_{kij}}= \frac{\partial}{\partial x^{i}}(\Gamma^{l_{jk}})-\frac{\partial}{\partial x^{j}}(\Gamma^{\ell_{ik}})+\sum_{m=1}^{n}\Gamma_{im}^{\ell}\Gamma_{jk}^{m}-\sum_{m=1}^{n}\Gamma_{jm}^{\ell}\Gamma^{m_{ik}}$ .

The Ricci tensor is the contraction of the curvature tensor

$R_{ij}= \sum_{k=1}^{n}R_{ikj}^{k}$ ,

and the scalar curvature is the trace of the Ricci tensor

$R= \sum_{1,j=1}^{n}g^{:j}R_{ij}$ .
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Let $(x^{1}, \cdots x^{n-1},x^{n})$ be a local coordinate system on $\overline{M}$ in which $\partial M$ is the
plane $x^{n}=0$ and for which $\partial/\partial x^{n}$ is a unit outward normal vector to $\partial M$ . Then
the components $h_{ij}$ of the second fundamental form of $g$ are given by

$h_{ij}= \frac{1}{2}\frac{\partial g_{\dot{*}j}}{\partial x^{n}}1\leq i,j\leq n-1$ .

The mean curvature of $\partial M$ is the trace

$h= \frac{1}{n-1}\sum_{1,j=1}^{n-1}g^{ij}h_{ij}$ .

A metric $g’of\overline{M}$ is said to be conformal to the metric $g$ if there exists a smooth
real-valued function $f$ on $\overline{M}$ such that

$g’=e^{2f}g$ .
If $g’=e^{2f}g$ is a metric conformal to $g$ , then we have the following transformation

laws for the Ricci curvatures $R_{ij},$ $R_{ij}’$ and the scalar curvatures $R,$ $R’$ , respectively:

$R_{ij}’=R_{ij}-(n-2)\nabla_{ij}f+(n-2)\nabla_{i}f\nabla_{j}f+(\Delta f-(n-2)|\nabla f|^{2})g_{ij}$ ,
$R’=e^{-2f}(R+2(n-1)\Delta f-(n-1)(n-2)|\nabla f|^{2})$ .

Furthermore, if we make the substitution $e^{2f}=\varphi^{4/(n-2)},$ $\varphi>0$ on $\overline{M}$, then the
second formula can be simplffied as follows:

(1) 4 $\frac{n-1}{n-2}\Delta\varphi+R\varphi-R’\varphi^{\frac{n+2}{n-2}}=0$ .

Similarly, one can compute the components $h_{ij}’$ of the second fundamental form
of $g’=e^{2f}g$ in terms of the second fundamental form of $g$ . We have the following
transformation laws for the components $h_{ij},$ $h_{ij}’$ and the mean curvatures $h,$ $h’$ ,
respectively:

$h_{ij}’=e^{f}h_{ij}+ \frac{\partial}{\partial n}(e^{f})g_{ij}$, $h’=e^{-f}(h+ \frac{\partial f}{\partial n})$ ,

where $\partial/\partial n$ is the unit outward normal derivative. Furthermore, if we make the
substitution $e^{2f}=\varphi^{4/(n-2)}$ as above, then the second formula can be simplffied as
follows:

(2) $\frac{2}{n-2}\frac{\partial\varphi}{\partial n}+h\varphi-h’\varphi^{\frac{n}{n-2}}=0$.

Therefore, if we take $R=k$ in equation (1) and $h=0$ in condition (2), our
problem is equivalent to finding a smooth strictly positive solution $\varphi$ on $\overline{M}$ of the
nonlinear boundary value problem:

$(*)$ $\{\frac{4\frac{n-}{2n-2}}{n-2}\frac{1\partial\varphi\Delta}{\partial n}-h\varphi^{\frac{\varphi_{n}-}{n-2}}=0\varphi+_{/}kR’\varphi^{\frac{n+2}{n-2}}=0$ $inMon\partial M$

.



73
4 KAZUAKI TAIRA

Now we assume that
$R’\leq 0$ in $M$ .

We let

$\mathcal{M}_{-}(R’)=\{x\in M;R’(x)<0\}$ ,

and

$\mathcal{M}_{0}(R’)=M\backslash \overline{\mathcal{M}_{-}(R’)}$.
Our fundamental hypothesis is the following (cf. Figure 1):
$(H)$ The open set $\mathcal{M}_{0}(R’)$ consists of a finite number of connected components

with smooth boundary, say $\mathcal{M}_{i}(R’),$ $1\leq i\leq\ell$ , which are bounded away from
$\partial M$ , and of a finite number of connected components with smooth boundary, say
$\mathcal{M}_{j}(R’),$ $\ell+1\leq j\leq N$ , such that each closure $\overline{\mathcal{M}_{j}(R’)}$ is a neighborhood of some
connected component $S_{j}$ of $\partial M$ .

Figure 1

First we consider the Dirichlet eigenvalue problem in each connected component
$\mathcal{M}_{i}(R’),$ $1\leq i\leq\ell$ , which is bounded away from $\partial M$ :

$(D_{i})$ $\{\begin{array}{l}\Delta\psi=\lambda\psi in\mathcal{M}_{i}(R’)\psi=0on\partial \mathcal{M}_{i}(R’)\end{array}$

By the celebrated Rayleigh theorem (cf. [Ag, Chapter 10], [Cl, Chapter I]), we know
that the first eigenvalue $\lambda_{1}(\mathcal{M}_{i}(R’))$ of problem $(D_{i})$ is given by the formula

$\lambda_{1}(\Lambda t_{i}(R’))=\inf\{\int_{\mathcal{M}:(R’)}|\nabla\psi|^{2}dV;\psi\in H_{0}^{1}(\mathcal{M}_{i}(R’)),$ $\Vert\psi||_{L^{2}(A4;(R’))}=1\}$ .
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Here $dV$ is the Riemannian density of $g$ , and $H_{0}^{1}(\mathcal{M}_{i}(R’))$ is the closure of smooth
functions with compact support in $\mathcal{M}_{i}(R’)$ in the Sobolev space $H^{1}(\mathcal{M}_{i}(R’))$ .

Next we consider the Dirichlet-Neumann eigenvalue problem in each connected
component $\mathcal{M}_{j}(R’),$ $\ell+1\leq j\leq N$ , whose closure is a neighborhood of some
connected component $S_{j}$ of $\partial M$ :

$(M_{j})$ $\{\begin{array}{l}\Delta\psi=\mu\psi in\mathcal{M}_{j}(R’)\psi=0on\partial \mathcal{M}_{j}(R^{/})\backslash S_{j}\frac{\partial\psi}{\partial n}=0onS_{j}\end{array}$

Similarly, by Rayleigh’s theorem, we know that the first eigenval$ue\mu_{1}(\mathcal{M}_{j}(R’))$ of
problem $(M_{j})$ is given by the formula

$\mu_{1}(\mathcal{M}_{j}(R’))=\inf\{\int_{\mathcal{M}_{j}(R)}|\nabla\psi|^{2}dV;\psi\in H^{1}(\mathcal{M}_{j}(R’)),\psi=0on\partial \mathcal{M}_{j}(R’)\backslash S_{j}$ ,

$||\psi||_{L^{2}(\mathcal{M}_{j}(R’))}=1\}$ .

We let

$\sim_{1}\lambda(\mathcal{M}_{0}(R’))=\min\{\lambda_{1}(\mathcal{M}_{1}(R’)),$ $\cdots\lambda_{1}(\mathcal{M}_{\ell}(R’))$ ,
$\mu_{1}(\mathcal{M}_{\ell+1}(R’)),$ $\cdots,\mu_{1}(\mathcal{M}_{N}(R’))$ }.

Then our main result of this paper is stated as follows.

Main Theorem. Assume that the given metric $g$ has a $con$stant negative scalar
$cur$vature $k$ of $M$ an$d$ the zero mean $cur$vature of $\partial M$ , an$d$ that:

$(A)R’\leq 0$ in $M$ .
$(H)$ The open set $\mathcal{M}_{0}(R’)$ consists of a finite $n$umber of connected components

$\mathcal{M}_{i}(R’),$ $1\leq i\leq\ell$ , with smooth $bo$undary which are $bo$unded away from $\partial M$ , and
of a finite number of $c$onnected components $\mathcal{M}_{j}(R’),$ $\ell+1\leq j\leq N$ , with smooth
$bo$undary such that each closure $\overline{\mathcal{M}_{j}(R’)}$ is a neighborhood of $some$ connected
component $S_{j}$ of $\partial M$ .

$(B)h’\leq 0$ on $\partial M\backslash S_{j}$ , and $h’=0$ on $S_{j},$ $\ell+1\leq j\leq N$ .
Then we have the following:
(i) if the zero set $\mathcal{M}_{0}(R’)$ is so small that

$\sim_{1}\lambda(\mathcal{M}_{0}(R’))>-\frac{n-2}{4(n-1)}k$ ,

then there exists a conformally related metric $g’=\varphi^{4/(n-2)}g,$ $\varphi>0$ on $\overline{M}$, such
that $R’$ and $h$‘ are the scalar curvature of $M$ an$d$ the mean $cur$vature of $\partial M$ with
respect to $g’$ , respectively.

(ii) If the zero set $\mathcal{M}_{0}(R’)$ is so large that

$\sim_{1}\lambda(\mathcal{M}_{0}(R’))\leq-\frac{n-2}{4(n-1)}k$,

then there exists no sucb conformal metric $g’$ .
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2. OUTLINE OF PROOF

If we let

$\lambda=-\frac{n-2}{4(n-1)}k$, $h=- \frac{n-2}{4(n-1)}R’$ , $a=- \frac{n-2}{2}h’$ ,

then our problem $(*)$ can be written in the following form:

$(**)$ $\{\begin{array}{l}\Delta u-\lambda u+hu^{p}=0inM\frac{\partial u}{\partial n}+au^{q}=0on\partial M\end{array}$

where
$p= \frac{n+2}{n-2}>1$ , $q= \frac{n}{n-2}>1$ .

We remark that

$\{\begin{array}{l}\lambda>0h\geq 0a\geq 0\end{array}$

$inMon\partial M$

.
Now we free our problem from geometry, and study the existence and nonex-

istence of positive solutions of problem $(**)$ in the framework of Holder spaces.
Our approach to problem $(**)$ is a modification of that of Ouyang [O] adapted to
the present context. However we do not use the sub-super-solution method as in
Ouyang [O] (cf. [K], [KW]).

Our proof of Main Theorem is based on the following bifurcation theorem from
a simple eigenvalue due to Crandall-Rabinowitz [CR]:

The bifurcation theorem. Let $X,$ $Y$ be Banach spaces, and let $V$ be a neigh-
borhood of $0$ in $X$ and let $F:(-1,1)xVarrow Y$ have the following properties:

(1) $F(t,0)=0$ for $|t|<1$ .
(2) The partial R\’echet derivatives $F_{t},$ $F_{x}$ and $F_{tx}$ of $F$ exist and are continuous.
(3) $N(F_{x}(0,0))$ and $Y/R(F_{x}(0,0))$ are one dimensional.
(4) $F_{tx}(0,0)x_{0}\not\in R(F_{x}(0,0))$ where $N(F_{x}(0, O))=span\{x_{0}\}$ .
If $Z$ is a complement of $N(F_{x}(0,0))$ in $X$ , that is, if it is a closed subspace of $X$

such that
$X=N(F_{x}(0, O))\oplus Z$ ,

then there exist a neighborhood $U$ of $(0,0)$ in $RxX$ and an open interval $(-a,a)$

such that the set of solutions of $F(t, x)=0$ in $U$ consists of two continu$ous$ curves
$\Gamma_{1}$ and $\Gamma_{2}$ whidn may be parametrized by $t$ and $\alpha$ as follows (cf. Figure 2):

$\Gamma_{1}=\{(t,0);(t,0)\in U\}$ ,
$\Gamma_{2}=\{(\varphi(\alpha), \alpha x_{0}+\alpha\psi(\alpha));|\alpha|<a\}$ .

Here

$\varphi:(-a,a)arrow R$ , $\varphi(0)=0$ ,
$\psi:(-a,a)arrow Z$ , $\psi(0)=0$ .
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Figure 2

1) First we associate with problem $(**)$ a nonlinear mapping $F$ : Rx $C^{2+\theta}(\overline{M})\mapsto$

$C^{\theta}(\overline{M})xC^{1+\theta}(\partial M)(0<\theta<1)$ as follows:

$F$ : $RxC^{2+\theta}(\overline{M})arrow C^{\theta}(\overline{M})xC^{1+\theta}(\partial M)$

$(\lambda,u)-(\Delta u-\lambda u+hu^{p},$ $\frac{\partial u}{\partial n}+au^{q})$ .

We remark that a function $u\in C^{2+\theta}(\overline{M})$ is a solution of problem $(**)$ if and only
if $F(\lambda, u)=0$ .

Then we have for partial Fr\’echet derivatives of $F$

$F_{u}(\lambda, u)$ : $C^{2+\theta}(\overline{M})arrow C^{\theta}(\overline{M})xC^{1+\theta}(\partial M)$

$v(\Delta v-\lambda v+phu^{p-1}v,$ $\frac{\partial v}{\partial n}+qau^{q-1}v)$ ,

and

$F_{\lambda u}(\lambda, u)$ : $C^{2+\theta}(\overline{M})arrow C^{\theta}(\overline{M})xC^{1+\theta}(\partial M)$

$v-(-v, 0)$ .
In particular we have

$F_{u}(0,0)$ : $C^{2+\theta}(\overline{M})arrow C^{\theta}(\overline{M})xC^{1+\theta}(\partial M)$

$v\mapsto(\Delta v,$ $\frac{\partial v}{\partial n})$ .

It is easy to see that

$N(F_{u}(0,0))=$ {constant functions} $=span\{1\}$ ,

$R(F_{u}(0,0))= \{(f,\varphi)\in C^{\theta}(\overline{M})xC^{1+\theta}(\partial M);\int_{M}fdV+\int_{\partial M}\varphi d\sigma=0\}$ ,
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and

$F_{\lambda u}(0,0)1=(-1,0)\not\in R(F_{u}(0,0))$ .
Therefore, by using the bifurcation theorem, we obtain that there exists a bifurca-
tion solution curve $(\lambda,u(\lambda))$ of the equation $F(\lambda,u)=0$ starting at $(0,0)$ .

2) Next, by virtue of the implicit function theorem, we can find a constant
$0<\overline{\lambda}(h)\leq\infty$ such that the Fr\’echet derivative

$F_{u}(\lambda,u(\lambda))$ : $C^{2+\theta}(\overline{M})arrow C^{\theta}(\overline{M})xC^{1+\theta}(\partial M)$

is an algebraic and topological isomorphism for all $0<\lambda<\overline{\lambda}(h)$ . This means
that there occurs no secondary bifurcation along the bifurcation solution curve
$(\lambda,u(\lambda))$ of problem $(**)$ for all $0<\lambda<\overline{\lambda}(h)$ . In the proof we make essential use
of the positivity of the resolvent associated with $F_{u}(\lambda, u(\lambda))$ on the space $C(\overline{M})$

due to Taira [Ta]. Furthermore we show that the solution $u(\lambda)$ “blows up” at the
critical value $\overline{\lambda}(h)$ . Our situation may be represented schematically by the following
bifurcation diagram:

3) In order to characterize the critical value $\overline{\lambda}(h)$ of $\lambda$ , we let

$\mathcal{M}_{+}(h)=\{x\in M;h(x)>0\}$ ,

and

$\mathcal{M}_{0}(h)=M\backslash \overline{\mathcal{M}_{+}(h)}$.
Our fundamental hypothesis is the following (cf. hypothesis $(H)$ ):
$(\eta)$ The open set $\Lambda t_{0}(h)$ consists of a finite number of connected components

with smooth boundary, say $\mathcal{M}_{i}(h),$ $1\leq i\leq\ell$, which are bounded away from $\partial M$ ,
and of a finite number of connected components with smooth boundary, say $\mathcal{M}_{j}(h)$ ,
$\ell+1\leq j\leq N$ , such that each closure $\overline{\mathcal{M}_{j}(h)}$ is a neighborhood of some connected
component $S_{j}$ of $\partial M$ .

We consider the Dirichlet eigenvalue problem in each connected component
$\mathcal{M}_{i}(h),$ $1\leq i\leq\ell$ , which is bounded away from $\partial M$ :

$(D_{1})$ $\{\begin{array}{l}\Delta\varphi=\lambda\varphi in\mathcal{M}_{i}(h)\varphi=0on\partial \mathcal{M}.\cdot(h)\end{array}$
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The first eigenvalue $\lambda_{1}(\mathcal{M}_{i}(h))$ of problem $(D_{i})$ is given by the formula

$\lambda_{1}(\mathcal{M}_{i}(h))=\inf\{\int_{\mathcal{M}:(h)}|\nabla\varphi|^{2}dV;\varphi\in H_{0}^{1}(\mathcal{M}:(h)),$ $||\varphi||_{L^{2}(\mathcal{M}_{i}(h))}=1\}$ .

We consider the Dirichlet-Neumann eigenvalue problem in each connected com-
ponent $\mathcal{M}_{j}(h),$ $\ell+1\leq j\leq N$ , whose closure is a neighborhood of some connected
component $S_{j}$ of $\partial M$ :

$(M_{j})$ $\{\begin{array}{l}\Delta\varphi=\mu\varphi in\mathcal{M}_{j}(h)\varphi=0on\partial \mathcal{M}_{j}(h)\backslash S_{j}\frac{\partial\varphi}{\partial n}=0onS_{j}\end{array}$

The first eigenvalue $\mu_{1}(\mathcal{M}_{j}(h))$ of problem $(M_{j})$ is given by the formula

$\mu_{1}(\mathcal{M}_{j}(h))=\inf\{\int_{\lambda 4_{3}(h)}|\nabla\varphi|^{2}dV;\varphi\in H^{1}(\Lambda t_{j}(h)),$ $\varphi=0on\partial \mathcal{M};(h)\backslash S_{j}$ ,

$||\varphi||_{L^{2}(\Lambda 4;(h))}=1\}$ .

We let

$\sim_{1}\lambda(\mathcal{M}_{0}(h))=\min\{\lambda_{1}(\mathcal{M}_{1}(h)),$ $\cdots\lambda_{1}(\mathcal{M}_{\ell}(h))$ ,
$\mu_{1}(\mathcal{M}_{\ell+1}(h)),$ $\cdots\mu_{1}(\mathcal{M}_{N}(h))$ }.

Then we have
$\overline{\lambda}(h)=\lambda(\mathcal{M}_{0}(h))\sim_{1}$ .

More precisely, we can prove the following existence and nonexistence theorem of
positive solutions of problem $(**)$ (cf. [Cr, Th\’eor\‘eme 6], $[0$ , Theorem 3]):

Theorem. Assume that:
$(\alpha)h\geq 0$ in $M$ .
$(\eta)$ The open set $\mathcal{M}_{0}(h)$ consists of a finite number of connected components

$\mathcal{M};(h),$ $1\leq i\leq\ell$, with smooth boun$d$ary whidn are bounded away $fi\cdot om\partial M$ , an$d$

of a finite $number$ of connected components $\mathcal{M}_{j}(h),$ $P+1\leq j\leq N$, with smooth
boundary such that $ea$ch closure $\overline{\mathcal{M}_{j}(h)}$ is a neighborhood of some connected com-
ponent $S_{j}$ of $\partial M$ .

$(\beta)a\geq 0$ on $\partial M\backslash S_{j}$ , and $a=0$ on $S_{j},$ $\ell+1\leq j\leq N$ .
Then we have the following (cf. Figure 2):
(i) For any $0<\lambda<\sim_{1}\lambda(\mathcal{M}_{0}(h))$ , there exists a strictly $p$ositi$vesoluti$on $u(\lambda)$ of

problem $(**)$ .
(ii) For any $\lambda\geq\sim_{1}\lambda(\mathcal{M}_{0}(h))$ , there exists no positive $sol$ution of problem $(**)$ .
Rirthermore, we have

$\lim$ $||u(\lambda)||_{L^{2}(M)}=+\infty$ .
$\lambdaarrow\lambda(\mathcal{M}o(h))\sim_{1}$

Our Main Theorem is an immediate consequence of this theorem.
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