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THE YAMABE PROBLEM AND NONLINEAR
BOUNDARY VALUE PROBLEMS

KAzUAKI TAIRA (R FIH)

Institute of Mathematics, University of Tsukuba, Tsukuba 305, Japan

ABSTRACT. We study the Yamabe problem in the context of manifolds with bound-
ary - a basic problem in Riemannian geometry - from the point of view of nonlinear
elliptic boundary value problems. By making good use of bifurcation theory from a
simple eigenvalue, we show that nonpositive scalar curvatures and nonpositive mean
curvatures are not always conformal to constant negative scalar curvatures and the
zero mean curvature.

1. INTRODUCTION

Let (M, g) be a smooth compact, connected Riemannian manifold with boundary
OM of dimension n > 3, and let M = M\OM be the interior of M. A basic problem
in Riemannian geometry is to seek a conformal change of the metric g that makes
the scalar curvature of M constant and the mean curvature of M zero. When the
boundary O M is empty, this problem is the so-called Yamabe problem. The solution
of the Yamabe problem is completely given by H. Yamabe [Y], N. S. Trudinger [T¥],
T. Aubin [Au] and R. Schoen [S] (cf. [LP]). Recently, J. Escobar [E] has studied the
problem in the context of manifolds with boundary, and has given an affirmative
solution to the problem formulated above in almost every case.

In this paper we consider the case where the given metric g already has a constant
negative scalar curvature k of M and the zero mean curvature of M as in Ouyang
[O] (cf. [K], [KW]). Our problem is the following:

Problem. Given a nonpositive smooth function R' in M and a nonpositive smooth
function h' on M, find a metric g¢' of M, conformal to g, such that R' and h'
are the scalar curvature of M and the mean curvature of M with respect to ¢,
respectively. :

We shall show that nonpositive scalar curvatures R' and nonpositive mean cur-
vatures h’ are not always conformal to negative scalar curvatures k and the zero
mean curvature; it depends on the shape of the zero set of R’ (see Main Theorem
below).

If g1 are the components of the metric tensor g with respect to a local coordinate
system z!, - - -, z", then g;; and its inverse g’F are used to raise and lower indices.
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Covariant differentiation is denoted by V. If f is a function on M, then its covariant
derivative is the one-tensor V f with components

of

Vf_@rc‘

The second covariant derivative of f is the two-tensor V2 f with components

o f “~ ¢ Of
Viif = 5rper T ?L:;P"i Sz’

Here the functions

Ox*  Oz3 Oz

are the Christoffel symbols. The metric extends to an inner product on tensors of
any type; for example, the norm of Vf is

Tt = l [agkj Ogki agij] g“

IVF2 = ZV’fV f= Z g9V,

Jj=1 C =1

The divergence operator is the formal adjoint V* of V given on one-forms u =
Y, usds by

n

= —i,viui = - Z g”V u; = Z 6”' + Z g+ I‘e
=1

t,5=1 t,j=1 i,5,4=1

The Laplace-Beltrami operator, or snnply Laplacian, is the second-order differential
operator A given on functions f by

Oz'OxI it 5zt

i)j:-]' 7])£—

Af:V*sz—zn:Vtvtf=_ Zn:gij 62f + Z ”Pe af
=1

The Riemannian curvature tensor is the tensor with components R%x;; computed
in a local coordinate system z!, .-, 2" by

6 ) a n n
Riyij = -(%-,e(f‘ejk) - 5}7(1“2%) + ) Thm Tk — Y Thim T

m=1 m=1

The Ricc: tensor is the contraction of the curvature tensor
n
Rij =) R*u;,
k=1
and the scalar curvature is the trace of the Ricci tensor

RZg

t,J=1
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Let (z!,--+,z""1,z") be a local coordinate system on M in which M is the
plane " = 0 and for which §/0z" is a unit outward normal vector to M. Then
the components h;; of the second fundamental form of g are given by

1 0g;; ..
hij=‘2'a?, 1<3,j<n-1
The mean curvature of OM is the trace

1 n—1
h= Z gijhij.

n—

i,5=1

A metric ¢’ of M is said to be conformal to the metric g if there exists a smooth
real-valued function f on M such that

g =e*g.

If ¢’ = e?fg is a metric conformal to g, then we have the following transformation
laws for the Ricci curvatures R;j, R;; and the scalar curvatures R, R, respectively:

jo = R;; — (n- 2)V,‘jf + (n - 2)V,~ijf + (Af - (n - 2)|Vf|2) Jij»
R'=e* (R+2(n-1)Af - (n—1)(n=2)|VF*).
Furthermore, if we make the substitution e2f = ¢*/ (n=2) & > 0 on M, then the
second formula can be simplified as follows:

n—1

2A<p+ch—R'<pH%=0.

(1) 4

Similarly, one can compute the components hij of the second fundamental form

of ¢’ = e?/ g in terms of the second fundamental form of g. We have the following
transformation laws for the components h;;, h;j and the mean curvatures h, b/,
respectively:

0 of
b ofpo2 O Ay ' —f
hij=e h,]+an(e )Gijs M=e (h+3n)’

where 8/0n is the unit outward normal derivative. Furthermore, if we make the

substitution e2f = ¢*/("=2) a5 above, then the second formula can be simplified as
follows:

2 a‘P [JP S
(2) n-—251';+h('0_h('0 z =0.

Therefore, if we take R = k in equation (1) and h = 0 in condition (2), our
problem is equivalent to finding a smooth strictly positive solution ¢ on M of the
nonlinear boundary value problem:

. {4%r;§A<p+k<p—R'¢$—'i%=o in M,

n—z_—zg-‘&—h'cpﬁ=0 on OM.
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Now we assume that
R' <0 in M.
We let

M_(R') = {z € M; R'(z) < 0},
and

Mo(R') = M\M_(R").

Our fundamental hypothesis is the following (cf. Figure 1):

(H) The open set My(R') consists of a finite number of connected components
with smooth boundary, say M;(R'), 1 < i < £, which are bounded away from
OM, and of a finite number of connected components with smooth boundary, say
M;(R'), £+1 < j < N, such that each closure M;(R') is a neighborhood of some
connected component S; of M.

Figure 1

First we consider the Dirichlet eigenvalue problem in each connected component
M;(R"), 1 < i< £, which is bounded away from dM:

{ AY =X in Mi(R),
=0 on OM;(R').

By the celebrated Rayleigh theorem (cf. [Ag, Chapter 10], [Cl, Chapter I]), we know
that the first eigenvalue A (M;(R')) of problem (D;) is given by the formula

M (M(RY) = int{ |

(Ds)

U aVsw € B MR Wl =1

i(R

73
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Here dV is the Riemannian density of g, and H}(M;(R’')) is the closure of smooth
functions with compact support in M;(R’) in the Sobolev space H!(M;(R')).

Next we consider the Dirichlet-Neumann eigenvalue problem in each connected
component M;(R'), £+ 1 < j < N, whose closure is a neighborhood of some
connected component S; of OM:

Ay = pyp  in M,;(R'),
(M;) P =0 on OM;(R'\S;,
%ﬁ =0 on S;.

Similarly, by Rayleigh’s theorem, we know that the first eigenvalue py (M;(R')) of
problem (M;) is given by the formula

p(M;(R)) = inf{/ " IV9I* dV;9 € H (M;(R)), % = 0on OM;(R)\S;,

¥l L2 m; (rry) = 1}-
We let

X1 (Mo(R")) = min {A (M1 (R"),++ , M (Me(R")),
p1(Mep1(R')), - s sta( My (R'))} .

Then our main result of this paper is stated as follows.

Main Theorem. Assume that the given metric g has a constant negative scalar
curvature k of M and the zero mean curvature of M, and that:

(A) R <0in M.

(H) The open set My(R') consists of a finite number of connected components
M;(R'), 1 < i < £, with smooth boundary which are bounded away from M, and
of a finite number of connected components M;(R'), £+ 1 < j < N, with smooth
boundary such that each closure M;(R') is a neighborhood of some connected
component S; of OM.

(B) W <0 0ondM\Sj,andh' =00on S;,L+1<j<N.

Then we have the following:

(i) If the zero set My(R') is so small that

n—2

Y (Mo(R")) > - m k,

then there exists a conformally related metric g = ¢*/("=2) g » > 0 on M, such

that R’ and h' are the scalar curvature of M and the mean curvature of 9M with
respect to g, respectively.

(ii) If the zero set My(R') is so large that

n—2

AL (Mo(R")) < — in=1

k,

then there exists no such conformal metric g'.
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2. OUTLINE OF PROOF
If we let

. n—=2 . n=2 _, _ _n-—2
A= 4(n—1)k’ h= 4(n—1)R’ T

hl

then our problem (%) can be written in the following form:

Au—Au+hu?P =0 in M,
) e +aut =0 oM
3m T QUT = on ’
where +2
n n
We remark that
A>0,
h>0 in M,
a>0 ondM.

Now we free our problem from geometry, and study the existence and nonex-
istence of positive solutions of problem (#x) in the framework of Holder spaces.
Our approach to problem (**) is a modification of that of Ouyang [O] adapted to
the present context. However we do not use the sub-super-solution method as in
Ouyang [O] (cf. [K], [KW]).

Our proof of Main Theorem is based on the following bifurcation theorem from
a simple eigenvalue due to Crandall-Rabinowitz [CR}:

The bifurcation theorem. Let X, Y be Banach spaces, and let V' be a neigh-
borhood of 0 in X and let F : (—1,1) x V — Y have the following properties:

(1) F(¢,0) =0 for |t| < 1. ,

(2) The partial Fréchet derivatives Fy, F, and Fy; of F exist and are continuous.

(3) N(F.(0,0)) and Y/R(F;(0,0)) are one dimensional.

(4) Fi-(0,0)x¢ & R(F;(0,0)) where N(F,(0,0)) = span {zo}.

If Z is a complement of N(F,(0,0)) in X, that is, if it is a closed subspace of X
such that

X = N(F;(0,0))® Z,

then there exist a neighborhood U of (0,0) in R x X and an open interval (—a, a)
such that the set of solutions of F(t,z) = 0 in U consists of two continuous curves
I, and I}, which may be parametrized by t and « as follows (cf. Figure 2):

I = {(ta 0); (t,()) € U}’
Iy = {(p(@), azo + ap(@)); |a| < a}.

Here

P (_a7 a’) — R, ()0(0) =0,
b (~a,0)= 2, $(0)=0.
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I

Figure 2

1) First we associate with problem (x*) a nonlinear mapping F : Rx C?*/(M)
CO(M) x C*t9(8M) (0 < 8 < 1) as follows:

F:R x C*(3) — CO(M) x C*+9(8M)

(A u) — (Au — Au + hu?, —6—3 + auq) .
On
We remark that a function u € C?*%(M) is a solution of problem (*#) if and only
if F(A,u) =0. .
Then we have for partial Fréchet derivatives of F’

Fu(\u) : C?*+0(3T) — C*(3T) x C+0(5M)

v — (Av — v + phuP 1o, g—:’l + qauq_l'v) ,

Fru(M\,u) : C*O(M) — CO(M) x C*P (M)

v — (—v,0).
In particular we have
F,(0,0) : C?*9(31) — CO(M) x C*+9(oM)
v — (Av, -g—:);) .
It is easy to see that
N(F.(0,0)) = {constant functions} = span {1},

R(F,(0,0)) = {(f, ) € C°(F) x C'+9(aM); /M Fav + /a pdo =0},
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and

F3u(0,0)1 = (-1,0) € R(F.(0,0)).

Therefore, by using the bifurcation theorem, we obtain that there exists a bifurca-
tion solution curve (A,u(A)) of the equation F'(A,u) = 0 starting at (0, 0).

2) Next, by virtue of the implicit function theorem, we can find a constant
0 < X(h) < oo such that the Fréchet derivative

F.(\,u(\): C*(M) — CO(M) x C1H8(0M)

is an algebraic and topological isomorphism for all 0 < A < A(h). This means

" that there occurs no secondary bifurcation along the bifurcation solution curve
(A, u(X)) of problem (*#) for all 0 < XA < X(h). In the proof we make essential use
of the positivity of the resolvent associated with F,(A,u())) on the space C(M)
due to Taira [Ta]. Furthermore we show that the solution u(A) “blows up” at the
critical value A(h). Our situation may be represented schematically by the following
bifurcation diagram:

- o b - - -

h)

Figure 3
3) In order to characterize the critical value X(h) of A, we let
M. (h) = {z € M;h(z) > 0},
and

Mo(h) = MAM 4 (R).

Our fundamental hypothesis is the following (cf. hypothesis (H)):

(n) The open set Mg (h) consists of a finite number of connected components
with smooth boundary, say M;(h), 1 < ¢ < ¢, which are bounded away from OM,
and of a finite number of connected components with smooth boundary, say M j(h),
£+41 < j < N, such that each closure M (h) is a neighborhood of some connected
component S; of M.

We consider the Dirichlet eigenvalue problem in each connected component
M;(h), 1< i< ¥, which is bounded away from OM:

(D) =0 on OM;(h).

7
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The first eigenvalue A; (M;(h)) of problem (D;) is given by the formula

A1(M;(h)) = inf { /M.(h) IVel® dVs o € Hy (Mi(h)), llell e (many) = 1} .

We consider the Dirichlet-Neumann eigenvalue problem in each connected com-
ponent M;(h), £+1 < j < N, whose closure is a neighborhood of some connected
component S; of OM:

Ap =pp in M;(h),

(3;) =0 ondM;(h)\S;,
g—% = on §;.

The first eigenvalue py (M (h)) of problem (M;) is given by the formula

(M) =t [

[Vel? dV;p € H'(M;(h)), ¢ = 0on OM;(h)\S;,
M;(h)

llellz2(am; myy = 1}-
We let

X1(Mo(R)) = min {1 (M1 (h)),- - , A (Me(h)),
p1(Meg1(h)), -+, (Mn(h))}.

Then we have

X(B) = X (Mo(R)).

More precisely, we can prove the following existence and nonexistence theorem of
positive solutions of problem (*#) (cf. [Cr, Théoréme 6], [O, Theorem 3]):

Theorem. Assume that:

() h>0in M.

(n) The open set Mg(h) consists of a finite number of connected components
Mi(h), 1 < i < £, with smooth boundary which are bounded away from M, and
of a finite number of connected components Mj(h), £+ 1 < j < N, with smooth

boundary such that each closure M ;(h) is a neighborhood of some connected com-
ponent S; of OM.

(8) a>0o0ndM\S;,anda=00nS;,£+1<j<N.
Then we have the following (cf. Figure 2):

(i) For any 0 < A < A (Mo (h)), there exists a strictly positive solution u()\) of
problem (k).

(i) For any A > A;(Mo(h)), there exists no positive solution of problem (#+).
Furthermore, we have

Aim fu(A)|[z2qary = +oo.
A—X1(Mo(h))

Our Main Theorem is an immediate consequence of this theorem.
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