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8§ 1. Introduction

This is a joint work with Eiji Yanagida (Tokyo Institute of

Technology).
Recently, in [YY1] and [YY2], we obtained classification theorems of

the structure of positive radial solutions to the equation
au+ K(|x|)u? =0, x € R",

wvhere p > 1 and n > 2. (See, also, [DN1], [KL], [KN], [KNY], [KYY1],

[(kyvz], [LN1, LN2, LN3, LN4], [N.]. ([Y1], [v2]l, [Y3], [Y4] and [YY3].)
We will explain the main results of them. Since we are interested

in positive radial solutions (i.e. solutions with u = u(|x|) > 0), we

study the initial value problenm

(E) { (r" Tue)e + ") @)P =0, >0,
u(0) = a > 0,
where r = [ x| and u' = max{u, 0}. We impose the following

conditions on K(r):

K(r) 1is continuous on (0, «);
K(r) 20 and K(r) 20 on (0, o);
rk(r) € L'(0, 1);

rn-'l-(n‘E’)PK(r) € Li(l' w).

(K)

It is known that, under the first, second and third conditions in (X),
the initial value problem (E) has a unique solution

u(r) € C([0, «©)) n C*((0, »)) (see, e.g., Propositions 4.1 and 4.2
of [NY]). We will denote the unique solution by u(r;a). We note
that, if the last condition in (K) is not satisfied, then u(r;a) has

a zero in (0, o) for every o > 0 (see, e.g., [A] or [N]).



We classify each solution of (E) according to its behavior as

r - o, We say that

(i) u(r;a) is a zero-hit solution if wu{r;a) has a zero in

(0, ),

(ii) u(r;a) 1is a slow-decay solution if wu(r;a) > 0 on [0, )

and lim_ r" Cu(r;a) = o,
r-» ©©

(iii) u(r;a) is a fast-decay solution if u(r;a) > 0 on [0, o)

and %gma>r”‘2u(r;a) exists and is finite and positive.

n-2

It can be shown that, if wu(r;a) > 0 on [0, o), then r" “u(r;a)

non-decreasing in r. This implies that any solution of (E) is
classified into one of the above three types.

Let G(r) and H(r) be functions defined by

- 2 n - - r n-1
G(r) := —— r"K(r) (n - 2) .[0 s""'K(s)ds,
H(I‘) = 2 re—(n—E‘:pK(r) - (n - 2) stl—(n—E)pK(s)ds'
p+1 r

By n > 2 and (K), the integrals in the definitions of G(r) and

are well-defined. We note that, if K(r) 1is differentiable, then

Gr(r) = r{n-22 Py (p) = r" U rK: (1) - AK(1)},

p+1

where X is given by

Az:(n—Z)g—(n’rZ).

Finally we define

rg := inf {r € (0, ) ; G(r) <0 },
T :=sup {r € (0, o) ; H(r) <0 }.
Here we put r; = o if G(r) 20 on (0, o), and ry =0 if

H(r) 20 on (0, o).

is

H(r)
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Under the condition ry £ rs, we can completely classify the

structure of solutions to (E).

Theorenm 1. Suppose that G(r) 20 on (0, «). Then the structure

of solutions to (E) is as follows.

(a) If rg = o, then the structure is of Type Z :

u(r;a) is a zero-hit solution for every a > 0.

(b) If rg < o and rw =0, then the structure is of Type S

u{r;a) is a slow-decay solution for every a > 0.

(¢) If 0 <Cry £r < o, then the structure is of Type M :

There exists a unique positive number af such that u{(r;a) is

zero-hit solution for every a € (ay, o), uf(r;a) is a

fast-decay solution if and only if a = af, and u(r;a) is a

slow-decay solution for every o <€ (0, ar).

We should note that, if G(r) =0 on (0, «), u(r;a) is a
fast-decay solution for every a > 0.

The next theorem implies that the condition ry £ rg is sharp.

Theorem 2. Let a and b be any given numbers with 0 £ a < b

Then there exists K{(r) with rs = a and ry = b such that the

[N

structure of solutions to (E) is neither of Type Z, Type S, Type M an

Type F.

The above Theorem 1 is so powerful that it covers almost all known
results as colloralies and can be applied to the prescribing scalar

curvature equation

Au + Kufnt2rstn-2 - g iﬁ R

a

A
8



n+ )
Theorem 3. Let p = — and suppose that X(r) Z Constant.

2

(a) If K(r) 1is non-decreasing on (0, o), then the structure is of

Type 1Z.

(b) If K(r) 1is non-increasing on (0, <), then the structure is of

Type S.

(¢) If there exists R € (0, o) such that K(r) is non—-decreasing

on (0, R) and non-increasing on (R, «), and if

i = 11 , then the structure is of . Moreover,
%Lpo K(r) %LmGDK(r) then the st i Type M. Moreover

if u is a slow-decay solution, then there exist positive

2

constants c¢; and ¢z such that c¢ir ‘"7%’72 £y £ ¢pr” ("8

for every sufficiently large r.

Our proofs of Theorems 1 and 2 are based on the shooting method.
A main difficulty in the shooting method lies in the fact that the

asymptotic behavior of u(r;a) as r » o must be studied carefully.

In order to overcome this difficulty, we employ useful characterizations

of zero-hit, slow-decay and fast-decay solutions, by using the variants

of well-known Pohozaev identity

P(r;u) = G(r)u*(r;a)®*! - (p + I)J ; G(s)u*(é:a)”ur(s;a)dS.
and
P(r;u) = H(r) {r" %u* (r;)} P!
- (0 + 1) [ B() {s" 720" (53001 P 8" 2u(s:)) s,
where
P(r;u) :=r"ur {ru. + (n - 2)u} + r"K(r) (u*) P,

p+1

The following lemma is fundamental characterizations of solutions.
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Lenmma.

(a) " If u = u(r;a) is a zero-hit solution, then P(r;u) > 0 for

r € [z(a), o), where z(a) is a zero of u(r;a).

(b) If u=u(r;@) is a slow-decay solution, then there exists a
sequence {T:} such that r; » © as i - o and P(Fi:u) <0
for every -i.

(¢} If wu = u(r;a) is a fast-decay solution, then there exists a

sequence {ri;} such that r; » o and P(ri;u) » 0 as i » o,

For the proofs of Theorems 1 and 2, we also use recent results
assuring the existence of zero-hit, slow-decay and fast-decay solutions

obtained by [YY1].

8 2. Results
The aim of this report is to generalize the above Theorem 1 to more

general equation

(E) { (g(r)ur)r + 8(r)K(r)(u+)pﬁ= 0, r > 0,
w(0) = a> 0,

where g(r) is a given function satisfying the following conditions:
g(r) € ([0, «));
g(r) >0 on (0, «);

1/g(r) « L1 (0, 1);
1/g(r) € L' (1, o).

(g)

We impose the following conditions on X(r):

K(r) is continuous on (0, o);

K(r) 20 and K(r) 20 on (0, o);
h(r)K(r) € L'(0, 1);

g(r) (h(r)/g(r))PK(r) ¢ L' (1, ),

(X)



where

1
g(s)

h(r) := g(r) j :) ds.

It is shown that, under the first, second and third conditions in (K),
the initial value problem (E) has a unique solution
u(r) € C([0, «)) n €2((0, «)). We will denote the unique solution by
u(r;a). We note that, if the last condition in (K) is not satisfied,
then u(r;a) has a zero in (0, ) for every a > 0.

We classify each solution of (E) according to its behavior as

r » oo, We say that

(i) u(r;a) 1is a zero-hit solution if u(r;a) has a zero in
(0' w)l
(ii) u(r;a) 1is a slow-decay solution if wu{r;a) > 0 on [0, <)

%iamoo(g(r)/h(r))U(r:a) = o,

and

(iii) u(r;a) is a fast-decay solution if u(r;a) > 0 on [0, <),

and %{pco(g(r)/h(r))u(r;a) exists and is finite and positive.

It can be shown that, if u{(r;a) > 0 on [0, o), then
(g(r)/h{(r))u(r;a) 1is non-decreasing in r. This implies that any
solution of (E) is classified into one of the above three types.

We otain the following generalized Pohozaev identity

P(r;u)

G(r)u*(r;a)®*! - (p + I)J g G(s)u*(s;d)”ur(s;a)ds

and its variant

P(r;u) = H(r) {(g/h)u*(r;a)} P!
- (p + I)J; H(s) {(g/h)u” (s;a)} P {(g/h)u(s;a)}sds,

where
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P(r;u) := g(r)u, {h(r)u, + u} + g(r)h(r)K(r) (u*)P*'.

p+1
T
G(r) := ——1 g(r)h(r)K(r) - J 0 g(s)K(s)ds,
) S(BR(DYP,  fe h(s)) "

By (g) and (K), the integrals in the definitions of G(r) and H(r)
are well-defined.

We define r; and ry as in the case g(r) = r" ! in the previous
section. Under the condition rw £ rg, we can completely classify the

structure of solutions as Theorem 1.

8 3. Applications.

Let us consider scalar field equations
(s) Au-u+ Q(]x|)uP =0, x € R", (n 2 3).

The existence of solutions have been studied in many papers. Ding-Ni
[DN2] showed that (S) has at least one positive radial solutions if
Q(r) > 0 and bounded by r? with 0 < 2 < (n-1)(p-1)/2. On the other
hand Li [L] has proved that (S) has no positive solution if Q(r) 2 0
and Q(r)r ‘" 1’ ¢P-1272 4g nondecreasing. However the structure of
positive radial solutions is not known.

We will investigate the structure. We can apply new Theorem 1 with

u(r)/e(r), v(r)

g(r) to investigate (S). In fact, by putting v(r)

satisfies the equation

24, n-1

(Eo) Ver + [ e t T ve + Q(r)e(r)P 1vP = 0, r >0,
v(0) =a> 0
where
(r""le). - 1" le = 0, r>0,
{ ?(0) =1, ¢ (0) = 0.
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Thus we may put

e(r) = cor T ¥ [ (qozy e (D), cn = 2022 (n/2),
g(r) = 1"71'e(r)?% = cn®rl(n-2).2(1)3,
1
h(r) = g(r) J :é 2(s) ds = rl¢n-23.2(r)Kcn-25.2(r),
K(r) = ¢(r)P1Q(r) = c P ipte-mip-ti2p oy a(r)P1Q(r),

(p+1)en” VG (1) = ¢ PP { 2{g(r)h(r)K(r)}r - (p+1)g(r)K(r) }
= 2{rd ot 2P (pin=2 B o ()PP (r TR B ey L 2) Q) ) .

- (pt1)rl-tn-2IP(pin=2221 oy a(r))P1Q(r),

where 1,(r) and K,(r) are modified Bessel function of the first kind

and second kind of j order, respectively. In particular, for n = 3,

¢(r) = r 'sinh(r),

g(r) = sinh®(r), h(r) = sinh(r)e™ ", K(r) = r'~Psinh® '(r)Q(r),

G, (1) = pf—l (r'"PsinhP*2(r)e-"Q(r))s - r' Psinh®* ! (r)Q(r).

Example 1. If n =3 and Q(r) = 1, then the structure of solutions is
as follows.
(a) If 1 <p <5, then the structure of (Eg) is of Type M.
((S) has a uniqe positive radial solution u with u~e "/r at .
See, [K] and [KL].)
(b) If p 235, then the structure is of Type S.
(A11 solutions 6f (S) are positive and u- 1 as r » .)

In fact, we may note that

G- (r) = r Psinh®*'(r) {(p+3)re 2" + (p-1)e 2" - (p-1)}

p+l
and

{(p+8)re ®" + (p-1)e™®" - (p-1)}, = e 2" {(5-p) - 2(p+3)r}.
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Example 2. If n =3 and Q(r) = rP™ 2, then the structure of solutions
of (Eg) is of Type M. ((S) has a uniqe positive radial solution u
with u~e "/r at «.) In fact, we may note that
G- (r) = E%T 1™ Zsinh®* (1) {(p+3)re™®" + €727 - 1}
and

{(p+3)re 2" + 737 - 1}, = e 27 {(p+1) - 2(p+3)r1}.

Example 3. If n =3 and Q(r) = r?', then the structure of solutions

of (Eg) is of Type Z. ((S) has no positive solutions. See, [L].)

In fact,
£, X
G- (r) = pt3 e 2 sinh®*'(r) > 0 for r > 0.
ptl
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