Pohozaev の恒等式とその応用 Pohozaev identity and its applications

龍谷大・理工 四ッ谷 晶二 Ryukoku University Shoji Yotsutani

§ 1. Introduction

This is a <u>joint work with Eiji Yanagida</u> (Tokyo Institute of Technology).

Recently, in [YY1] and [YY2], we obtained classification theorems of the structure of positive radial solutions to the equation

$$\Delta u + K(|x|)u^p = 0, \quad x \in \mathbb{R}^n,$$

where p > 1 and n > 2. (See, also, [DN1], [KL], [KN], [KNY], [KYY1], [KYY2], [LN1, LN2, LN3, LN4], [Na], [Y1], [Y2], [Y3], [Y4] and [YY3].)

We will explain the main results of them. Since we are interested in positive radial solutions (i.e. solutions with u = u(|x|) > 0), we study the initial value problem

(E)
$$\begin{cases} (r^{n-1}u_r)_r + r^{n-1}K(r)(u^+)^p = 0, & r > 0, \\ u(0) = \alpha > 0, & \end{cases}$$

where r = |x| and $u^+ = \max\{u, 0\}$. We impose the following conditions on K(r):

$$\begin{cases} K(r) & \text{is continuous on } (0, \infty); \\ K(r) \geq 0 & \text{and } K(r) \neq 0 & \text{on } (0, \infty); \\ rK(r) \in L^{1}(0, 1); \\ r^{n-1-(n-2)}PK(r) \in L^{1}(1, \infty). \end{cases}$$

It is known that, under the first, second and third conditions in (K), the initial value problem (E) has a unique solution $u(r) \in C([0, \infty)) \cap C^2((0, \infty))$ (see, e.g., Propositions 4.1 and 4.2 of [NY]). We will denote the unique solution by $u(r;\alpha)$. We note that, if the last condition in (K) is not satisfied, then $u(r;\alpha)$ has a zero in $(0, \infty)$ for every $\alpha > 0$ (see, e.g., [A] or [N]).

We classify each solution of (E) according to its behavior as $r \rightarrow \infty$. We say that

- (i) $u(r;\alpha)$ is a <u>zero-hit solution</u> if $u(r;\alpha)$ has a zero in $(0, \infty)$,
- (ii) $u(r;\alpha)$ is a <u>slow-decay solution</u> if $u(r;\alpha) > 0$ on $[0, \infty)$ and $\lim_{r \to \infty} r^{n-2}u(r;\alpha) = \infty$,
- (iii) $u(r;\alpha)$ is a <u>fast-decay solution</u> if $u(r;\alpha) > 0$ on $[0, \infty)$, and $\lim_{r \to \infty} r^{n-2}u(r;\alpha)$ exists and is finite and positive.

It can be shown that, if $u(r;\alpha) > 0$ on $[0, \infty)$, then $r^{n-2}u(r;\alpha)$ is non-decreasing in r. This implies that any solution of (E) is classified into one of the above three types.

Let G(r) and H(r) be functions defined by

$$\begin{split} &G(r) := \frac{2}{p+1} r^n K(r) - (n-2) \int_0^r s^{n-1} K(s) ds, \\ &H(r) := \frac{2}{p+1} r^{2-(n-2)p} K(r) - (n-2) \int_r^\infty s^{1-(n-2)p} K(s) ds, \end{split}$$

By n>2 and (K), the integrals in the definitions of G(r) and H(r) are well-defined. We note that, if K(r) is differentiable, then

$$G_r(r) \equiv r^{(n-2)(p+1)}H_r(r) = \frac{2}{p+1}r^{n-1}\{rK_r(r) - \lambda K(r)\},$$

where λ is given by

$$\lambda := \frac{(n-2)p - (n+2)}{2}$$
.

Finally we define

$$r_G := \inf \{ r \in (0, \infty) ; G(r) < 0 \},$$

 $r_H := \sup \{ r \in (0, \infty) ; H(r) < 0 \}.$

Here we put $r_G = \infty$ if $G(r) \ge 0$ on $(0, \infty)$, and $r_H = 0$ if $H(r) \ge 0$ on $(0, \infty)$.

Under the condition $r_H \le r_G$, we can completely classify the structure of solutions to (E).

Theorem 1. Suppose that $G(r) \neq 0$ on $(0, \infty)$. Then the structure of solutions to (E) is as follows.

- (a) If $r_G = \infty$, then the structure is of Type Z: $u(r;\alpha)$ is a zero-hit solution for every $\alpha > 0$.
- (b) If $r_G < \infty$ and $r_H = 0$, then the structure is of Type S: $u(r;\alpha)$ is a slow-decay solution for every $\alpha > 0$.
- (c) If $0 < r_H \le r_G < \infty$, then the structure is of Type M:

 There exists a unique positive number α_f such that $u(r;\alpha)$ is a zero-hit solution for every $\alpha \in (\alpha_f, \infty)$, $u(r;\alpha)$ is a fast-decay solution if and only if $\alpha = \alpha_f$, and $u(r;\alpha)$ is a slow-decay solution for every $\alpha \in (0, \alpha_f)$.

We should note that, if $G(r) \equiv 0$ on $(0, \infty)$, $u(r;\alpha)$ is a fast-decay solution for every $\alpha > 0$.

The next theorem implies that the condition $r_H \le r_G$ is sharp.

Theorem 2. Let a and b be any given numbers with $0 \le a < b \le \infty$. Then there exists K(r) with $r_G = a$ and $r_H = b$ such that the structure of solutions to (E) is neither of Type Z, Type S, Type M and Type F.

The above Theorem 1 is so powerful that it covers almost all known results as colloralies and can be applied to the prescribing scalar curvature equation

 $\Delta u + Ku^{(n+2) \times (n-2)} = 0$ in \mathbb{R}^n .

Theorem 3. Let $p = \frac{n+2}{n-2}$ and suppose that $K(r) \neq Constant$.

- (a) If K(r) is non-decreasing on $(0, \infty)$, then the structure is of Type Z.
- (b) If K(r) is non-increasing on $(0, \infty)$, then the structure is of Type S.
- (c) If there exists R ∈ (0, ∞) such that K(r) is non-decreasing on (0, R) and non-increasing on (R, ∞), and if lim K(r) = lim K(r), then the structure is of Type M. Moreover, if u is a slow-decay solution, then there exist positive constants c₁ and c₂ such that c₁r^{-(n-2)/2} ≤ u ≤ c₂r^{-(n-2)/2} for every sufficiently large r.

Our proofs of Theorems 1 and 2 are based on the shooting method. A main difficulty in the shooting method lies in the fact that the asymptotic behavior of $u(r;\alpha)$ as $r\to\infty$ must be studied carefully. In order to overcome this difficulty, we employ useful characterizations of zero-hit, slow-decay and fast-decay solutions, by using the variants of well-known Pohozaev identity

$$P(r;u) \equiv G(r)u^{+}(r;\alpha)^{p+1} - (p+1) \int_{0}^{r} G(s)u^{+}(s;\alpha)^{p}u_{r}(s;\alpha)ds,$$

and

$$P(r;u) = H(r) \{r^{n-2}u^{+}(r;\alpha)\}^{p+1}$$

$$- (p+1) \int_{0}^{r} H(s) \{s^{n-2}u^{+}(s;\alpha)\}^{p} \{s^{n-2}u(s;\alpha)\}_{s} ds,$$

where

$$P(r;u) := r^{n-1}u_r \{ru_r + (n-2)u\} + \frac{2}{p+1} r^n K(r) (u^+)^{p+1}.$$

The following lemma is fundamental characterizations of solutions.

Lemma.

- (a) If $u = u(r;\alpha)$ is a zero-hit solution, then P(r;u) > 0 for $r \in [z(\alpha), \infty)$, where $z(\alpha)$ is a zero of $u(r;\alpha)$.
- (b) If $u = u(r;\alpha)$ is a slow-decay solution, then there exists a sequence $\{\hat{r}_i\}$ such that $\hat{r}_i \to \infty$ as $i \to \infty$ and $P(\hat{r}_i;u) < 0$ for every i.
- (c) If $u = u(r;\alpha)$ is a fast-decay solution, then there exists a sequence $\{\overline{r}_i\}$ such that $\overline{r}_i \to \infty$ and $P(\overline{r}_i;u) \to 0$ as $i \to \infty$.

For the proofs of Theorems 1 and 2, we also use recent results assuring the existence of zero-hit, slow-decay and fast-decay solutions obtained by [YY1].

§ 2. Results

The aim of this report is to generalize the above Theorem 1 to more general equation

(E)
$$\begin{cases} (g(r)u_r)_r + g(r)K(r)(u^+)_p = 0, & r > 0, \\ u(0) = \alpha > 0, & \end{cases}$$

where g(r) is a given function satisfying the following conditions:

(g)
$$\begin{cases} g(r) \in C^{1}([0, \infty)); \\ g(r) > 0 \text{ on } (0, \infty); \\ 1/g(r) \notin L^{1}(0, 1); \\ 1/g(r) \in L^{1}(1, \infty). \end{cases}$$

We impose the following conditions on K(r):

(K)
$$\begin{cases} K(r) & \text{is continuous on } (0, \infty); \\ K(r) & \geq 0 & \text{and } K(r) \not\equiv 0 & \text{on } (0, \infty); \\ h(r)K(r) & \in L^{1}(0, 1); \\ g(r)(h(r)/g(r))^{p}K(r) & \in L^{1}(1, \infty), \end{cases}$$

where

$$h(r) := g(r) \int_{r}^{\infty} \frac{1}{g(s)} ds.$$

It is shown that, under the first, second and third conditions in (K), the initial value problem (E) has a unique solution $u(r) \in C([0, \infty)) \cap C^2((0, \infty))$. We will denote the unique solution by $u(r;\alpha)$. We note that, if the last condition in (K) is not satisfied, then $u(r;\alpha)$ has a zero in $(0, \infty)$ for every $\alpha > 0$.

We classify each solution of (E) according to its behavior as $r \rightarrow \infty$. We say that

- (i) $u(r;\alpha)$ is a <u>zero-hit solution</u> if $u(r;\alpha)$ has a zero in $(0, \infty)$,
- (ii) $u(r;\alpha)$ is a <u>slow-decay solution</u> if $u(r;\alpha) > 0$ on $[0, \infty)$ and $\lim_{r \to \infty} (g(r)/h(r))u(r;\alpha) = \infty$,
- (iii) $u(r;\alpha)$ is a <u>fast-decay solution</u> if $u(r;\alpha) > 0$ on $[0, \infty)$, and $\lim_{r \to \infty} (g(r)/h(r))u(r;\alpha)$ exists and is finite and positive.

It can be shown that, if $u(r;\alpha) > 0$ on $[0, \infty)$, then $(g(r)/h(r))u(r;\alpha)$ is non-decreasing in r. This implies that any solution of (E) is classified into one of the above three types.

We otain the following generalized Pohozaev identity

$$P(r;u) \equiv G(r)u^+(r;\alpha)^{p+1} - (p+1)\int_0^r G(s)u^+(s;\alpha)^p u_r(s;\alpha) ds$$
 and its variant

$$P(r;u) \equiv H(r) \{(g/h)u^{+}(r;\alpha)\}^{p+1}$$

$$- (p+1) \int_{0}^{r} H(s) \{(g/h)u^{+}(s;\alpha)\}^{p} \{(g/h)u(s;\alpha)\}_{s} ds,$$

where

$$\begin{split} P(r;u) &:= g(r) u_r \{ h(r) u_r + u \} + \frac{2}{p+1} g(r) h(r) K(r) (u^+)^{p+1}. \\ G(r) &:= \frac{2}{p+1} g(r) h(r) K(r) - \int_0^r g(s) K(s) ds, \\ H(r) &:= \frac{2}{p+1} h(r)^2 \left(\frac{h(r)}{g(r)} \right)^p K(r) - \int_r^{\infty} h(s) \left(\frac{h(s)}{g(s)} \right)^p K(s) ds. \end{split}$$

By (g) and (K), the integrals in the definitions of G(r) and H(r) are well-defined.

We define r_G and r_H as in the case $g(r) = r^{n-1}$ in the previous section. Under the condition $r_H \le r_G$, we can completely classify the structure of solutions as Theorem 1.

§ 3. Applications.

Let us consider scalar field equations

(S)
$$\Delta u - u + Q(|x|)u^p = 0, x \in \mathbb{R}^n, (n \ge 3).$$

The existence of solutions have been studied in many papers. Ding-Ni [DN2] showed that (S) has at least one positive radial solutions if Q(r) > 0 and bounded by r^{ℓ} with $0 < \ell < (n-1)(p-1)/2$. On the other hand Li [L] has proved that (S) has no positive solution if $Q(r) \ge 0$ and $Q(r)r^{-(n-1)(p-1)/2}$ is nondecreasing. However the structure of positive radial solutions is not known.

We will investigate the structure. We can apply new Theorem 1 with g(r) to investigate (S). In fact, by putting $v(r) = u(r)/\varphi(r)$, v(r) satisfies the equation

$$\left\{
\begin{array}{ll}
v_{rr} + \left(\frac{2\varphi_{r}}{\varphi} + \frac{n-1}{r}\right) v_{r} + Q(r)\varphi(r)^{p-1}v^{p} = 0, & r > 0, \\
v(0) = \alpha > 0
\end{array}\right.$$

where

$$\begin{cases} (r^{n-1}\varphi_r)_r - r^{n-1}\varphi = 0, & r > 0, \\ \varphi(0) = 1, & \varphi_r(0) = 0. \end{cases}$$

Thus we may put

$$\begin{split} & \varphi(r) = c_n r^{(2-n) \times 2} I_{(n-2) \times 2}(r), & c_n = 2^{(n-2) \times 2} \Gamma(n/2), \\ & g(r) = r^{n-1} \varphi(r)^2 = c_n^2 r I_{(n-2) \times 2}(r)^2, \\ & h(r) = g(r) \int_{r}^{\infty} \frac{1}{g(s)} ds = r I_{(n-2) \times 2}(r) K_{(n-2) \times 2}(r), \\ & K(r) = \varphi(r)^{p-1} Q(r) = c_n^{p-1} r^{(2-n) \cdot (p-1) \times 2} I_{(n-2) \times 2}(r)^{p-1} Q(r), \\ & (p+1) c_n^{-(p+1)} G_r(r) = c_n^{-(p+1)} \left\{ 2 \{ g(r) h(r) K(r) \}_r - (p+1) g(r) K(r) \right\} \\ & = 2 \{ r^{4-n-(n-2) \cdot p} (r^{(n-2) \times 2} I_{(n-2) \times 2}(r))^{p+2} (r^{(n-2) \times 2} K_{(n-2) \times 2}) Q(r) \}_r \\ & - (p+1) r^{1-(n-2) \cdot p} (r^{(n-2) \times 2} I_{(n-2) \times 2}(r))^{p+1} Q(r). \end{split}$$

where $I_j(r)$ and $K_j(r)$ are modified Bessel function of the first kind and second kind of j order, respectively. In particular, for n = 3,

$$\varphi(r) = r^{-1} \sinh(r),$$

$$g(r) = \sinh^2(r)$$
, $h(r) = \sinh(r)e^{-r}$, $K(r) = r^{1-p}\sinh^{p-1}(r)Q(r)$,

$$G_r(r) = \frac{2}{p+1} (r^{1-p} \sinh^{p+2}(r) e^{-r} Q(r))_r - r^{1-p} \sinh^{p+1}(r) Q(r).$$

Example 1. If n = 3 and Q(r) = 1, then the structure of solutions is as follows.

- (a) If $1 , then the structure of <math>(E_0)$ is of Type M. ((S) has a unique positive radial solution u with $u \sim e^{-r}/r$ at ∞ . See, [K] and [KL].)
- (b) If $p \ge 5$, then the structure is of Type S. (All solutions of (S) are positive and $u \to 1$ as $r \to \infty$.) In fact, we may note that

$$G_r(r) = \frac{1}{p+1} r^{-p} \sinh^{p+1}(r) \{ (p+3) r e^{-2r} + (p-1) e^{-2r} - (p-1) \}$$

and

$$\{(p+3) re^{-2r} + (p-1)e^{-2r} - (p-1)\}_r = e^{-2r} \{(5-p) - 2(p+3)r\}.$$

Example 2. If n = 3 and $Q(r) = r^{p-2}$, then the structure of solutions of (E_Q) is of Type M. ((S) has a unique positive radial solution u with $u \sim e^{-r}/r$ at ∞ .) In fact, we may note that

$$G_r(r) = \frac{1}{p+1} r^{-2} \sinh^{p+1}(r) \{ (p+3) re^{-2r} + e^{-2r} - 1 \}$$

and

$$\{(p+3)re^{-2r} + e^{-2r} - 1\}_r = e^{-2r}\{(p+1) - 2(p+3)r\}.$$

Example 3. If n = 3 and $Q(r) = r^{p-1}$, then the structure of solutions of (E_0) is of Type Z. ((S) has no positive solutions. See, [L].) In fact,

$$G_r(r) = \frac{p+3}{p+1} e^{-2r} \sinh^{p+1}(r) > 0$$
 for $r > 0$.

References

- [A] F. V. Atkinson, On second order nonlinear oscillations, Pacific J. Math. 5 (1955), 643-647.
- [CN] K.-S. Cheng & W.-M. Ni, On the structure of the conformal scalar curvature equation on \mathbf{R}^n , Indiana Univ. Math. J., 41 (1992), 261-278.
- [DN1] W.-Y. Ding & W.-M. Ni, On the elliptic equation $\Delta u + K(x)u^{(n+2)\times(n-2)} = 0 \text{ and related topics. Duke Math. J., 52}$ (1985), 486-506.
- [DN2] W.-Y. Ding & W.-M. Ni, On the existence of positive radial solution of a semilinear elliptic equations, Arch. Rational Mech. Anal. **91** (1986), 283-308.
- [K] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbf{R}^n , Arch. Rational Mech. Anal. 105 (1989), 243-266.

- [KL] M. K. Kwong & Y. Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992) 339-363.
- [KN] T. Kusano & M. Naito, Oscillation theory of entire solutions of semilinear elliptic equtions, Funkcial. Ekvac. 30 (1987), 269-282.
- [KNY] N. Kawano, W.-M. Ni & S. Yotsutani, A generalized Pohozaev identity and its applications, J. Math. Soc. Japan, 42 (1990), 541-564.
- [KYY1] N. Kawano, E. Yanagida & S. Yotsutani, Structure theorems for positive radial solutions to $\Delta u + K(|x|)u^p = 0$ in \mathbb{R}^n , Funkcial. Ekvac., to appear.
- [KYY2] N. Kawano, E. Yanagida & S. Yotsutani, Structure theorems for positive radial solutions to $\operatorname{div}(|\operatorname{Du}|^{m-2}\operatorname{Du}) + \operatorname{K}(|x|)u^p = 0$ in \mathbb{R}^n , J. Math. Soc. Japan, to appear.
- [L] Y. Li, Remarks on a semilinear elliptic equation on \mathbb{R}^n , J. Diff. Eqn. 74(1988), 34-49.
- [LN1] Y. Li & W.-M. Ni, On conformal scalar curvature equation in \mathbb{R}^n , Duke Math. J., **57** (1988), 895-924.
- [LN2] Y. Li & W.-M. Ni, On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations, Arch. Rational Mech. Anal., 108 (1989), 175-194.
- [LN3] Y. Li & W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \mathbf{R}^n , I, Asymptotic behavior, Arch. Rational Mech. Anal., to appear.
- [LN4] Y. Li & W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in \mathbf{R}^n , II, Radial symmetry, Arch. Rational Mech. Anal., to appear.
- $[N_a]$ Y. Naito, Bounded solutions with prescribed numbers of zeros for the Emden-Fowler differential equation, Hiroshima Math. J., to appear.

- [N] W.-M. Ni, On the elliptic equation $\Delta u + K(x)u^{(n+2)\times(n-2)} = 0$, its generalization, and applications in geometry, Indiana Univ. Math. J. **31** (1982), 493-529.
- [NY] W.-M. Ni & S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5 (1988), 1-32.
- [Y1] E. Yanagida, Structure of positive radial solutions of Matukuma's equation, Japan J. Indust. Appl. Math. 8 (1991), 165-173.
- [Y2] E. Yanagida, Uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. 115 (1991), 257-274.
- [Y3] E. Yanagida, Uniqueness of positive radial solutions of $\Delta u + f(u, |x|)u^p = 0$ in \mathbb{R}^n , Nonlinear Anal., 19 (1992), 1143-1154.
- [YY1] E. Yanagida & S. Yotsutani, Existence of positive radial solutions to $\Delta u + K(|x|)u^p = 0$ in \mathbb{R}^n , preprint.
- [YY2] E. Yanagida & S. Yotsutani, Classification of structure of positive radial solutions to $\Delta u + K(|x|)u^p = 0$ in \mathbb{R}^n , preprint.
- [YY3] E. Yanagida & S. Yotsutani, Existence of nodal fast-decay solutions to $\Delta u + K(|x|) |u|^{p-1}u = 0$ in \mathbb{R}^n , Nonlinear Anal., to appear.