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1. Introduction.

Let {Xi,?i, iz1l} be an adapted sequence of random variables
defined on a probability space (Q,%,P) , namely, {?i’,121} is an
increasing sequence of o-fields with ?i c % for each 1 =2 1 and
Xi is ?i-measurable for each i =2 1 . We assume that Xi is
integrable: EIXiI < eo , 121 . In this paper we study the
martingale limit theorem (Hall and Heyde [6], p. 36, or Loeve [7],
p. 53)

_1 n
(1.1) n iEl[Xi - E(XiI?i_l)] — 0 a.s.

under the condition

(1.2) sup E[¥(X,)] < =
1

Here, y(x) is a nonnegative, even and continuous function which
satisfies convexity near « and some additional condition (see
Remark 2). Later on (in Section 4) this result will be applied to
show existence of an optimal control for an ergodic controlled Markov
chain which was considered by Borkar([2], [3], [4] and [5]).

In order to investigate the martingale limit theorem (1.1) we
define a random variable Yi by

(1.3) Y. = X, - E(X;17

i i—l) '

Since {Yi,?i, i21} is a martingale difference sequence (i.e., {Si
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i

Zj=1Yj’ F iz1} 1is a martingale), we can obtain the strong law of

i b
large numbers for martingales (see Stout [9]):
-1
(1.4) n = Yi — 0 a.s.
i=1
under the condition
(1.5) sup E[vw(Y;)] < =
i

In [9], p. 156 , as an example of {(x) , Stout gave

(1.6) w(x) = Ixl(log¥Ix])* , o« > 1,

where log+lx| = (logl|x]) v 0 . In this paper, we consider a more
general form

(1.7) vix) = IxIL(Ix]) ,

where L(x) is a nonnegative, even and continuous function which has
the following representation: There exists a positive number B such

that for all x =2 B we have

. b4
(1.8) L(x) = ¢ exp{fB e(y)y ldy} ,
where ¢ is a constant (0 < ¢ < ») and €(x) 1is a continuous
function on (B, «) such that liqum g(x) = 0 . Namely, L(x) is

a slowly varying function at infinity such that its c-function c(x)
is a constant ¢ (see Seneta [8], p. 2). In Bingham, Goldie and
Teugels [1], p. 15 , it is called a normalized slowly varying
function. Since we are concerned with the measuring of scales of

growth at o , slowly varying functions are of interest only to

within asymptotic equivalence. In this sense we lose nothing by
restricting attention to the case of constant c-function.

In Section 2, we study sufficient conditions on ¥(x) or g(x)

for (1.5) to imply (1.4). In Section 3, we show that the strong law
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of large numbers for martingales (1.4)-(1.5) implies the martingale
1imit theorem (1.1)-(1.2) provided that (x) 1is convex on [r, =)
for some I > 0 . In Section 4, as an application of the martingale
1imit theorem, we discuss on existence of an optimal control for an
ergodic controlled Markov chain with long¥run average cost criterion

under a weaker condition than Borkar’s.

2. The strong law of large numbers.

Let {Yi,?i, i1} be a martingale difference sequence. It is
easy to show the following strong law of large numbers for
martingales by modifying Theorem 3.3.9 in Stout [9].

THEOREM 1. Let (x) be a positive even function satisfying

the following conditions. There exists a positive number r such
that on [r, ) ¥(x)/x 1is nondecreasing, w(x)/x2 is nonincreasng
and that
(2.1) [ (iaeax < =

r
If a martingale difference sequence {Yi,?i, i21} satisfies
(2.2) sup E[¥(Y;)] < =,

i

then the strong law of large numbers (1.4) holds.
We now investigate sufficient conditions on g(x) in (1.8) for
¥(x) to satisfy all the conditions in Theorem 1. For this purpose

we. make the following assumption.

ASSUMPTION 1. There exists a positive number ry ( = B) such
that g(x) =2 0 for x 2 ry -

PROPOSITION 1. Under Assumption 1, there exists a positive

number r (2 rl) such that on [r, «) w¥(x)/x 1is nondecreasing and
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\Jt(x)/x2 is nonincreasing.

We can give an example which satisfies all the requirements in
Theorem 1 by checking Assumption 1.

EXAMPLE 1. For o 2 1 , we define the function ¢, a(x) by
b
+ + + +
(2.3) O o(x) = IxI(log"Ixl)(logylxl) -+ (log) Tylxl) (Togylx® ,
where log+|x| = (logix|) v 0 , logglxl = (log logl|x|) v 0, and so on.
It is easy to see that there exists a positive number r such that
w -1
Ir wk,a(x)

we obtain the following corollary.

dx < ® (= o, resp.) if a¢ > 1 (o =1, resp.). Hence

COROLLARY 1. Let ({Y.,%., i=21} be a martingale difference

1’71?
sequence. If it satisfies
(2.4) sgp E[@k,a(Yi)} < o
for some o > 1 , then the strong law of large numbers (1.4) holds.
3. The martingale limit theorem.

Let {Xi,?-

i i21} be an adapted sequence of random variables.

In this section, we show that the strong law of large numbers for
martingales implies the martingale limit theorem if y(x) satisfies
some additional conditions as well as conditions in Section 2.

We prepare preliminary inequalities, (3.1) and (3.2), which

connect (1.2) with (1.5) for (1.3).

LEMMA 1. Let h(x) be an even, continuous and convex functon.
Let X be a random variable and # be a o-field. Then we have the
inequality
(3.1) E h(X - E(X1Z)) < E h(2X)

DEFINITION. A function h(x) is said to belong to € if it is
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a nonnegative even function which satisfies the following growth
condition: For some a > 0 and b > 0

(3.2) h(2x) < a + b h(x)

holds for any x

REMARK 1. Since in our case y(x) is continuous (and hence
locally bounded) and has the form y(x) = xL(x) (see (1.7)), it is
easy to observe that y(x) belongs to ¢

THEOREM 2. Let «(x) be a convex function which belongs to ¥

and satisfy all the conditions in Theorem 1. Let {Xi,?i, i=21} be
an adapted sequences of random variables. If
(3.3) stilp ElW(X;)] < =,
then the martingale limit theorem (1.1) holds.

REMARK 2. In view of proof of Theorem 3, we need not require
the convexity of ¢(x) on the whole space (-«, +»), namely, the

convexity can be replaced by the following weaker condition: Theré
exists a positive number r > 0 such that w(x) is convex on [r, «)
and 8+W(r) > 0 , where 8+w (r) 1is the right differential
coefficient at r .

In the next proposition, we study the condition which assures
that the function ¥(x) with the representation (1.7)-(1.8) is
convex on [r, «) for some r > B . For simplicity we make the
following assumption.

ASSUMPTION 2. There exists a positive number ry ( = B) such

that g(x) 1is absolutely continuous on [rz, »)

PROPOSITION 2. For some r ( = rz) , w(x) 1is convex on [r, =)

if and only if ¢g(x) satisfies
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(3.4) g(x) + e(x)% + xe'(x) 2 0 a.e. on [r,=)

It is easy tb show the following main theorem by virtue of
Theorem 2.

THEOREM 3. Let (x) be a nonnegative, even and continuous
function with the representation (1.7)-(1.8) where its g-function
e{x) satisfies Assumptions 1 and 2. We also assume that there
exists a positive number r ( =2 B v ry v rz) such that 111()()_-1 is
integrable on [r, «) {(i.e., (2.1) holds) and that the inequality
(3.4) holds on ([r, =) . If an adapted sequence of random variables
{Xi,?i, i>=1} satisfies

(3.5) sup E[¥(X )] < =,
1

then the martingale limit theorem (1.1) holds.

We can easily check the inequality {(3.4) with some r > 0 for

Py o defined by (2.3). Hence we obtain the following corollary.
]

COROLLARY 2. Let (Xi,?i, i21} be an adapted sequence of
random variables. If it satisfies
(3.6) sup Eloy (X;)] < =

i

with o > 1 , then the martingale limit theorem holds:
n

(3.7) nl s

i=1

REMARK 3. When o« = 1 , we can give a simple counterexample to

[X; - BE(X;1%,_;)] — 0 a.s.

the above corollary by modifying Example 15.3 (p.141) of Stoyanov

[10].

4. An application to a controlled Markov chain.

In this section, let Xn , n =1, 2, -+-++- be a controlled Markov

chain on a state space S = {1, 2, ----} with a transition matrix
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Pu = [P(iaJ,Ui)] ) i, J € S , where u = [ul’ uZ’ e ] 1s the

control vector satisfying u; € D for some prescribed compact

metric space D . The functions p(i,j,-) are assumed to be
continuous. Define L as the countable product of copies of D
with the product topology. A control strategy (CS) is a sequence
of L-valued random variables {in} , &n = [in(l), ﬁn(Z), -++1 , such
that for all i€ S, n=>1,

(4.1) P(X 41 = 11X, &, m<n) = p(X ,1,& (X))

The controlled Markov chain {Xn} is said to be governed by the

CS {gn} whenever (4.1) holds. If {&n} are identically
distributed with a common law ® and &n is independent of Xm s

m< n , &m , m < n , for each n , we call {ﬁn} a stationary
randomized strategy (SRS) , denoted by y[®] . If, in addition, ¢
is a Dirac measure at some & € L , we call it a stationary strategy
(SS) denoted by y{&} . If the controlled Markov chain {Xn} is
govered by a SRS {&n} , then {Xn} is a stationary Markov chain (see
Borkar [51). We shall assume throughout that the chain has a single
communicating class under all SRS (see Borkar [5]). Thus, under all
SRS , the Markov chain is irreducible. If, in addition, it is
positive recurrent under some y[d] or vy{&} , we call it a stable
SRS (SSRS) or a stable SS (SSS) respectively, and denote the
corresponding unique invariant probability measure by n{®] or n{£}
respectively.

Let k: S X D - ® be a nonnegative continuous function. We

consider the following optimal control problem:

Minimize a.s. over all CS
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n-1
(4.2) lim sup n—1 21 k(Xm, E
n-co m=

(X))

m m

This is an ’'ergodic’ or ’'long-run average cost’ control problem with
’running cost’ k
We review some of Borkar’s consequences ([2], [3], [4] and [5]),

He studied existence of an optimal SSS for two distinct set-ups,

i.e., the near-monotone case and the stable case. We are concerned
only with the stable case here. Let <t = min{n > 11Xn =1} ( = =
if Xn = 1 for all n > 0) . He made the following assumption.

CONDITION A. The family {t(&)} of random variables is

uniformly integrable, where <t(&) = t corresponds to the chain
governed by vy{£} with initial condition XO = 1

He showed that Condition A is equivalent to the tightness of
{n{#}i& € L}(Theorem 3.1 in [4], Lemma V.2.1 in [51]).

In order to prove existence of an optimal SSS among all CS ,
he needed the following additional assumption.

CONDITION B. sup E[t2|XO = 1] < =
CS

Under Condition B, he obtained the following theorem.

THEOREM 4. (Theorem 7.2 of (4], Theorem V.2.1 of [5]) Under
Condition B, an optimal SSS exists.

He proved this theorem as follows. First, he considered the

following P{(SxD)-valued empirical process (vn, n>1} defined by

n-1
=1
(4.3) vn(AxB) = n iEO I(Xi € A, 5i(Xi) € B)
for A, B Borel in S , D respectively. Then he showed that if

the empirical process {vn, n=1} for a chain {Xn} governed by an

arbitrary CS {2n} forms a tight sequence with probability one then
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there exists an optimal SSS exists. In order to prove the
tightness of the empirical process, he needed Condition B because he

made use of the martingale limit theorem in Loeéve [7]. Since in

Section 3 we obtained a more convenient result (Corollary 2) for our
purpose, we can prove Theorem 4 under a weaker assumption by the same

arguments as those of Theorem V.2.1 in [5].

CONDITION C. SUP(g E[wk,a(t)lXO = 1] € for some o > 1 ,
where ¢, .~ was defined by (2.4) in Example 1.
)

THEOREM 4’. Under Condition C, an optimal SSS exists.

REMARK 4. in [4] and [5], Borkar conjectured that Condition A
will be sufficient and so Condition B can be dropped in the proof.
His conjecture cannot be proved here. However, we showed Theorem 4’
by making use of Condition C instead of Condition B. Hence the gap
between Condition A and Condition B was considerably reduced in this

paper.
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