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Markov Bidecision Processes

# A #— (Seiichi IWAMOTO)

IMKRE BEFH BHELFH

1 Introduction

In this paper we consider the Markov decision processes on finite state and action spaces,
which have the multiplicatively additive reward system. Our multilpicative additivity does
not come from the usual ‘discount factor’ but from a new notion “discount function” .
The discount function depends on the current stage, state and action. Furthermore, it may
also take negative values. Our monotonicity becomes either monotone nonincreasingness
or monotone nondecreasingness according as nonpositiveness or nonnegativeness. On the
basis of both the usual recursiveness and our monotonicity, we must consider simultaneously
both maximum and minimum subproblems.

2 Bimax Theorem

Throughout the paper we use , for two sets of real values {a, b} and {a;,as,...,a,}, the
following notations for their maxima and minima, respectively:

aV b= max{a,b}, a Ab= min{qa, b}

n n

\/ @i = max{a1,as,...,a,}, A a=min{as,as,...,a,}.

=1 =1

Let X,Y and Z be three nonempty sets. Let X be the disjoint union of X, X*:
X=X +X"*

Theorem 1 Let g: X x R' — R! satisfy (i) forz € X~ g(z;-) : R* — R is nonincreas-
ing, and (ii) for z € Xt g(z;-) : R* — R! is nondecreasing. Let h: X xY x Z — R!
be a real-valued function. If the right-hand two-stage optima in (1),(2) exist, then the left-
hand simultaneous optima Maxy y .g(z; h(z;y, 2)) and min, ; ,g(z; h(z;y, 2)) exist, and the
following two equalities hold, respectively:

Max.,.9(z; h(z;y,2)) = Maxsex-g(z;ming.h(z;y, 2))
VMax,ex+g(z; Max, h(z;y, 2)) (1)
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min, , .g9(z; h(z;y,2)) = min,ex-g(z;Max, h(z;y,2))

Vinin,e v+ g(e; min, . A(x; , 2)) )
where, unless specified, the suffices z,y and z range over X,Y and Z, respectively.

Corollary 1 Let

g(z;h) = r(z) + B(z)h: X x R* — R!

h(z;y,2) = U(y)p(z) + V(2)q(z) : X x Y x Z — R
where
r, B:R'—R. U:Y—R, V:Z— R

and |

p(z)+q(z)=1, p(z) =20 for z € X.

If the right-hand two-stage optima in (3),(4) exist, then the left-hand simultaneous optima
exist, and both are equal, respectively:

Max, , .[r(z) + B(z)[U(y)p(z) + V(2)g(z)]]
= Maxrex—[r(m) + ﬁ(x)lnlny,z[U(y)p(m) + ‘/(Z)Q(x)]]
V Maxgex+[r(z) + f(z)Max, .[U(y)p(z) + V(2)q(z)]] (3)

min, , .[r(z) + B(2)[U (y)p(z) + V(2)q(z)]]
= mingeyx-[r(z) + f(z)Max, .[U(y)p(z) + V(z)q(z)]]
V mingex+[r(z) + B(z)min, .[U(y)p(z) + V(2)q(z)]]. (4)

~— N

3 Finite-stage Markov Bidecision Processes

A finite-stage Markov bidecision process (BDP) is specified by a five-tuple:

B= ( Opt, {Sn}fr*‘l) {An}iv7 ({rn}{v’ {ﬁn iva k)a {Qn {\I)

where
(z) N isa positive integer, total number of stages. The subscript n ranges 1 < n < N(orN+
1). It specifies the current number of stage.
(i7) S, is a nonempty finite set, n-th state space. Its elements s,, s> € S, are called n-th
states. s; is an initial state. sy, is a terminal state.
(722) A, is a nonempty finite set, n-th action space. Let 4,(s,) C A, be a nonempty subset,
n-th feasible action space at state s,. Its elements a,,aX € A,(s,) are called n-th actions
at state s,,:
() r,:8, x A, — R'is an n-th reward function.
(v) Bn: S, x A, — R'is an n-th discount function. We don’t always assume that
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Bu(sn,an) 2 0. The constant discount function £,(s,, a,) = B= 0 has been called the
discount factor, as has been frequently used.

(vi) k: Swe1 — R'is a terminal reward function. The three-tuple ({r,}V, {8,}¥ k) is
called a reward system.

(Uz'z') Gn = Gn(Snt1l Sn,an) is an n-th Markov transition law from s,, onto S, 4, depending on
the current action a,. When the system is in state s, on stage n and action a,, is chosen,
the next state will become s,4; with probability ¢,(sn+1] 5, a,) = 0. We write s, ~ n(
o| Spy Gn)-

(viti) Opt denotes either Max or min, optimizer. It means that BDP B represents the
stochastic optimization problem:

Opt Z Z Z Il(.S'l,(ll,SQ,ag,...,SN,(lN,SAr+1)

$1€S152€S2  sN41€SN4
xq1(s2| Sl,al)q:z(ssl 82, Gz)-~-QN(5N+1| SN, aN)
s.t. (1) Sp41~gn(*l Snya,) 1<n<N (5)
(ii) a, € An(sn) 1<n <N,

Here
In(sna Qny Sn+1y An41y--+y SN, AN, 3N+l)
= Ty + ﬁnrn+1 + ,Bn.ﬁn-i-lrn+2 + ...+ /371/3n+1-”ﬁN-171N + /Bnﬁn-i-l'“/@N'IC
where
Tn = rn(sn, an)y ,Bn = /Bn(sna (ln), k= k(5N+1)'
Let

Vn : Sl X SZ XX Sn - An Vn(31752a "-)Sn) € An(sn) Sp € Sn

be an n-th (not necessarily Markovian) decision function. A sequence v = {vy,vs,...,uy}is
called strategy. Thus let E¥ be the expectation (integral) operator on Sy x S3 X -+ x Sy 4,
with an initial state s; € 5;.

Therefore the problem (5) is rewritten as follows.

Opt EV[Il(Sl,al,Sz;a% ~~35N;aN13N+1) | (3);(”) 1<n< N] (6)

The aim of BDP B is to find two optimal strategies in the following sense. A strategy
A= {A1, Az, ..., An} is called mazimal if for each s; € S; A attains the maximum value of
Maximum Problem (6). Another strategy u = {u1, 2, ..., un } is called minimal if for each
s1 € 51 w attains the minimum value of minimum Problem (6).

A policyis an ordered set of N decision functions © = {7}, ms, ..., 7y } where m, : S, — A,
with the feasibility m,(s,) € An(sn) Sn € Sp is an n-th (Markovian) decision function.

Given BDP B, we for each n(1 £ n < N) define the following maximum and minimum
problems together with maximum and minimum values, respectively:
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UN=*1(s,) = Max E*[[(Sn, Gny -y SN, AN, SN41) | (1), (i)]

uN " (s,) = min E*[L(Sn, Gny oy SN, an, Sns) | (1), ()]

Here
() Sm+1 ~ @m(*l Smyam) n<m<N
(i) am € Apn(sm) n<m<N
and
v= {Vm; Vin+1y -4y VN}
where

U - Sn X Sn,+1 X oo X Sm - Am Vm(sn,33n+l; ~~-73m) € Am(sm) Sm € Sm-

Then we have the following system of two alternate-recursive formulae between mazimum
reward functions {U®,U,...,UN} and minimum ones {u°,u*,...,u™}.

Theorem 2 (Bicursive Formula)
UN="H1(s) = Maxg,_Tu(s, a;u™ ™) V Max, 4 To(s, a; UV ™™) s €S, (7)

uN—n+1(s) _ mina;_Tn(s,a; UN—n) A miIla;+Tn(‘s’ a; uN—n) s €S, (8)

U%(s) = u(s) = h(s) s € Swar

where
To(s,a;w) = ra(s,a) + Ba(s, a) Qw(t)q(t | s,a)
An(s) = {a € An(s) | Buls,a) = 0}
Ax(s) = {a € A,(s) |Bu(s,a) > 0}
and

a;—, a;+ denote a€ An(s), a€ AL(s), respectively.
Further letting
7% (s,) = an a which attains the maximum of (7)

6,(5n) = an a which attains the minimum of (8)

we have the ‘maximal’ n-th decision function #; and the 'minimal’ n-th decision function
&, in the remaining (N — n + 1) satges.
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4 Infinite-stage Bidecision Processes

We consider an infinite-horizon stationary Markov bi-decision process on finite state and
action spaces:

B = (Opt, {S:}7°, {Ax}7, ({ra}7 {Ba}7), {4a}°)

where

A, = A, A, (1) ={1,2,..,.K;} i=1,2,..,N
Tn =T, Bn = B, 0 =g
The Markov bidecision process B represents the optimization problem
Opt  E*[ri+ firy + frfars+ -+ 1Pz Barpsr + -]

st. (1) Snt1~ Gn(]5n, an)
(i) a, € Au(sn) n=1,2, ..

where

Bn = B(Snyan), Th =7(Sn,an).
We assume that there exist m, M such that

~1<m<PEk<M<1 1<k<K, 1<i<N. (9)

Let U(7) be the maximum expected value from an initial state ¢ and u(i) be the mini-
mum. Then we have the following system of two alternate-recursive equations:

Theorem 3 (Bicursive Equation)

Z

U@ =\ (k) +B806,k) 3 u(5)a(ili k)

B(2,k)<0

Vv \V (r(, k) + B, k)

B(2,k)>0

<
"
-

U(5)q(sls, k) (10)

M=

<
Il
-

~
|
=
o
=

™=

u(@y = N (G k) + BGLE) Y U(5)a(5li k)

B(:,k)<0 J=1
N

AN Gk + BGL k)Y u(i)alls, B)). (11)
B(1,k)>0 1=1

We call this system optimality equation in Markov bidecision process.
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Let W = (U, u)' be any 2N-dimensional real column-vector with U’ = (Uy,...,Uy) and
v = (w,...,uy), where ' is tranpose. We take the maximum norm |[|W|| = [|[U]| V ||u]|,
where

N N
Wwi=Vivl, llu=VIuwl.
=1 =1

Let TW be the 2/ N-dimensional real column-vector composed of the right-hand sides of

(10),(11).

Theorem 4 The operator T : R*N — RN is a contraction mapping with the contraction
coefficient B < 1, where

B = Max, ,.-13(s,a) | V Max, ,.+/(s,a).

Here s,a; — and s, a; + denote a € A(s), f(s,a) €0, s € S anda € A(s), f(s,a) >0, s €
S, respectively. Therefore the bicursive equation (10),(11) has a unique solution in RV,

Theorem 5 (Successive Approzimation) Take any Wy in R?N. If we generate the se-
quence {W, } by
Wpp1= TW, nz0

then {W,} converges to the unique solution W of (10),(11), that 1s,

TW=W.

5 Bi-policy Iteration Algorithm

We have the following algorithm for finding the unique solution.

Bi-policy Iteration Algorithm (BIP)

step 1 (initial selection) Let n = 0. Take any pair of feasible selections ( fo, Fo).
step 2 (value determination) Calculate X™ = X(f,, F,,) =

(X1(foy Fr)y - ooy Xn(fny Fn)) and 2™ = z(fn, Fr) = (21(fn, Fn), -, e5(fn, Fn)) satisfying

the system of 2N linear equations :

yn_ § BGF()) L, gt 407 for (i, Fa(i)) < 0
CE) 86 R ) S d OXr + 1O for (i, F(3) > 0
and 1=1,2,.,N

g | AGLO) Tl gy VX 40 for (L £(9) < 0
(Z7f7l( )) Z] I(I{]n(l) n+,,f'() for ﬁ(ly fn(.

step 3 (optimality test) If (X7, z") satisfies

N N
Xp= V BERE AV V(868 L X+

B(:,k)<0 B(2,k)>0
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N N
= A BEGRYEXT A N (A6 ZQ,,I]-FT*

B(+,k)<0 3=1 B(2,k)>0

then go to step 6. Otherwise, go to step 4.
step 4 (selection improvement) Choose a pair of feasible selections (F,41, f,+1) satisfying

Vo( Zwﬁr WV (BGLE) Y g XD +F)

ﬂ(i,k)<0 ‘ B(3,k)>0 j=1

_ BG, Faa () T g Y 407 for (i, Fuga(i)) < 0
B, Fasr (1) TIL, gm0 OXr 4+ 7500 for B(i, B (1)) > 0
and ' 1=1,2,..,N
N N
N BGE)Y X +rB)A N (B k)Y ghal + )
B(z,k)<0 =1 B(4,k)>0 =1

_ | BG fanr @) T g OX 0O or B(i, (1)) <0
B, fasr () T, gl Dt + oI or B(, fua(i)) > 0

step 5 (next step) Let n=n+ 1. Go to step 2.
step 6 (optimal solution) The pair of selections (F,, f,) is optimal and (X, z") is the
desired solution.
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